1
|
Wang X, Bi S, Yue Z, Chen X, Liu Y, Deng T, Shao L, Jing X, Wang C, Wang Y, He W, Yu H, Shi L, Yuan F, Wang S. GABAergic neurons in central amygdala contribute to orchestrating anxiety-like behaviors and breathing patterns. Nat Commun 2025; 16:3544. [PMID: 40229297 PMCID: PMC11997173 DOI: 10.1038/s41467-025-58791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Anxiety is characterized by dysregulated respiratory reactivity to emotional stimuli. The central amygdala (CeA) is a pivotal structure involved in processing emotional alterations, but its involvement in orchestrating anxiety-like behaviors and specific breathing patterns remains largely unexplored. Our findings demonstrate that the acute restraint stress (ARS) induces anxiety-like behaviors in mice, marked by prolonged grooming time and faster respiratory frequency (RF). Conversely, silencing GABAergic CeA neurons reduces post-ARS anxiety-like behaviors, as well as the associated increases in grooming time and RF. In actively behaving mice, stimulation of GABAergic CeA neurons elicits anxiety-like behaviors, concurrently prolongs grooming time, accelerates RF through a CeA-thalamic paraventricular nucleus (PVT) circuit. In either behaviorally quiescent or anesthetized mice, stimulation of these neurons significantly increases RF but does not induce anxiety-like behaviors through the CeA-lateral parabrachial nucleus (LPBN) circuit. Collectively, GABAergic CeA neurons are instrumental in orchestrating anxiety-like behaviors and breathing patterns primarily through the CeA-PVT and CeA-LPBN circuits, respectively.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Shangyu Bi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Ziteng Yue
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Xinxin Chen
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yuhang Liu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Xinyi Jing
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Cuidie Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yakun Wang
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei He
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Luo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
2
|
Prati JM, Gianlorenço AC. A new vision of the role of the cerebellum in pain processing. J Neural Transm (Vienna) 2025; 132:537-546. [PMID: 39798004 DOI: 10.1007/s00702-024-02872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/13/2024] [Indexed: 01/13/2025]
Abstract
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing. The aim of this review is to present the current literature on the anatomical, physiological, and functional aspects of the cerebellum in pain processing and suggest functional mechanisms of pain processing based on the cerebellum and its connections with other brain structures. To achieve this, searches were conducted in databases to identify relevant studies on the topic. Studies with relevant data and information were collected and summarized. Current literature demonstrates that the cerebellum receives nociceptive afferents from different pathways and exhibits activity in different regions including the vermis, hemispheres, and deep cerebellar nuclei in pain processing. Through its connections with different brain regions, it is possible that the cerebellum participates in the multidimensional processing of pain, which may make it a potential therapeutic target for pain treatment.
Collapse
Affiliation(s)
- José Mário Prati
- Postgraduate Program of Physical Therapy, Department of Physical Therapy, Laboratory of Neuroscience and Neurological Rehabilitation, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Anna Carolyna Gianlorenço
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
3
|
Yin X, Zeng XL, Lin JJ, Xu WQ, Cui KY, Guo XT, Li W, Xu SF. Brain functional changes following electroacupuncture in a mouse model of comorbid pain and depression: A resting-state functional magnetic resonance imaging study. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:159-168. [PMID: 40024869 DOI: 10.1016/j.joim.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/20/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Comorbid pain and depression are common but remain difficult to treat. Electroacupuncture (EA) can effectively improve symptoms of depression and relieve pain, but its neural mechanism remains unclear. Therefore, we used resting-state functional magnetic resonance imaging (rs-fMRI) to detect cerebral changes after initiating a mouse pain model via constriction of the infraorbital nerve (CION) and then treating these animals with EA. METHODS Forty male C57BL/6J mice were divided into 4 groups: control, CION model, EA, and sham acupuncture (without needle insertion). EA was performed on the acupoints Baihui (GV20) and Zusanli (ST36) for 20 min, once a day for 10 consecutive days. The mechanical withdrawal threshold was tested 3 days after the surgery and every 3 days after the intervention. The depressive behavior was evaluated with the tail suspension test, open-field test, elevated plus maze (EPM), sucrose preference test, and marble burying test. The rs-fMRI was used to detect the cerebral changes of the functional connectivity (FC) in the mice following EA treatment. RESULTS Compared with the CION group, the mechanical withdrawal threshold increased in the EA group at the end of the intervention (P < 0.05); the immobility time in tail suspension test decreased (P < 0.05); and the times of the open arm entry and the open arm time in the EPM increased (both P < 0.001). There was no difference in the sucrose preference or marble burying tests (both P > 0.05). The fMRI results showed that EA treatment downregulated the amplitude of low-frequency fluctuations and regional homogeneity values, while these indicators were elevated in brain regions including the amygdala, hippocampus and cerebral cortex in the CION model for comorbid pain and depression. Selecting the amygdala as the seed region, we found that the FC was higher in the CION group than in the control group. Meanwhile, EA treatment was able to decrease the FC between the amygdala and other brain regions including the caudate putamen, thalamus, and parts of the cerebral cortex. CONCLUSION EA can downregulate the abnormal activation of neurons in the amygdala and improve its FC with other brain regions, thus exerting analgesic and antidepressant effects. Please cite this article as: Yin X, Zeng XL, Lin JJ, Xu WQ, Cui KY, Guo XT, Li W, Xu SF. Brain functional changes following electroacupuncture in a mouse model of comorbid pain and depression: a resting-state functional magnetic resonance imaging study. J Integr Med. 2025; 23(2): 159-168.
Collapse
Affiliation(s)
- Xuan Yin
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xiao-Ling Zeng
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jing-Jing Lin
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wen-Qing Xu
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Kai-Yu Cui
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xiu-Tian Guo
- Department of Anorectal Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wei Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Shi-Fen Xu
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
4
|
Nagata H, Hiyama TY, Inoue M, Xu S, Wada I, Yoshimura Y, Nakamura K, Azuma Y, Harada T, Taniguchi F. P2X4 receptor mediates macrophage infiltration leading to endometriotic cyst epithelium proliferation and hyperalgesia in mouse model. F&S SCIENCE 2025; 6:73-84. [PMID: 39447644 DOI: 10.1016/j.xfss.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE To evaluate the effects of a P2X4 receptor (P2X4R)-specific antagonist on murine endometriotic-like lesions and human endometriotic stromal cells. DESIGN Experimental study using an in vivo mouse endometriosis model and in vitro primary culture of human endometriotic stromal cells. NC-2600, an antagonist of the P2X4 ionotropic ATP receptor (P2X4R), was orally administered to the mice and cells. Gene expression analyses for cytokines were conducted in the endometriotic-like cysts and vaginal portion of mice, and immunohistochemistry was performed to evaluate the proliferative activity and localization of macrophages in addition to cytokine expression. The sensation of murine vaginal pain was evaluated using visceromotor responses. RESULTS NC-2600 reduced the proliferation of the cyst epithelium and vaginal pain sensation. In both cysts and vaginas, P2X4R is mainly expressed in macrophages, and NC-2600 reduces the number of tissue macrophages and reverses the elevated expression of InterleukinL-33 and cyclooxygenase-2 in animals with endometriosis. CONCLUSION These results indicate unknown pathophysiological roles of P2X4R expressed in local macrophages at the injury site of endometriosis and in the vagina, suggesting the potential therapeutic effects of orally administered P2X4R inhibitors for alleviating the symptoms of endometriosis.
