1
|
Udoikono AD, Agwamba EC, Louis H, Benjamin I, Ahmad I, Ejiofor EU, Ahuekwe EF, Chukwuemeka K, Adeyinka AS, Patel HM, Manicum AL, Edim M. Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: perception from DFT, molecular docking, and molecular dynamic simulation. J Biomol Struct Dyn 2023; 41:10136-10160. [PMID: 36519503 DOI: 10.1080/07391102.2022.2153414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In this study, two novel derivatives of naphthalene-2-sulfonic acid: 6-(((1S,5R)-3,5-dichloro-2,4,6-triazabicyclo [z3.1.0]hex-3-en-1-yl)amino)-5-((E)-phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS1) and (E)-6-((4,6-dichloro-1,3,5-triazine2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS2) have been synthesized and characterized using FT-IR, UV-vis, and NMR spectroscopic techniques. Applying density functional theory (DFT) at the B3LYP, APFD, PBEPBE, HCTH, TPSSTPSS, and ωB97XD/aug-cc-pVDZ level of theories for the electronic structural properties. In-vitro analysis, molecular docking, molecular dynamic (MD) simulation of the compounds was conducted to investigate the anti-inflammatory potential using COXs enzymes. Docking indicates binding affinity of -9.57, -9.60, -6.77 and -7.37 kcal/mol for DTPS1, DTPS2, Ibuprofen and Diclofenac which agrees with in-vitro assay. Results of MD simulation, indicates sulphonic group in DTPS1 has > 30% interaction with the hydroxyl and oxygen atoms in amino acid residues, but > 35% interaction with the DTPS2. It can be said that the DTPS1 and DTPS2 can induce inhibitory effect on COXs to halt biosynthesis of prostaglandins (PGs), a chief mediator of inflammation and pain in mammals.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akaninyene D Udoikono
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Emmanuel U Ejiofor
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Eze F Ahuekwe
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Kelechi Chukwuemeka
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Harun M Patel
- Department of Biological Sciences, Covenant University, Ota, Nigeria
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Amanda-Lee Manicum
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Moses Edim
- Cross River State University of Technology, Calabar, Nigeria
| |
Collapse
|
2
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Cata JP, Uhelski ML, Gorur A, Bhoir S, Ilsin N, Dougherty PM. The µ-Opioid Receptor in Cancer and Its Role in Perineural Invasion: A Short Review and New Evidence. Adv Biol (Weinh) 2022; 6:e2200020. [PMID: 35531616 DOI: 10.1002/adbi.202200020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
Cancer is a significant public health problem worldwide. While there has been a steady decrease in the cancer death rate over the last two decades, the number of survivors has increased and, thus, cancer-related sequela. Pain affects the life of patients with cancer and survivors. Prescription opioids continue as the analgesic of choice to treat moderate-to-severe cancer-related pain. There has been controversy on whether opioids impact cancer progression by acting on cancer cells or the tumor microenvironment. The μ-opioid receptor is the site of action of prescription opioids. This receptor can participate in an important mechanism of cancer spread, such as perineural invasion. In this review, current evidence on the role of the μ-opioid receptor in cancer growth is summarized and preliminary evidence about its effect on the cross-talk between sensory neurons and malignant cells is provided.