Collapse
Affiliation(s)
- Hiroki Nagata
- Division of Obstetrics and Gynecology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| | - Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan; International Platform for Dryland Research and Education, Tottori University, Tottori, Tottori, Japan.
| | - Misaki Inoue
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| | - Shanshan Xu
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| | - Ikumi Wada
- Division of Obstetrics and Gynecology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| | - Yuki Yoshimura
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuomi Nakamura
- Advanced Medicine, Innovation and Clinical Research Center, Tottori University Hospital, Yonago, Tottori, Japan
| | - Yukihiro Azuma
- Division of Obstetrics and Gynecology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| | - Tasuku Harada
- Division of Obstetrics and Gynecology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| | - Fuminori Taniguchi
- Division of Obstetrics and Gynecology, Tottori University Graduate School and Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
5
|
Lorsung R, Cramer N, Alipio JB, Ji Y, Han S, Masri R, Keller A. Sex Differences in Central Amygdala Glutamate Responses to Calcitonin Gene-Related Peptide. J Neurosci 2025; 45:e1898242024. [PMID: 39663115 PMCID: PMC11714345 DOI: 10.1523/jneurosci.1898-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Women are disproportionately affected by chronic pain compared with men. While societal and environmental factors contribute to this disparity, sex-based biological differences in the processing of pain are also believed to play significant roles. The central lateral nucleus of the amygdala (CeLC) is a key region for the emotional-affective dimension of pain, and a prime target for exploring sex differences in pain processing since a recent study demonstrated sex differences in CGRP actions in this region. Inputs to CeLC from the parabrachial nucleus (PB) play a causal role in aversive processing and release both glutamate and calcitonin gene-related peptide (CGRP). CGRP is thought to play a crucial role in chronic pain by potentiating glutamatergic signaling in CeLC. However, it is not known if this CGRP-mediated synaptic plasticity occurs similarly in males and females. Here, we tested the hypothesis that female CeLC neurons experience greater potentiation of glutamatergic signaling than males following endogenous CGRP exposure. Using trains of optical stimuli to evoke transient CGRP release from PB terminals in CeLC, we find that subsequent glutamatergic responses are preferentially potentiated in CeLC neurons from female mice. This potentiation was CGRP dependent and involved a postsynaptic mechanism. This sex difference in CGRP sensitivity may explain sex differences in affective pain processing.
Collapse
Affiliation(s)
- Rebecca Lorsung
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jason Bondoc Alipio
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Radi Masri
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| | - Asaf Keller
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
6
|
Lorsung R, Cramer N, Alipio JB, Ji Y, Han S, Masri R, Keller A. Sex differences in central amygdala glutamate responses to calcitonin gene-related peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622728. [PMID: 39574632 PMCID: PMC11581022 DOI: 10.1101/2024.11.09.622728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Women are disproportionately affected by chronic pain compared to men. While societal and environmental factors contribute to this disparity, sex-based biological differences in the processing of pain are also believed to play significant roles. The central lateral nucleus of the amygdala (CeLC) is a key region for the emotional-affective dimension of pain, and a prime target for exploring sex differences in pain processing since a recent study demonstrated sex differences in CGRP actions in this region. Inputs to CeLC from the parabrachial nucleus (PB) play a causal role in aversive processing, and release both glutamate and calcitonin gene-related peptide (CGRP). CGRP is thought to play a crucial role in chronic pain by potentiating glutamatergic signaling in CeLC. However, it is not known if this CGRP-mediated synaptic plasticity occurs similarly in males and females. Here, we tested the hypothesis that female CeLC neurons experience greater potentiation of glutamatergic signaling than males following endogenous CGRP exposure. Using trains of optical stimuli to evoke transient CGRP release from PB terminals in CeLC, we find that subsequent glutamatergic responses are preferentially potentiated in CeLC neurons from female mice. This potentiation was CGRP-dependent and involved a postsynaptic mechanism. This sex difference in CGRP sensitivity may explain sex differences in affective pain processing.
Collapse
Affiliation(s)
- Rebecca Lorsung
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | - Nathan Cramer
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jason Bondoc Alipio
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, USA, and Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Radi Masri
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, USA, and Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Asaf Keller
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Dou YN, Liu Y, Ding WQ, Li Q, Zhou H, Li L, Zhao MT, Li ZYQ, Yuan J, Wang XF, Zou WY, Li A, Sun YG. Single-neuron projectome-guided analysis reveals the neural circuit mechanism underlying endogenous opioid antinociception. Natl Sci Rev 2024; 11:nwae195. [PMID: 39045468 PMCID: PMC11264302 DOI: 10.1093/nsr/nwae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 07/25/2024] Open
Abstract
Endogenous opioid antinociception is a self-regulatory mechanism that reduces chronic pain, but its underlying circuit mechanism remains largely unknown. Here, we showed that endogenous opioid antinociception required the activation of mu-opioid receptors (MORs) in GABAergic neurons of the central amygdala nucleus (CEA) in a persistent-hyperalgesia mouse model. Pharmacogenetic suppression of these CEAMOR neurons, which mimics the effect of MOR activation, alleviated the persistent hyperalgesia. Furthermore, single-neuron projection analysis revealed multiple projectome-based subtypes of CEAMOR neurons, each innervating distinct target brain regions. We found that the suppression of axon branches projecting to the parabrachial nucleus (PB) of one subtype of CEAMOR neurons alleviated persistent hyperalgesia, indicating a subtype- and axonal-branch-specific mechanism of action. Further electrophysiological analysis revealed that suppression of a distinct CEA-PB disinhibitory circuit controlled endogenous opioid antinociception. Thus, this study identified the central neural circuit that underlies endogenous opioid antinociception, providing new insight into the endogenous pain modulatory mechanisms.
Collapse
Affiliation(s)
- Yan-Nong Dou
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Biology, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Wen-Qun Ding
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Zhou
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Li
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Ting Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng-Yi-Qi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xiao-Fei Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wang-Yuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Yan-Gang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Hong VM, Rade AD, Yan SM, Bhaskara A, Yousuf MS, Chen M, Martin SF, Liebl DJ, Price TJ, Kolber BJ. Loss of Sigma-2 Receptor/TMEM97 Is Associated with Neuropathic Injury-Induced Depression-Like Behaviors in Female Mice. eNeuro 2024; 11:ENEURO.0488-23.2024. [PMID: 38866499 PMCID: PMC11228697 DOI: 10.1523/eneuro.0488-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Previous studies have shown that ligands that bind to sigma-2 receptor/TMEM97 (s2R/TMEM97), a transmembrane protein, have anxiolytic/antidepressant-like properties and relieve neuropathic pain-like effects in rodents. Despite medical interest in s2R/TMEM97, little affective and pain behavioral characterization has been done using transgenic mice, which limits the development of s2R/TMEM97 as a viable therapeutic target. Using wild-type (WT) and global Tmem97 knock-out (KO) mice, we sought to identify the contribution of Tmem97 in modulating affective and pain-like behaviors using a battery of affective and pain assays, including open field, light/dark preference, elevated plus maze, forced swim test, tail suspension test, and the mechanical sensitivity tests. Our results demonstrate that female Tmem97 KO mice show less anxiety-like and depressive-like behaviors in light/dark preference and tail suspension tests but not in an open field, elevated plus maze, and forced swim tests at baseline. We next performed spared nerve injury in WT and Tmem97 KO mice to assess the role of Tmem97 in neuropathic pain-induced anxiety and depression. WT mice, but not Tmem97 KO mice, developed a prolonged neuropathic pain-induced depressive-like phenotype when tested 10 weeks after nerve injury in females. Our results show that Tmem97 plays a role in modulating anxiety-like and depressive-like behaviors in naive animals with a significant change in the presence of nerve injury in female mice. Overall, these data demonstrate that Tmem97 could be a target to alleviate affective comorbidities of pain disorders.
Collapse
Affiliation(s)
- Veronica M Hong
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Avaneesh D Rade
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Shen M Yan
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Amulya Bhaskara
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Muhammad Saad Yousuf
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Min Chen
- Department of Mathematical Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, Texas 75080
| | - Stephen F Martin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, Florida 33146
| | - Theodore J Price
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Benedict J Kolber
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
9
|
Sato N, Takahashi Y, Sugimura YK, Kato F. Presynaptic inhibition of excitatory synaptic transmission from the calcitonin gene-related peptide-containing parabrachial neurons to the central amygdala in mice - unexpected influence of systemic inflammation thereon. J Pharmacol Sci 2024; 154:264-273. [PMID: 38485344 DOI: 10.1016/j.jphs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
The monosynaptic connection from the lateral parabrachial nucleus (LPB) to the central amygdala (CeA) serves as a fundamental pathway for transmitting nociceptive signals to the brain. The LPB receives nociceptive information from the dorsal horn and spinal trigeminal nucleus and sends it to the "nociceptive" CeA, which modulates pain-associated emotions and nociceptive sensitivity. To elucidate the role of densely expressed mu-opioid receptors (MORs) within this pathway, we investigated the effects of exogenously applied opioids on LPB-CeA synaptic transmission, employing optogenetics in mice expressing channelrhodopsin-2 in LPB neurons with calcitonin gene-related peptide (CGRP). A MOR agonist ([D-Ala2,N-Me-Phe4,Glycinol5]-enkephalin, DAMGO) significantly reduced the amplitude of light-evoked excitatory postsynaptic currents (leEPSCs), in a manner negatively correlated with an increase in the paired-pulse ratio. An antagonist of MORs significantly attenuated these effects. Notably, this antagonist significantly increased leEPSC amplitude when applied alone, an effect further amplified in mice subjected to lipopolysaccharide injection 2 h before brain isolation, yet not observed at the 24-h mark. We conclude that opioids could shut off the ascending nociceptive signal at the LPB-CeA synapse through presynaptic mechanisms. Moreover, this gating process might be modulated by endogenous opioids, and the innate immune system influences this modulation.