Collapse
Affiliation(s)
- Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, 77030, USA
| | - Megan L Uhelski
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Gorur
- Department of Investigational Cancer Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Siddhant Bhoir
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nisa Ilsin
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Rice University, Houston, TX, 77005, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Dubeykovskaya ZA, Tu NH, Garcia PDR, Schmidt BL, Albertson DG. Oral Cancer Cells Release Vesicles that Cause Pain. Adv Biol (Weinh) 2022; 6:e2200073. [PMID: 35802912 PMCID: PMC9474716 DOI: 10.1002/adbi.202200073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/02/2022] [Indexed: 01/28/2023]
Abstract
Oral cancer pain is attributed to the release from cancers of mediators that sensitize and activate sensory neurons. Intraplantar injection of conditioned media (CM) from human tongue cancer cell line HSC-3 or OSC-20 evokes nociceptive behavior. By contrast, CM from noncancer cell lines, DOK, and HaCaT are non-nociceptive. Pain mediators are carried by extracellular vesicles (EVs) released from cancer cells. Depletion of EVs from cancer cell line CM reverses mechanical allodynia and thermal hyperalgesia. CM from non-nociceptive cell lines become nociceptive when reconstituted with HSC-3 EVs. Two miRNAs (hsa-miR-21-5p and hsa-miR-221-3p) are identified that are present in increased abundance in EVs from HSC-3 and OSC-20 CM compared to HaCaT CM. The miRNA target genes suggest potential involvement in oral cancer pain of the toll like receptor 7 (TLR7) and 8 (TLR8) pathways, as well as signaling through interleukin 6 cytokine family signal transducer receptor (gp130, encoded by IL6ST) and colony stimulating factor receptor (G-CSFR, encoded by CSF3R), Janus kinase and signal transducer and activator of transcription 3 (JAK/STAT3). These studies confirm the recent discovery of the role of cancer EVs in pain and add to the repertoire of algesic and analgesic cancer pain mediators and pathways that contribute to oral cancer pain.
Collapse
Affiliation(s)
- Zinaida A Dubeykovskaya
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Nguyen Huu Tu
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Paulina D Ramírez Garcia
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Donna G Albertson
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| |
Collapse
|
5
|
Ye Y, Jensen DD, Viet CT, Pan HL, Campana WM, Amit M, Boada MD. Advances in Head and Neck Cancer Pain. J Dent Res 2022; 101:1025-1033. [PMID: 35416080 PMCID: PMC9305840 DOI: 10.1177/00220345221088527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) affects over 890,000 people annually worldwide and has a mortality rate of 50%. Aside from poor survival, HNC pain impairs eating, drinking, and talking in patients, severely reducing quality of life. Different pain phenotype in patients (allodynia, hyperalgesia, and spontaneous pain) results from a combination of anatomical, histopathological, and molecular differences between cancers. Poor pathologic features (e.g., perineural invasion, lymph node metastasis) are associated with increased pain. The use of syngeneic/immunocompetent animal models, as well as a new mouse model of perineural invasion, provides novel insights into the pathobiology of HNC pain. Glial and immune modulation of the tumor microenvironment affect not only cancer progression but also pain signaling. For example, Schwann cells promote cancer cell proliferation, migration, and secretion of nociceptive mediators, whereas neutrophils are implicated in sex differences in pain in animal models of HNC. Emerging evidence supports the existence of a functional loop of cross-activation between the tumor microenvironment and peripheral nerves, mediated by a molecular exchange of bioactive contents (pronociceptive and protumorigenic) via paracrine and autocrine signaling. Brain-derived neurotrophic factor, tumor necrosis factor α, legumain, cathepsin S, and A disintegrin and metalloprotease 17 expressed in the HNC microenvironment have recently been shown to promote HNC pain, further highlighting the importance of proinflammatory cytokines, neurotrophic factors, and proteases in mediating HNC-associated pain. Pronociceptive mediators, together with nerve injury, cause nociceptor hypersensitivity. Oncogenic, pronociceptive mediators packaged in cancer cell-derived exosomes also induce nociception in mice. In addition to increased production of pronociceptive mediators, HNC is accompanied by a dampened endogenous antinociception system (e.g., downregulation of resolvins and µ-opioid receptor expression). Resolvin treatment or gene delivery of µ-opioid receptors provides pain relief in preclinical HNC models. Collectively, recent studies suggest that pain and HNC progression share converging mechanisms that can be targeted for cancer treatment and pain management.