Collapse
Affiliation(s)
- Naoko Sato
- Department of Neuroscience, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Yukari Takahashi
- Department of Neuroscience, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Yae K Sugimura
- Department of Neuroscience, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
10
|
Da Silva JT, Hernandez-Rojas LG, Mekonen HK, Hanson S, Melemedjian O, Scott AJ, Ernst RK, Seminowicz DA, Traub RJ. Sex differences in visceral sensitivity and brain activity in a rat model of comorbid pain: a longitudinal study. Pain 2024; 165:698-706. [PMID: 37756658 PMCID: PMC10859847 DOI: 10.1097/j.pain.0000000000003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023]
Abstract
ABSTRACT Temporomandibular disorder (TMD) and irritable bowel syndrome (IBS) are 2 chronic overlapping pain conditions (COPCs) that present with significant comorbidity. Both conditions are more prevalent in women and are exacerbated by stress. While peripheral mechanisms might contribute to pain hypersensitivity for each individual condition, mechanisms underlying the comorbidity are poorly understood, complicating pain management when multiple conditions are involved. In this study, longitudinal behavioral and functional MRI-based brain changes have been identified in an animal model of TMD-like pain (masseter muscle inflammation followed by stress) that induces de novo IBS-like comorbid visceral pain hypersensitivity in rats. In particular, data indicate that increased activity in the insula and regions of the reward and limbic systems are associated with more pronounced and longer-lasting visceral pain behaviors in female rats, while the faster pain resolution in male rats may be due to increased activity in descending pain inhibitory pathways. These findings suggest the critical role of brain mechanisms in chronic pain conditions and that sex may be a risk factor of developing COPCs.
Collapse
Affiliation(s)
- Joyce T. Da Silva
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Luis G. Hernandez-Rojas
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- Department of Computing, School of Engineering and Sciences, Tecnologico de Monterrey, Zapopan, Mexico
| | - Hayelom K. Mekonen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Shelby Hanson
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes Melemedjian
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, United States
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, the Netherlands
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - David A. Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| |
Collapse
|
11
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
12
|
Hong JK, Moon HJ, Shin HJ. Optical EUS Activation to Relax Sensitized Micturition Response. Life (Basel) 2023; 13:1961. [PMID: 37895343 PMCID: PMC10608351 DOI: 10.3390/life13101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to activate the external urethral sphincter (EUS), which plays a critical role in micturition control, through optogenetics and to determine its potential contribution to the stabilization of sensitized micturition activity. The viral vector (AAV2/8-CMV-hChR2(H134R)-EGFP) is utilized to introduce light-gated ion channels (hChR2/H134R) into the EUS of wild-type C57BL/6 mice. Following the induction of sensitized micturition activity using weak acetic acid (0.1%) in anesthetized mice, optical stimulation of the EUS muscle tissue expressing channel rhodopsin is performed using a 473 nm laser light delivered through optical fibers, and the resulting changes in muscle activation and micturition activity are examined. Through EMG (electromyography) measurements, it is confirmed that optical stimulation electrically activates the EUS muscle in mice. Analysis of micturition activity using cystometry reveals a 70.58% decrease in the micturition period and a 70.27% decrease in the voiding volume due to sensitized voiding. However, with optical stimulation, the micturition period recovers to 101.49%, and the voiding volume recovered to 100.22%. Stimulation of the EUS using optogenetics can alleviate sensitized micturition activity and holds potential for application in conjunction with other micturition control methods.
Collapse
Affiliation(s)
| | | | - Hyun-Joon Shin
- Bionics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (J.-K.H.); (H.-J.M.)
| |
Collapse
|
13
|
Seiglie MP, Lepeak L, Miracle S, Cottone P, Sabino V. Stimulation of lateral parabrachial (LPB) to central amygdala (CeA) pituitary adenylate cyclase-activating polypeptide (PACAP) neurons induces anxiety-like behavior and mechanical allodynia. Pharmacol Biochem Behav 2023; 230:173605. [PMID: 37499765 DOI: 10.1016/j.pbb.2023.173605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Anxiety disorders are the most prevalent psychiatric disorders, and they are highly comorbid with chronic pain conditions. The central nucleus of the amygdala (CeA) is known not only for its role in the regulation of anxiety but also as an important site for the negative affective dimension of pain. Pituitary adenylate cyclase activating polypeptide (PACAP), a neuropeptide whose terminals are abundant in the CeA, is strongly implicated in the stress response as well as in pain processing. Here, using Cre-dependent viral vectors, we explored in greater detail the role of the PACAP projection to the CeA that originates in the lateral parabrachial nucleus (LPB). METHODS We first performed a circuit mapping experiment by injecting an anterograde Cre-dependent virus expressing a fluorescent reporter in the LPB of PACAP-Cre mice and observing their projections. Then, we used a chemogenetic approach (a Cre-dependent Designer Receptors Activated by Designer Drugs, DREADDs) to assess the effects of the direct stimulation of the PACAP LPB to CeA projection on general locomotor activity, anxiety-like behavior (using a defensive withdrawal test), and mechanical pain sensitivity (using the von Frey test). RESULTS We found that the CeA, together with other areas, is one of the major downstream projection targets of PACAP neurons originating in the lateral parabrachial nucleus (LPB). In the DREADD experiment, we then found that the selective activation of this neuronal pathway is sufficient to increase both anxiety-like behavior and mechanical pain sensitivity in mice, without affecting general locomotor activity. CONCLUSION In conclusion, our data suggest that the dysregulation of this circuit may contribute to a variety of anxiety disorders and chronic pain states, and that PACAP may represent an important therapeutic target for the treatment of these conditions.
Collapse
Affiliation(s)
- Mariel P Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Lauren Lepeak
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Sophia Miracle
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Nahman-Averbuch H, Li R, Boerner KE, Lewis C, Garwood S, Palermo TM, Jordan A. Alterations in pain during adolescence and puberty. Trends Neurosci 2023; 46:307-317. [PMID: 36842946 DOI: 10.1016/j.tins.2023.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
During adolescence and puberty, alterations in pain, both experimental and clinical, are observed. In addition, adolescents undergo extensive biopsychosocial changes as they transition from childhood to adulthood. However, a better understanding of how the biopsychosocial changes during adolescence impact pain is needed to improve pain management and develop targeted pain interventions for adolescents. This review synthesizes the literature on alterations in pain during adolescence in humans, describes the potential biopsychosocial factors impacting pain during adolescence, and suggests future research directions to advance the understanding of the impact of adolescent development on pain.
Collapse
Affiliation(s)
- Hadas Nahman-Averbuch
- Washington University Pain Center and Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St Louis School of Medicine, St. Louis, MO, USA.
| | - Rui Li
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katelynn E Boerner
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Christopher Lewis
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; Transgender Center at St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Garwood
- Transgender Center at St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Tonya M Palermo
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Abbie Jordan
- Department of Psychology and Centre for Pain Research, University of Bath, Bath, United Kingdom
| |
Collapse
|
15
|
Allen HN, Chaudhry S, Hong VM, Lewter LA, Sinha GP, Carrasquillo Y, Taylor BK, Kolber BJ. A Parabrachial-to-Amygdala Circuit That Determines Hemispheric Lateralization of Somatosensory Processing. Biol Psychiatry 2023; 93:370-381. [PMID: 36473754 PMCID: PMC9852076 DOI: 10.1016/j.biopsych.2022.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The central amygdala (CeA) is a bilateral hub of pain and emotional processing with well-established functional lateralization. We reported that optogenetic manipulation of neural activity in the left and right CeA has opposing effects on bladder pain. METHODS To determine the influence of calcitonin gene-related peptide (CGRP) signaling from the parabrachial nucleus on this diametrically opposed lateralization, we administered CGRP and evaluated the activity of CeA neurons in acute brain slices as well as the behavioral signs of bladder pain in the mouse. RESULTS We found that CGRP increased firing in both the right and left CeA neurons. Furthermore, we found that CGRP administration in the right CeA increased behavioral signs of bladder pain and decreased bladder pain-like behavior when administered in the left CeA. CONCLUSIONS These studies reveal a parabrachial-to-amygdala circuit driven by opposing actions of CGRP that determines hemispheric lateralization of visceral pain.
Collapse
Affiliation(s)
- Heather N Allen
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania; Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Veronica M Hong
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas
| | - Lakeisha A Lewter
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas
| | - Ghanshyam P Sinha
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Bradley K Taylor
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benedict J Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
16
|
Yajima M, Takahashi Y, Sugimura YK, Kato F. Pregabalin attenuates long-lasting post-inflammatory nociplastic mechanical sensitization in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100131. [PMID: 37215502 PMCID: PMC10195975 DOI: 10.1016/j.ynpai.2023.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Nociplastic pain, the most recently proposed mechanistic descriptor of chronic pain, is the pain resulting from an altered nociceptive system and network without clear evidence of nociceptor activation, injury or disease in the somatosensory system. As the pain-associated symptoms in many patients suffering from undiagnosed pain would result from the nociplastic mechanisms, it is an urgent issue to develop pharmaceutical therapies that would mitigate the aberrant nociception in nociplastic pain. We have recently reported that a single injection of formalin to the upper lip shows sustained sensitization lasting for more than 12 days at the bilateral hindpaws, where there is no injury or neuropathy in rats. Using the equivalent model in mice, we show that pregabalin (PGB), a drug used for treating neuropathic pain, significantly attenuates this formalin-induced widespread sensitization at the bilateral hindpaws, even on the 6 day after the initial single orofacial injection of formalin. On the 10th day after formalin injection, the hindlimb sensitization before PGB injection was no more significant in mice receiving daily PGB injections, unlike those receiving daily vehicle injections. This result suggests that PGB would act on the central pain mechanisms that undergo nociplastic changes triggered by initial inflammation and mitigate widespread sensitization resulting from the established changes.
Collapse
Affiliation(s)
- Manami Yajima
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Wei H, Chen Z, Lei J, You HJ, Pertovaara A. Reduced mechanical hypersensitivity by inhibition of the amygdala in experimental neuropathy: Sexually dimorphic contribution of spinal neurotransmitter receptors. Brain Res 2022; 1797:148128. [PMID: 36265669 DOI: 10.1016/j.brainres.2022.148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
Abstract
Here we studied spinal neurotransmitter mechanisms involved in the reduction of mechanical hypersensitivity by inhibition of the amygdaloid central nucleus (CeA) in male and female rats with spared nerve injury (SNI) model of neuropathy. SNI induced mechanical hypersensitivity that was stronger in females. Reversible blocking of the CeA with muscimol (GABAA receptor agonist) induced a reduction of mechanical hypersensitivity that did not differ between males and females. Following spinal co-administration of atipamezole (α2-adrenoceptor antagonist), the reduction of mechanical hypersensitivity by CeA muscimol was attenuated more in males than females. In contrast, following spinal co-administration of raclopride (dopamine D2 receptor antagonist) the reduction of hypersensitivity by CeA muscimol was attenuated more in females than males. The reduction of mechanical hypersensitivity by CeA muscimol was equally attenuated in males and females by spinal co-administration of WAY-100635 (5-HT1A receptor antagonist) or bicuculline (GABAA receptor antagonist). The CeA muscimol induced attenuation of ongoing pain-like behavior (conditioned place preference test) that was reversed by spinal co-administration of atipamezole in both sexes. The results support the hypothesis that CeA contributes to mechanical hypersensitivity and ongoing pain-like behavior in SNI males and females. Disinhibition of descending controls acting on spinal α2-adrenoceptors, 5-HT1A, dopamine D2 and GABAA receptors provides a plausible explanation for the reduction of mechanical hypersensitivity by CeA block in SNI. The involvement of spinal dopamine D2 receptors and α2-adrenoceptors in the CeA muscimol-induced reduction of mechanical hypersensitivity is sexually dimorphic, unlike that of spinal α2-adrenoceptors in the reduction of ongoing neuropathic pain.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, PR China
| | - Jing Lei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Olfactory Stimulation Successfully Modulates the Neurochemical, Biochemical and Behavioral Phenotypes of the Visceral Pain. Molecules 2022; 27:molecules27217659. [DOI: 10.3390/molecules27217659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Visceral pain (VP) is the organ-derived nociception in which increased inflammatory reaction and exaggerated activation of the central nucleus of the amygdala (CeA) may contribute to this deficiency. Considering the amygdala also serves as the integration center for olfaction, the present study aimed to determine whether olfactory stimulation (OS) would effectively depress over-activation and inflammatory reaction in CeA, and successfully relieve VP-induced abnormalities. Adult rats subjected to intraperitoneal injection of acetic acid inhaled lavender essential oil for 2 or 4 h. The potential benefits of OS were determined by measuring the pro-inflammatory cytokine level, intracellular potassium and the upstream small-conductance calcium-activated potassium (SK) channel expression, together with detecting the stress transmitters that participated in the modulation of CeA activity. Results indicated that in VP rats, strong potassium intensity, reduced SK channel protein level, and increased corticotropin-releasing factor, c-fos, and substance P immuno-reactivities were detected in CeA. Enhanced CeA activation corresponded well with increased inflammatory reaction and decreased locomotion, respectively. However, in rats subjected to VP and received OS, all above parameters were significantly returned to normal levels with higher change detected in treating OS of 4h. As OS successfully depresses inflammation and CeA over-activation, application of OS may serve as an alternative and effective strategy to efficiently relieve VP-induced deficiency.
Collapse
|
19
|
Cunningham NR, Nahman-Averbuch H, Lee GR, King CD, Coghill RC. Amygdalar functional connectivity during resting and evoked pain in youth with functional abdominal pain disorders. Pain 2022; 163:2031-2043. [PMID: 35472070 PMCID: PMC9329503 DOI: 10.1097/j.pain.0000000000002601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/17/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Pediatric functional abdominal pain disorders (FAPD) are highly prevalent, difficult to diagnose, and challenging to treat. The brain systems supporting FAPD remain poorly understood. This investigation examined the neuromechanisms of FAPD during a well-tolerated visceral pain induction task, the water load symptom provocation task (WL-SPT). Youth between the ages of 11 and 17 years participated. Functional connectivity (FC) was examined through the blood oxygenation level-dependent effect using the left and right amygdala (AMY) as seed regions. Relationships of the time courses within these seeds with voxels across the whole brain were evaluated. Arterial spin labeling was used to assess regional brain activation by examining cerebral blood flow. Increased FC between the left AMY with regions associated with nociceptive processing (eg, thalamus) and right AMY FC changes with areas associated with cognitive functioning (dorsolateral prefrontal cortex) and the default mode network (DMN; parietal lobe) were observed in youth with FAPD after the WL-SPT. These changes were related to changes in pain unpleasantness. Amygdala FC changes post-WL-SPT were also related to changes in pain intensity. Amygdala FC with the DMN in youth with FAPD also differed from healthy controls. Global cerebral blood flow changes were also noted between FAPD and healthy controls, but no significant differences in grey matter were detected either between groups or during the WL-SPT in youth with FAPD. Findings confirm youth with FAPD undergo changes in brain systems that could support the development of biomarkers to enhance understanding of the mechanisms of pain and treatment response.