Collapse
Affiliation(s)
- Y Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - D D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - C T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - H L Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W M Campana
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, USA.,San Diego Veterans Health System, San Diego, CA, USA
| | - M Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Tu NH, Inoue K, Chen E, Anderson BM, Sawicki CM, Scheff NN, Tran HD, Kim DH, Alemu RG, Yang L, Dolan JC, Liu CZ, Janal MN, Latorre R, Jensen DD, Bunnett NW, Edgington-Mitchell LE, Schmidt BL. Cathepsin S Evokes PAR 2-Dependent Pain in Oral Squamous Cell Carcinoma Patients and Preclinical Mouse Models. Cancers (Basel) 2021; 13:4697. [PMID: 34572924 PMCID: PMC8466361 DOI: 10.3390/cancers13184697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
Oral squamous cell carcinoma (SCC) pain is more prevalent and severe than pain generated by any other form of cancer. We previously showed that protease-activated receptor-2 (PAR2) contributes to oral SCC pain. Cathepsin S is a lysosomal cysteine protease released during injury and disease that can activate PAR2. We report here a role for cathepsin S in PAR2-dependent cancer pain. We report that cathepsin S was more active in human oral SCC than matched normal tissue, and in an orthotopic xenograft tongue cancer model than normal tongue. The multiplex immunolocalization of cathepsin S in human oral cancers suggests that carcinoma and macrophages generate cathepsin S in the oral cancer microenvironment. After cheek or paw injection, cathepsin S evoked nociception in wild-type mice but not in mice lacking PAR2 in Nav1.8-positive neurons (Par2Nav1.8), nor in mice treated with LY3000328 or an endogenous cathepsin S inhibitor (cystatin C). The human oral SCC cell line (HSC-3) with homozygous deletion of the gene for cathepsin S (CTSS) with CRISPR/Cas9 provoked significantly less mechanical allodynia and thermal hyperalgesia, as did those treated with LY3000328, compared to the control cancer mice. Our results indicate that cathepsin S is activated in oral SCC, and that cathepsin S contributes to cancer pain through PAR2 on neurons.
Collapse
Affiliation(s)
- Nguyen Huu Tu
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Kenji Inoue
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Elyssa Chen
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Bethany M. Anderson
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Caroline M. Sawicki
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Nicole N. Scheff
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Hillman Cancer Research Center, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Hung D. Tran
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Dong H. Kim
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Robel G. Alemu
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Lei Yang
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - John C. Dolan
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Cheng Z. Liu
- Pathology Department, New York University (NYU) Langone Health, New York, NY 10016, USA;
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, New York University (NYU) College of Dentistry, New York, NY 10010, USA;
| | - Rocco Latorre
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
| | - Dane D. Jensen
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University (NYU) Langone Health, New York, NY 10016, USA
| | - Laura E. Edgington-Mitchell
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia;
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University (NYU) Langone Health, New York, NY 10016, USA
| |
Collapse
|
7
|
Bhansali D, Teng SL, Lee CS, Schmidt BL, Bunnett NW, Leong KW. Nanotechnology for Pain Management: Current and Future Therapeutic Interventions. NANO TODAY 2021; 39:101223. [PMID: 34899962 PMCID: PMC8654201 DOI: 10.1016/j.nantod.2021.101223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain is one of the most common medical conditions and affects more Americans than diabetes, heart disease, and cancer combined. Current pain treatments mainly rely on opioid analgesics and remain unsatisfactory. The life-threatening side effects and addictive properties of opioids demand new therapeutic approaches. Nanomedicine may be able to address these challenges as it allows for sensitive and targeted treatments without some of the burdens associated with current clinical pain therapies. This review discusses the physiology of pain, the current landscape of pain treatment, novel targets for pain treatment, and recent and ongoing efforts to effectively treat pain using nanotechnology-based approaches. We highl ight advances in nanoparticle-based drug delivery to reduce side effects, gene therapy to tackle the source of pain, and nanomaterials-based scavenging to proactively mediate pain signaling.