Collapse
Affiliation(s)
- Natoshia R Cunningham
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Hadas Nahman-Averbuch
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Anesthesiology, Washington University Pain Center and Division of Clinical and Translational Research, Washington University in St Louis School of Medicine, St Louis, MO, United States
| | - Gregory R Lee
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati, Cincinnati, OH, United States
| | - Christopher D King
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert C Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
20
|
Tajerian M, Amrami M, Betancourt JM. Is there hemispheric specialization in the chronic pain brain? Exp Neurol 2022; 355:114137. [PMID: 35671801 PMCID: PMC10723052 DOI: 10.1016/j.expneurol.2022.114137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Organismal bilateral symmetry is associated with near-identical halves of the central nervous system, with certain functions displaying specialization through one brain hemisphere. The processing of pain in the brain as well as brain plasticity in the context of painful injuries have garnered much attention in recent decades. Noninvasive brain imaging studies in pain-free human subjects have identified multiple brain regions that are linked to the sensory and affective components of pain. Longlasting adaptations in brains of chronic pain sufferers have likewise been described, suggesting a mechanism for pain chronification. Invasive molecular and biochemical studies in animal models have expanded on these findings, with added emphasis on the role of specific genes and molecules involved. To date, the extent of hemispheric asymmetry in the context of pain is not well-understood. This topical review evaluates the evidence of hemispheric specialization observed in humans and rodent models of pain and compares it to findings where such asymmetry is absent. Our review shows conflicting information regarding the existence of pain-related asymmetry, and if so, the side to which it can be localized. This could be due to the heterogeneity of pain processing pathways, heterogeneity in study parameters, as well as differences in data reporting. With the advent of progressively sophisticated non-invasive tools that can be used in human subjects, in addition to more precise methods to visualize and control specific brain regions or neuronal ensembles in animal models, we predict that the next few decades will witness a better understanding of the supraspinal control and processing of chronic pain, including the role of each of its hemispheres.
Collapse
Affiliation(s)
- Maral Tajerian
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA; The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Michael Amrami
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA
| | - John Michael Betancourt
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
21
|
Patel T, Hendren J, Lee N, Mickle AD. Open source timed pressure control hardware and software for delivery of air mediated distensions in animal models. HARDWAREX 2022; 11:e00271. [PMID: 35509929 PMCID: PMC9058729 DOI: 10.1016/j.ohx.2022.e00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Studying the visceral sensory component of peripheral nervous systems can be challenging due to limited options for consistent and controlled stimulation. One method for mechanical stimulation of hollow organs, including the colon and bladder, is controlled distensions mediated by compressed air. For example, distension of the bladder can be used as an assay for bladder nociception. Bladder distension causes a corresponding increase in abdominal electromyography, which increases with distension pressure and is attenuated with analgesics. However, the hardware used to control these distensions are primarily all one-off custom builds, without clear directions on how to build your own. This has made it difficult for these methods to be fully utilized and replicated as not everyone has the access, knowledge, and resources required to build this controller. Here we show an open-source Arduino-based system for controlling a solenoid valve to deliver timed pressure distensions in the experimental model. This device can be controlled by one of two methods through direct TTL pulses from the experimenter's data acquisition software (ex. CED Spike2) or by a graphical user interface, where the user can set the time before, during, and after distension as well as the number of cycles. This system's low cost and relative ease to build will allow more groups to utilize timed pressure distensions in their experiments.
Collapse
Affiliation(s)
- Trishna Patel
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Jamie Hendren
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Nathan Lee
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Aaron D. Mickle
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
- Deparment of Neuroscience, College of Medicine, University Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 2022; 210:109031. [PMID: 35304173 DOI: 10.1016/j.neuropharm.2022.109031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
Abstract
The amygdala plays a critical role in the emotional-affective component of pain and pain modulation. The central nucleus of amygdala (CeA) serves major output functions and has been linked to pain-related behaviors. Corticotropin releasing factor (CRF) in the CeA has emerged as an important modulator of pain and affective disorders. Here we measured the effects of optogenetic manipulation of CeA-CRF neurons on pain-related behaviors in a rat neuropathic pain model and under control conditions. Emotional-affective behaviors (vocalizations), mechanosensitivity (electronic von Frey anesthesiometer and calibrated forceps), and anxiety-like behaviors (open field test and elevated plus maze) were assessed in adult rats 1 week and 4 weeks after spinal nerve ligation (SNL model) and sham surgery (control). For optogenetic silencing or activation of CRF neurons, a Cre-inducible viral vector encoding enhanced halorhodopsin (eNpHR3.0) or channelrhodopsin 2 (ChR2) was injected stereotaxically into the right CeA of transgenic Crh-Cre rats. Light of the appropriate wavelength (590 nm for eNpHR3.0; 473 nm for ChR2) was delivered into the CeA with an LED optic fiber. Optical silencing of CeA-CRF neurons decreased the emotional-affective responses in the acute and chronic phases of the neuropathic pain model but had anxiolytic effects only at the chronic stage and no effect on mechanosensitivity. Optogenetic activation of CeA-CRF neurons increased the emotional-affective responses and induced anxiety-like behaviors but had no effect on mechanosensitivity in control rats. The data show the critical contribution of CeA-CRF neurons to pain-related behaviors under normal conditions and beneficial effects of inhibiting CeA-CRF neurons in neuropathic pain.
Collapse
|
23
|
Giaddui D, Porreca DS, Tiwari E, Frara NA, Hobson LJ, Barbe MF, Braverman AS, Brown JM, Pontari MA, Ruggieri Sr. MR. Lateralization of bladder function in normal female canines. PLoS One 2022; 17:e0264382. [PMID: 35231045 PMCID: PMC8887770 DOI: 10.1371/journal.pone.0264382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to identify potential lateralization of bladder function. Electrical stimulation of spinal roots or the pelvic nerve’s anterior vesical branch was performed bilaterally in female dogs. The percent difference between the left and right stimulation-induced increased detrusor pressure was determined. Bladders were considered left or right-sided if differences were greater or less than 25% or 10%. Based on differences of 25%, upon stimulation of spinal roots, bladders were left-sided in 17/44 (38.6%), right-sided in 12/44 (27.2%) and bilateral in 15/44 (34.2%). Using ± 10%, 48% had left side dominance (n = 21/44), 39% had right side dominance (n = 17/44), and 14% were bilateral (n = 6/44). With stimulation of the pelvic nerve’s anterior vesical branch in 19 dogs, bladders were left-sided in 8 (42.1%), right-sided in 6 (31.6%) and bilateral in 5 (26.3%) using 25% differences and left side dominance in 8 (43%), right sided in 7 (37%) and bilateral in 4 (21%) using 10% differences. These data suggest lateralization of innervation of the female dog bladder with left- and right-sided lateralization occurring at similar rates. Lateralization often varied at different spinal cord levels within the same animal.
Collapse
Affiliation(s)
- Dania Giaddui
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Danielle S. Porreca
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ekta Tiwari
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Nagat A. Frara
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Lucas J. Hobson
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mary F. Barbe
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Alan S. Braverman
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Justin M. Brown
- Department of Neurosurgery, Neurosurgery Paralysis Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Michel A. Pontari
- Department of Urology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Ruggieri Sr.
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Shriners Hospitals for Children of Philadelphia, Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
24
|
Neuroimaging Mechanism of Cognitive Behavioral Therapy in Pain Management. Pain Res Manag 2022; 2022:6266619. [PMID: 35154551 PMCID: PMC8828323 DOI: 10.1155/2022/6266619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/06/2022] [Indexed: 12/03/2022]
Abstract
Purpose. To review the recent neuroimaging studies on cognitive-behavioral therapy (CBT) for pain management, with the aim of exploring possible mechanisms of CBT. Recent Findings. Current studies can be divided into four categories, mixed pain, fibromyalgia, migraine, and experimental pain, based on the type of disease included, with the same or different changes of brain regions after CBT intervention. According to structural and functional MRI analyses, changes of brain gray matter volume, activation and deactivation of brain regions, and intrinsic connectivity between brain regions were observed after CBT sessions. The brain regions involved mainly included some areas related to cognitive and emotional regulation. After comparison, the DLPFC, OFC, VLPFC, PCC and amygdala were found to be recurrent in multiple studies and may be key regions for CBT intervention in pain management. In the treatment of mixed chronic pain, CBT may decrease the gray matter volume of DLPFC, reduce ICN connection of OFC within the DAN network, and increase fALFF of the PCC. For FM intervention, CBT may activate the bilateral OFC and VLPFC, while in migraine, only the right OFC, VLPFC, and DLPFC were found to be more activated after CBT. In addition, the differential action of the left and right amygdala has also been shown in the latest study of migraine. In heat-evoked pain, CBT may increase the deactivation of the PCC, the connectivity between the DMN and right VLPFC, while diminishing the deactivation of VLPFC. Summary. After CBT, the brain showed stronger top-down pain control, cognitive reassessment, and altered perception of stimulus signals (chronic pain and repeated acute pain). The DLPFC, OFC, VLPFC, PCC, and amygdala may be the key brain regions in CBT intervention of pain.