Collapse
Affiliation(s)
- Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Shavonne L. Teng
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Caleb S. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
- Department of Systems Biology, Columbia University, New York, NY 10027
| |
Collapse
|
8
|
Liu Q, He H, Mai L, Yang S, Fan W, Huang F. Peripherally Acting Opioids in Orofacial Pain. Front Neurosci 2021; 15:665445. [PMID: 34017236 PMCID: PMC8129166 DOI: 10.3389/fnins.2021.665445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
9
|
Dang D, Ye Y, Aouizerat BE, Patel YK, Viet DT, Chan KC, Ono K, Doan C, Figueroa JD, Yu G, Viet CT. Targeting the endothelin axis as a therapeutic strategy for oral cancer metastasis and pain. Sci Rep 2020; 10:20832. [PMID: 33257729 PMCID: PMC7704690 DOI: 10.1038/s41598-020-77642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
Metastasis reduces survival in oral cancer patients and pain is their greatest complaint. We have shown previously that oral cancer metastasis and pain are controlled by the endothelin axis, which is a pathway comprised of the endothelin A and B receptors (ETAR and ETBR). In this study we focus on individual genes of the pathway, demonstrating that the endothelin axis genes are methylated and dysregulated in cancer tissue. Based on these findings in patients, we hypothesize that ETAR and ETBR play dichotomous roles in oral carcinogenesis and pain, such that ETAR activation and silenced ETBR expression result in increased carcinogenesis and pain. We test a treatment strategy that targets the dichotomous functions of the two receptors by inhibiting ETAR with macitentan, an ETAR antagonist approved for treatment of pulmonary hypertension, and re-expressing the ETBR gene with adenovirus transduction, and determine the treatment effect on cancer invasion (i.e., metastasis), proliferation and pain in vitro and in vivo. We demonstrate that combination treatment of macitentan and ETBR gene therapy inhibits invasion, but not proliferation, in cell culture and in a mouse model of tongue cancer. Furthermore, the treatment combination produces an antinociceptive effect through inhibition of endothelin-1 mediated neuronal activation, revealing the analgesic potential of macitentan. Our treatment approach targets a pathway shown to be dysregulated in oral cancer patients, using gene therapy and repurposing an available drug to effectively treat both oral cancer metastasis and pain in a preclinical model.
Collapse
Affiliation(s)
- Dongmin Dang
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA.,Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - Yi Ye
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA.,Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA.,Bluestone Center for Clinical Research, New York University, New York, NY, USA.,Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Yogin K Patel
- Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - Dan T Viet
- Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - King Chong Chan
- Division of Oral and Maxillofacial Radiology, Section of Hospital Dentistry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kentaro Ono
- Department of Physiology, Kyushu Dental University, Kitakyushu, Japan
| | - Coleen Doan
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Johnny D Figueroa
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gary Yu
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA.
| |
Collapse
|
10
|
Legumain Induces Oral Cancer Pain by Biased Agonism of Protease-Activated Receptor-2. J Neurosci 2020; 41:193-210. [PMID: 33172978 DOI: 10.1523/jneurosci.1211-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not β-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not β-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.
Collapse
|
11
|
Thomas J, Punia K, Montclare JK. Peptides as key components in the design of
non‐viral
vectors for gene delivery. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Joseph Thomas
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
- Department of Chemistry New York University New York New York USA
- Department of Biomaterials New York University College of Dentistry New York New York USA
| |
Collapse
|
12
|
Bhattacharya A, Janal MN, Veeramachaneni R, Dolgalev I, Dubeykovskaya Z, Tu NH, Kim H, Zhang S, Wu AK, Hagiwara M, Kerr AR, DeLacure MD, Schmidt BL, Albertson DG. Oncogenes overexpressed in metastatic oral cancers from patients with pain: potential pain mediators released in exosomes. Sci Rep 2020; 10:14724. [PMID: 32895418 PMCID: PMC7477576 DOI: 10.1038/s41598-020-71298-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Oral cancer patients experience pain at the site of the primary cancer. Patients with metastatic oral cancers report greater pain. Lack of pain identifies patients at low risk of metastasis with sensitivity = 0.94 and negative predictive value = 0.89. In the same cohort, sensitivity and negative predictive value of depth of invasion, currently the best predictor, were 0.95 and 0.92, respectively. Cancer pain is attributed to cancer-derived mediators that sensitize neurons and is associated with increased neuronal density. We hypothesized that pain mediators would be overexpressed in metastatic cancers from patients reporting high pain. We identified 40 genes overexpressed in metastatic cancers from patients reporting high pain (n = 5) compared to N0 cancers (n = 10) and normal tissue (n = 5). The genes are enriched for functions in extracellular matrix organization and angiogenesis. They have oncogenic and neuronal functions and are reported in exosomes. Hierarchical clustering according to expression of neurotrophic and axon guidance genes also separated cancers according to pain and nodal status. Depletion of exosomes from cancer cell line supernatant reduced nociceptive behavior in a paw withdrawal assay, supporting a role for exosomes in cancer pain. The identified genes and exosomes are potential therapeutic targets for stopping cancer and attenuating pain.
Collapse
Affiliation(s)
- Aditi Bhattacharya
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ratna Veeramachaneni
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Zinaida Dubeykovskaya
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Nguyen Huu Tu
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Hyesung Kim
- New York University College of Dentistry, New York, NY, 10010, USA
| | - Susanna Zhang
- New York University College of Dentistry, New York, NY, 10010, USA
| | - Angie K Wu
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA
| | - Mari Hagiwara
- Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - A Ross Kerr
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University, New York, NY, 10010, USA
| | - Mark D DeLacure
- Division of Head and Neck Surgery and Oncology, New York University School of Medicine, New York, NY, 10016, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Donna G Albertson
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA. .,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
13
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
14
|
Scheff NN, Bhattacharya A, Dowse E, Dang RX, Dolan JC, Wang S, Kim H, Albertson DG, Schmidt BL. Neutrophil-Mediated Endogenous Analgesia Contributes to Sex Differences in Oral Cancer Pain. Front Integr Neurosci 2018; 12:52. [PMID: 30405367 PMCID: PMC6204375 DOI: 10.3389/fnint.2018.00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/01/2018] [Indexed: 01/14/2023] Open
Abstract
The incidence of oral cancer in the United States is increasing, especially in young people and women. Patients with oral cancer report severe functional pain. Using a patient cohort accrued through the New York University Oral Cancer Center and immune-competent mouse models, we identify a sex difference in the prevalence and severity of oral cancer pain. A neutrophil-mediated endogenous analgesic mechanism is present in male mice with oral cancer. Local naloxone treatment potentiates cancer mediator-induced orofacial nociceptive behavior in male mice only. Tongues from male mice with oral cancer have significantly more infiltrating neutrophils compared to female mice with oral cancer. Neutrophils isolated from the cancer-induced inflammatory microenvironment express beta-endorphin and met-enkephalin. Furthermore, neutrophil depletion results in nociceptive behavior in male mice. These data suggest a role for sex-specific, immune cell-mediated endogenous analgesia in the treatment of oral cancer pain.
Collapse
Affiliation(s)
- Nicole N Scheff
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Aditi Bhattacharya
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Edward Dowse
- College of Dentistry, New York University, New York, NY, United States
| | - Richard X Dang
- College of Dentistry, New York University, New York, NY, United States
| | - John C Dolan
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Susanna Wang
- College of Dentistry, New York University, New York, NY, United States
| | - Hyesung Kim
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Donna G Albertson
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| |
Collapse
|
15
|
Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, Deng L, Jiang W, Shen W, Wang Z, Mei Z, Li P, Ran H, Zhou Z, Ren J. Cell-penetrating Peptide-modified Targeted Drug-loaded Phase-transformation Lipid Nanoparticles Combined with Low-intensity Focused Ultrasound for Precision Theranostics against Hepatocellular Carcinoma. Theranostics 2018; 8:1892-1910. [PMID: 29556363 PMCID: PMC5858507 DOI: 10.7150/thno.22386] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
Objective: Prepare a multifunctional ultrasound molecular probe, hyaluronic acid-mediated cell-penetrating peptide-modified 10-hydroxycamptothecin-loaded phase-transformation lipid nanoparticles (HA/CPPs-10-HCPT-NPs), and to combine HA/CPPs-10-HCPT-NPs with low-intensity focused ultrasound (LIFU) for precision theranostics against hepatocellular carcinoma (HCC). Methods: HA/CPPs-10-HCPT-NPs were prepared using thin-film dispersion, ultrasound emulsification, and electrostatic effects. HA/CPPs-10-HCPT-NPs were characterized for particle size, zeta potential, encapsulation efficiency and drug-loading efficiency. In vitro, HA/CPPs-10-HCPT-NPs were tested for acoustic droplet vaporization (ADV) at different time points/acoustic intensities; the ability of HA/CPPs-10-HCPT-NPs to target SMMC-7721 cells was