Collapse
|
25
|
Cooper AH, Hedden NS, Corder G, Lamerand SR, Donahue RR, Morales-Medina JC, Selan L, Prasoon P, Taylor BK. Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain. J Neurosci Res 2022; 100:48-65. [PMID: 33957003 PMCID: PMC8571119 DOI: 10.1002/jnr.24846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naomi S. Hedden
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Corder
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney R. Lamerand
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neurosciences at the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Lindsay Selan
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Liu J, Li D, Huang J, Cao J, Cai G, Guo Y, Wang G, Zhao S, Wang X, Wu S. Glutamatergic Neurons in the Amygdala Are Involved in Paclitaxel-Induced Pain and Anxiety. Front Psychiatry 2022; 13:869544. [PMID: 35492735 PMCID: PMC9049739 DOI: 10.3389/fpsyt.2022.869544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Paclitaxel is widely used as a first-line chemotherapy agent to treat malignant tumors. However, paclitaxel causes peripheral nerve fiber damage and neuropathic pain in some patients. In addition, patients received paclitaxel chemotherapy are often accompanied by negative emotions such as anxiety. The amygdala is critically involved in regulating pain signals, as well as anxiety. The purpose of this study is to clarify the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the amygdala in paclitaxel-induced pain and negative affective symptoms. Intraperitoneal injection of paclitaxel into mice caused mechanical and thermal allodynia, as measured by Von Frey test and Hargreaves test, and anxiety, as measured by open field test and elevated plus maze test. Immunofluorescence staining revealed that c-fos-positive neurons were significantly more in the basolateral amygdala (BLA) and central amygdala (CeA) in paclitaxel-treated mice than untreated mice. Furthermore, part of c-fos-positive neurons in the BLA were immunoreactive of CaMKII. Engineered Designer receptors exclusively activated by designer drugs (DREADD) receptor hM4Di or hM3Dq was selectively expressed on CaMKII neurons by injection of adeno-associated virus (AAV) vectors containing CaMKII and hM4Di or hM3Dq. Administration of DREADD agonist CNO to selectively inhibit the CaMKII neurons in the BLA significantly increased the paw withdrawal thresholds and paw withdrawal latencies. In addition, selectively inhibition of CaMKII neurons in the BLA alleviated anxiety behavior without affecting the motor activity. In summary, our findings suggest that CaMKII neurons in the amygdala are critical for neuropathic pain and anxiety behaviors induced by paclitaxel chemotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dangchao Li
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Cao
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuexian Guo
- Department of Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang Zhao
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuli Wang
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Asymmetric Lateralization during Pain Processing. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pain is defined as “an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage”. This complex perception arises from the coordinated activity of several brain areas processing either sensory–discriminative or affective–motivational components. Functional studies performed in healthy volunteers revealed that affective–emotional components of pain are processed bilaterally but present a clear lateralization towards the right hemisphere, regardless of the site of stimulation. Studies at the cellular level performed in experimental animal models of pain have shown that neuronal activity in the right amygdala is clearly pronociceptive, whilst activation of neurons in the left amygdala might even exert antinociceptive effects. A shift in lateralization becomes evident during the development of chronic pain; thus, in patients with neuropathic pain symptoms, there is increased activity in ipsilateral brain areas related with pain. These observations extend the asymmetrical left–right lateralization within the nervous system and provide a new hypothesis for the pathophysiology of chronic forms of pain. In this article, we will review experimental data from preclinical and human studies on functional lateralization in the brain during pain processing, which will help to explain the affective disorders associated with persistent, chronic pain.
Collapse
|
28
|
Altered Amygdala-prefrontal Connectivity in Chronic Nonspecific Low Back Pain: Resting-state fMRI and Dynamic Causal Modelling Study. Neuroscience 2021; 482:18-29. [PMID: 34896229 DOI: 10.1016/j.neuroscience.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
Chronic nonspecific low back pain (cNLBP) is a leading contributor to disease burden worldwide that is difficult to treat due to its nonspecific aetiology and complexity. The amygdala is a complex of structurally and functionally heterogeneous nuclei that serve as a key neural substrate for the interactions between pain and negative affective states. However, whether the functions of amygdalar subcomponents are differentially altered in cNLBP remains unknown. Little attention has focused on effective connectivity of the amygdala with the cortex in cNLBP. In this study, thirty-three patients with cNLBP and 33 healthy controls (HCs) were included. Resting-state functional connectivity (rsFC) and effective connectivity of the amygdala and its subregions were examined. Our results showed that the patient group exhibited significantly greater rsFC between the left amygdala and left dorsal medial prefrontal cortex (mPFC), which was negatively correlated with pain intensity ratings. Subregional analyses suggested a difference located at the superficial nuclei of the amygdala. Dynamic causal modelling revealed significantly lower effective connectivity from the left amygdala to the dorsal mPFC in patients with cNLBP than in HCs. Both groups exhibited stronger effective connectivity from the left amygdala to the right amygdala. In summary, these findings not only suggested altered rsFC of the amygdala-mPFC pathway in cNLBP but also implicated an abnormal direction of information processing between the amygdala and mPFC in these patients. Our results further highlight the involvement of the amygdala in the neuropathology of cNLBP.
Collapse
|
29
|
Gandhi PJ, Gawande DY, Shelkar GP, Gakare SG, Kiritoshi T, Ji G, Misra B, Pavuluri R, Liu J, Neugebauer V, Dravid SM. Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain. Cells 2021; 10:2644. [PMID: 34685624 PMCID: PMC8534524 DOI: 10.3390/cells10102644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023] Open
Abstract
Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ+) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics.
Collapse
Affiliation(s)
- Pauravi J. Gandhi
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Dinesh Y. Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Gajanan P. Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.K.); (G.J.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.K.); (G.J.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Bishal Misra
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.K.); (G.J.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| |
Collapse
|
30
|
Zhou Z, Liao L. Optogenetic Neuromodulation of the Urinary Bladder. Neuromodulation 2021; 24:1229-1236. [PMID: 34375470 DOI: 10.1111/ner.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Nerve stimulation and neuromodulation have become acceptable interventions for bladder dysfunction. However, electrical stimulation indiscriminately affects all types of cells and can lead to treatment failure and off-target effects. In recent years, advancement of knowledge of optogenetics provides a powerful tool to enable precise, minimally invasive neuromodulation. MATERIALS AND METHODS In this review, we introduce basic knowledge about optogenetics; discuss the progression of engineered opsins, gene-targeting methods, and light-delivery approaches; we also summarize the application of optogenetics in neuromodulation of the bladder and discuss the possible clinical translation in the future. RESULTS AND CONCLUSION Optogenetics offers a powerful tool to investigate the neural circuit of bladder storage and voiding and provides a promising approach for manipulating neurons and muscles. It is possible to achieve coordinated modulation of the bladder and its sphincter through a "closed-loop" system. Optogenetics neuromodulation could also be applied in urinary bladder control in the clinic in the future.
Collapse
Affiliation(s)
- Zhonghan Zhou
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Urology, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, China
| | - Limin Liao
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Urology, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, China.,School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Yamamoto S, Takahashi Y, Kato F. Input-dependent synaptic suppression by pregabalin in the central amygdala in male mice with inflammatory pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100078. [PMID: 34877437 PMCID: PMC8628014 DOI: 10.1016/j.ynpai.2021.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 04/12/2023]
Abstract
Pregabalin (PGB) is a synthetic amino acid compound most widely prescribed for chronic peripheral and central neuropathic pain. PGB is a ligand for the α2δ1 subunit of voltage-dependent calcium channels, and its binding reduces neurotransmitter release and thus inhibits synaptic transmission. The central nucleus of the amygdala (CeA) is a kernel site for the enhanced nociception-emotion link in chronic pain. The nociceptive information is conveyed to the CeA via the following two pathways: 1) the pathway arising from the basolateral amygdala (BLA), which carries nociceptive information mediated by the thalamocortical system, and 2) that arising from the external part of the pontine lateral parabrachial nucleus (LPB), that forms the final route of the spino-parabrachio-amygdaloid pathway that conveys nociceptive information directly from the superficial layer of the spinal dorsal horn. We compared the effects of PGB on the excitatory postsynaptic currents of neurons in the right CeA in response to electrical stimulation of BLA and LPB pathways using the whole-cell patch-clamp technique. Inflammatory pain was induced by intraplantar injection of formalin solution at the left hind paw. At eight hours post-formalin, PGB reduced EPSCs amplitude of the BLA-to-CeA synaptic transmission, accompanied by a significant increase in the PPR, suggesting a decreased release probability from the presynaptic terminals. In addition, these effects of PGB were only seen in inflammatory conditions. PGB did not affect the synaptic transmission at the LPB-to-CeA pathway, even in formalin-treated mice. These results suggest PGB improves not simply the aberrantly enhanced nociception but also various pain-associated cognitive and affective consequences in patients with chronic nociplastic pain.