detected by confocal laser scanning microscopy (CLSM); the penetrating ability of CG-TAT-GC-modified NPs was verified by CLSM in a 3D multicellular tumor spheroid (MCTS) model; the effect of HA/CPPs-10-HCPT-NPs combined with LIFU on killing SMMC-7721 cells was measured by CCK-8 and flow cytometry. In vivo, the tumor-target efficiency of HA/CPPs-10-HCPT-NPs was evaluated by a small-animal fluorescence imaging system and CLSM; the enhanced ultrasound imaging efficiency of HA/CPPs-10-HCPT-NPs combined with LIFU was measured by an ultrasound imaging analyzer; the therapeutic effect of HA/CPPs-10-HCPT-NPs combined with LIFU was evaluated by tumor volume, tumor inhibition rate, and staining (hematoxylin and eosin (H & E), proliferating cell nuclear antigen (PCNA) and TUNEL). Results: Mean particle size and mean zeta potential of HA/CPPs-10-HCPT-NPs were 284.2±13.3 nm and - 16.55±1.50 mV, respectively. HA/CPPs-10-HCPT-NPs could bind to SMMC-7721 cells more readily than CPPs-10-HCPT-NPs. Penetration depth into 3D MCTS of HA/CPPs-10-HCPT-NPs was 2.76-fold larger than that of NPs without CG-TAT-GC. HA/CPPs-10-HCPT-NPs could enhance ultrasound imaging by undergoing ADV triggered by LIFU. HA/CPPs-10-HCPT-NPs+LIFU group demonstrated significantly higher efficiency of anti-proliferation and apoptosis percentage than all other groups. In mouse liver tumor xenografts, HA/CPPs-10-HCPT-NPs could target tumor sites and enhance ultrasound imaging under LIFU. HA/CPPs-10-HCPT-NPs+LIFU group had a significantly smaller tumor volume, lower proliferative index (PI), and higher tumor inhibition and apoptotic index (AI) than all other groups. Conclusions: Combined application of HA/CPPs-10-HCPT-NPs and LIFU should be a valuable and promising strategy for precise HCC theranostics.
Collapse
|
16
|
Patino MA, Ramirez RE, Perez CA, Feng L, Kataria P, Myers J, Cata JP. The impact of intraoperative opioid use on survival after oral cancer surgery. Oral Oncol 2017; 74:1-7. [DOI: 10.1016/j.oraloncology.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
17
|
Viet CT, Dang D, Aouizerat BE, Miaskowski C, Ye Y, Viet DT, Ono K, Schmidt BL. OPRM1 Methylation Contributes to Opioid Tolerance in Cancer Patients. THE JOURNAL OF PAIN 2017; 18:1046-1059. [PMID: 28456745 DOI: 10.1016/j.jpain.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
Abstract
Cancer patients in pain require high doses of opioids and quickly become opioid-tolerant. Previous studies have shown that chronic cancer pain as well as high-dose opioid use lead to mu-opioid receptor downregulation. In this study we explore downregulation of the mu-opioid receptor gene (OPRM1), as a mechanism for opioid tolerance in the setting of opioid use for cancer pain. We demonstrate in a cohort of 84 cancer patients that high-dose opioid use correlates with OPRM1 hypermethylation in peripheral leukocytes of these patients. We then reverse-translate our clinical findings by creating a mouse cancer pain model; we create opioid tolerance in the mouse cancer model to mimic opioid tolerance in the cancer patients. Using this model we determine the functional significance of OPRM1 methylation on cancer pain and opioid tolerance. We focus on 2 main cells within the cancer microenvironment: the cancer cell and the neuron. We show that targeted re-expression of mu-opioid receptor on cancer cells inhibits mechanical and thermal hypersensitivity, and prevents opioid tolerance, in the mouse model. The resultant analgesia and protection against opioid tolerance are likely due to preservation of mu-opioid receptor expression on the cancer-associated neurons. PERSPECTIVE We demonstrate that epigenetic regulation of OPRM1 contributes to opioid tolerance in cancer patients, and that targeted gene therapy could treat cancer-induced nociception and opioid tolerance in a mouse cancer model.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Dongmin Dang
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, New York; School of Nursing, University of California, San Francisco, California; Institute for Human Genetics, University of California, San Francisco, California
| | | | - Yi Ye
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Dan T Viet
- Bluestone Center for Clinical Research, New York University, New York, New York
| | - Kentaro Ono
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Brian L Schmidt
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York.
| |
Collapse
|