Collapse
Affiliation(s)
- Sumii Yamamoto
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Neuroscience, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Yukari Takahashi
- Department of Neuroscience, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
- Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
- Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| |
Collapse
|
32
|
Sugimoto M, Takahashi Y, Sugimura YK, Tokunaga R, Yajima M, Kato F. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain. Pain 2021; 162:2273-2286. [PMID: 33900711 PMCID: PMC8280967 DOI: 10.1097/j.pain.0000000000002224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/26/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Widespread or ectopic sensitization is a hallmark symptom of chronic pain, characterized by aberrantly enhanced pain sensitivity in multiple body regions remote from the site of original injury or inflammation. The central mechanism underlying widespread sensitization remains unidentified. The central nucleus of the amygdala (also called the central amygdala, CeA) is well situated for this role because it receives nociceptive information from diverse body sites and modulates pain sensitivity in various body regions. In this study, we examined the role of the CeA in a novel model of ectopic sensitization of rats. Injection of formalin into the left upper lip resulted in latent bilateral sensitization in the hind paw lasting >13 days in male Wistar rats. Chemogenetic inhibition of gamma-aminobutyric acid-ergic neurons or blockade of calcitonin gene-related peptide receptors in the right CeA, but not in the left, significantly attenuated this sensitization. Furthermore, chemogenetic excitation of gamma-aminobutyric acid-ergic neurons in the right CeA induced de novo bilateral hind paw sensitization in the rats without inflammation. These results indicate that the CeA neuronal activity determines hind paw tactile sensitivity in rats with remote inflammatory pain. They also suggest that the hind paw sensitization used in a large number of preclinical studies might not be simply a sign of the pain at the site of injury but rather a representation of the augmented CeA activity resulting from inflammation/pain in any part of the body or from activities of other brain regions, which has an active role of promoting defensive/protective behaviors to avoid further bodily damage.
Collapse
Affiliation(s)
- Mariko Sugimoto
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Tokunaga
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Manami Yajima
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Neuronal basis for pain- and anxiety-like behaviors in the central nucleus of the amygdala. Pain 2021; 163:e463-e475. [PMID: 34174041 DOI: 10.1097/j.pain.0000000000002389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is often accompanied by anxiety and depression disorders. Amygdala nuclei play important roles in emotional responses, fear, depression, anxiety and pain modulation. The exact mechanism of how amygdala neurons are involved in pain and anxiety is not completely understood. The central nucleus of the amygdala (CeA) contains two major subpopulations of GABAergic neurons that express somatostatin (SOM+) or protein kinase Cδ (PKCδ+). In this study, we found about 70% of pERK-positive neurons colocalized with PKCδ+ neurons in the formalin-induced pain model in mice. Optogenetic activation of PKCδ+ neurons was sufficient to induce mechanical hyperalgesia without changing anxiety-like behavior in naïve mice. Conversely, chemogenetic inhibition of PKCδ+ neurons significantly reduced the mechanical hyperalgesia in the pain model. In contrast, optogenetic inhibition of SOM+ neurons induced mechanical hyperalgesia in naïve mice and increased pERK-positive neurons mainly in PKCδ+ neurons. Optogenetic activation of SOM+ neurons slightly reduced the mechanical hyperalgesia in the pain model but did not change the mechanical sensitivity in naïve mice. Instead, it induced anxiety-like behavior. Our results suggest that the PKCδ+ and SOM+ neurons in CeA exert different functions in regulating pain- and anxiety-like behaviors in mice.
Collapse
|
34
|
Miller Neilan R, Majetic G, Gil-Silva M, Adke AP, Carrasquillo Y, Kolber BJ. Agent-based modeling of the central amygdala and pain using cell-type specific physiological parameters. PLoS Comput Biol 2021; 17:e1009097. [PMID: 34101729 PMCID: PMC8213159 DOI: 10.1371/journal.pcbi.1009097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/18/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
The amygdala is a brain area involved in emotional regulation and pain. Over the course of the last 20 years, multiple researchers have studied sensory and motor connections within the amygdala in trying to understand the ultimate role of this structure in pain perception and descending control of pain. A number of investigators have been using cell-type specific manipulations to probe the underlying circuitry of the amygdala. As data have accumulated in this research space, we recognized a critical need for a single framework to integrate these data and evaluate emergent system-level responses. In this manuscript, we present an agent-based computational model of two distinct inhibitory neuron populations in the amygdala, those that express protein kinase C delta (PKCδ) and those that express somatostatin (SOM). We utilized a network of neural links to simulate connectivity and the transmission of inhibitory signals between neurons. Type-specific parameters describing the response of these neurons to noxious stimuli were estimated from published physiological and immunological data as well as our own wet-lab experiments. The model outputs an abstract measure of pain, which is calculated in terms of the cumulative pro-nociceptive and anti-nociceptive activity across neurons in both hemispheres of the amygdala. Results demonstrate the ability of the model to produce changes in pain that are consistent with published studies and highlight the importance of several model parameters. In particular, we found that the relative proportion of PKCδ and SOM neurons within each hemisphere is a key parameter in predicting pain and we explored model predictions for three possible values of this parameter. We compared model predictions of pain to data from our earlier behavioral studies and found areas of similarity as well as distinctions between the data sets. These differences, in particular, suggest a number of wet-lab experiments that could be done in the future. In this manuscript, we present a computational modeling approach to understand and predict pain output from a part of the brain, the amygdala, involved in stress adaptation, emotional regulation, and pain. Over the last several years, a variety of groups have begun to dissect the specific cells that are responsible for the impact of amygdala activation on pain, which can include both increases and decreases in pain and pain-like output in animal models. It is helpful and necessary to use computational models to develop a framework to understand the amygdala as these wet lab techniques add to the complexity of our understanding of the brain structure. The model presented here was based on our recent published physiology experiments along with multiple examples of expression data. This model can be used to design future wet-lab experiments and can continue to be refined to help us evaluate the impact of the amygdala and similar limbic system structures in pain and other disease. Here we present the first computational model for amygdala signaling that includes physiological and histological properties of neurons and allows dynamic simulation of nociceptive signal propagation through the network.
Collapse
Affiliation(s)
- Rachael Miller Neilan
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (RMN); (BJK)
| | - Gabrielle Majetic
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Engineering, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Mauricio Gil-Silva
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Anisha P. Adke
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benedict J. Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail: (RMN); (BJK)
| |
Collapse
|
35
|
Mazzitelli M, Marshall K, Pham A, Ji G, Neugebauer V. Optogenetic Manipulations of Amygdala Neurons Modulate Spinal Nociceptive Processing and Behavior Under Normal Conditions and in an Arthritis Pain Model. Front Pharmacol 2021; 12:668337. [PMID: 34113253 PMCID: PMC8185300 DOI: 10.3389/fphar.2021.668337] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is an important neural substrate for the emotional–affective dimension of pain and modulation of pain. The central nucleus (CeA) serves major amygdala output functions and receives nociceptive and affected–related information from the spino-parabrachial and lateral–basolateral amygdala (LA–BLA) networks. The CeA is a major site of extra–hypothalamic expression of corticotropin releasing factor (CRF, also known as corticotropin releasing hormone, CRH), and amygdala CRF neurons form widespread projections to target regions involved in behavioral and descending pain modulation. Here we explored the effects of modulating amygdala neurons on nociceptive processing in the spinal cord and on pain-like behaviors, using optogenetic activation or silencing of BLA to CeA projections and CeA–CRF neurons under normal conditions and in an acute pain model. Extracellular single unit recordings were made from spinal dorsal horn wide dynamic range (WDR) neurons, which respond more strongly to noxious than innocuous mechanical stimuli, in normal and arthritic adult rats (5–6 h postinduction of a kaolin/carrageenan–monoarthritis in the left knee). For optogenetic activation or silencing of CRF neurons, a Cre–inducible viral vector (DIO–AAV) encoding channelrhodopsin 2 (ChR2) or enhanced Natronomonas pharaonis halorhodopsin (eNpHR3.0) was injected stereotaxically into the right CeA of transgenic Crh–Cre rats. For optogenetic activation or silencing of BLA axon terminals in the CeA, a viral vector (AAV) encoding ChR2 or eNpHR3.0 under the control of the CaMKII promoter was injected stereotaxically into the right BLA of Sprague–Dawley rats. For wireless optical stimulation of ChR2 or eNpHR3.0 expressing CeA–CRF neurons or BLA–CeA axon terminals, an LED optic fiber was stereotaxically implanted into the right CeA. Optical activation of CeA–CRF neurons or of BLA axon terminals in the CeA increased the evoked responses of spinal WDR neurons and induced pain-like behaviors (hypersensitivity and vocalizations) under normal condition. Conversely, optical silencing of CeA–CRF neurons or of BLA axon terminals in the CeA decreased the evoked responses of spinal WDR neurons and vocalizations, but not hypersensitivity, in the arthritis pain model. These findings suggest that the amygdala can drive the activity of spinal cord neurons and pain-like behaviors under normal conditions and in a pain model.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kendall Marshall
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Andrew Pham
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
36
|
Phelps CE, Navratilova E, Porreca F. Cognition in the Chronic Pain Experience: Preclinical Insights. Trends Cogn Sci 2021; 25:365-376. [PMID: 33509733 PMCID: PMC8035230 DOI: 10.1016/j.tics.2021.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Acutely, pain is protective. It promotes escape from, and future avoidance of, noxious stimuli through strong and often lifetime associative memories. However, with persistent acute pain or when pain becomes chronic, these memories can promote negative emotions and poor decisions often associated with deleterious behaviors. In this review, we discuss how preclinical studies can provide insights into the relationship between cognition and chronic pain. We also discuss the concept of pain as a cognitive disorder and new strategies for treating chronic pain that emphasize inhibiting the formation of pain memories or promoting 'forgetting' of established pain memories.
Collapse
Affiliation(s)
- Caroline E Phelps
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
37
|
Acharya AR, Larsen LE, Van Lysebettens W, Wadman WJ, Delbeke J, Vonck K, Meurs A, Boon P, Raedt R. Attenuation of Hippocampal Evoked Potentials in vivo by Activation of GtACR2, an Optogenetic Chloride Channel. Front Neurosci 2021; 15:653844. [PMID: 33854415 PMCID: PMC8039138 DOI: 10.3389/fnins.2021.653844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
AIM GtACR2, a light-activated chloride channel, is an attractive tool for neural inhibition as it can shunt membrane depolarizations. In this study, we assessed the effect of activating GtACR2 on in vivo hippocampal CA1 activity evoked by Schaffer collateral (SC) stimulation. METHODS Adult male Wistar rats were unilaterally injected with 0.5 μL of adeno associated viral vector for induction of GtACR2-mCherry (n = 10, GtACR2 group) or mCherry (n = 4, Sham group) expression in CA1 pyramidal neurons of the hippocampus. Three weeks later, evoked potentials (EPs) were recorded from the CA1 subfield placing an optrode (bipolar recording electrode attached to an optic fiber) at the injection site and a stimulation electrode targeting SCs. Effects of illumination parameters required to activate GtACR2 such as light power densities (LPDs), illumination delays, and light-pulse durations were tested on CA1 EP parameters [population spike (PS) amplitude and field excitatory postsynaptic potential (fEPSP) slope]. RESULTS In the GtACR2 group, delivery of a 10 ms light-pulse induced a negative deflection in the local field potential which increased with increasing LPD. When combined with electrical stimulation of the SCs, light-induced activation of GtACR2 had potent inhibitory effects on CA1 EPs. An LPD of 160 mW/mm2 was sufficient to obtain maximal inhibition CA1 EPs. To quantify the duration of the inhibitory effect, a 10 ms light-pulse of 160 mW/mm2 was delivered at increasing delays before the CA1 EPs. Inhibition of EPs was found to last up to 9 ms after the cessation of the light-pulse. Increasing light-pulse durations beyond 10 ms did not result in larger inhibitory effects. CONCLUSION Precisely timed activation of GtACR2 potently blocks evoked activity of CA1 neurons. The strength of inhibition depends on LPD, lasts up to 9 ms after a light-pulse of 10 ms, and is independent of the duration of the light-pulse given.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robrecht Raedt
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
DeLong M, Gil-Silva M, Hong VM, Babyok O, Kolber BJ. Visceral pressure stimulator for exploring hollow organ pain: a pilot study. Biomed Eng Online 2021; 20:30. [PMID: 33766034 PMCID: PMC7993476 DOI: 10.1186/s12938-021-00870-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The regulation and control of pressure stimuli is useful for many studies of pain and nociception especially those in the visceral pain field. In many in vivo experiments, distinct air and liquid stimuli at varying pressures are delivered to hollow organs such as the bladder, vagina, and colon. These stimuli are coupled with behavioral, molecular, or physiological read-outs of the response to the stimulus. Care must be taken to deliver precise timed stimuli during experimentation. For example, stimuli signals can be used online to precisely time-lock the stimulus with a physiological output. Such precision requires the development of specialized hardware to control the stimulus (e.g., air) while providing a precise read-out of pressure and stimulus signal markers. METHODS In this study, we designed a timed pressure regulator [termed visceral pressure stimulator (VPS)] to control air flow, measure pressure (in mmHg), and send stimuli markers to online software. The device was built using a simple circuit and primarily off-the-shelf parts. A separate custom inline analog-to-digital pressure converter was used to validate the real pressure output of the VPS. RESULTS Using commercial physiological software (Spike2, CED), we were able to measure mouse bladder pressure continuously during delivery of unique air stimulus trials in a mouse while simultaneously recording an electromyogram (EMG) of the overlying abdominal muscles. CONCLUSIONS This device will be useful for those who need to (1) deliver distinct pressure stimuli while (2) measuring the pressure in real-time and (3) monitoring stimulus on-off using physiological software.
Collapse
Affiliation(s)
- Michael DeLong
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Mauricio Gil-Silva
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA.,Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15217, USA
| | - Veronica Minsu Hong
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Olivia Babyok
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15217, USA
| | - Benedict J Kolber
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA.
| |
Collapse
|
39
|
Ramírez-López A, Pastor A, de la Torre R, La Porta C, Ozaita A, Cabañero D, Maldonado R. Role of the endocannabinoid system in a mouse model of Fragile X undergoing neuropathic pain. Eur J Pain 2021; 25:1316-1328. [PMID: 33619843 DOI: 10.1002/ejp.1753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuropathic pain is a complex condition characterized by sensory, cognitive and affective symptoms that magnify the perception of pain. The underlying pathogenic mechanisms are largely unknown and there is an urgent need for the development of novel medications. The endocannabinoid system modulates pain perception and drugs targeting the cannabinoid receptor type 2 (CB2) devoid of psychoactive side effects could emerge as novel analgesics. An interesting model to evaluate the mechanisms underlying resistance to pain is the fragile X mental retardation protein knockout mouse (Fmr1KO), a model of fragile X syndrome that exhibits nociceptive deficits and fails to develop neuropathic pain. METHODS A partial sciatic nerve ligation was performed to wild-type (WT) and Fmr1KO mice having (HzCB2 and Fmr1KO-HzCB2, respectively) or not (WT and Fmr1KO mice) a partial deletion of CB2 to investigate the participation of the endocannabinoid system on the pain-resistant phenotype of Fmr1KO mice. RESULTS Nerve injury induced canonical hypersensitivity in WT and HzCB2 mice, whereas this increased pain sensitivity was absent in Fmr1KO mice. Interestingly, Fmr1KO mice partially lacking CB2 lost this protection against neuropathic pain. Similarly, pain-induced depressive-like behaviour was observed in WT, HzCB2 and Fmr1KO-HzCB2 mice, but not in Fmr1KO littermates. Nerve injury evoked different alterations in WT and Fmr1KO mice at spinal and supra-spinal levels that correlated with these nociceptive and emotional alterations. CONCLUSIONS This work shows that CB2 is necessary for the protection against neuropathic pain observed in Fmr1KO mice, raising the interest in targeting this receptor for the treatment of neuropathic pain. SIGNIFICANCE Neuropathic pain is a complex chronic pain condition and current treatments are limited by the lack of efficacy and the incidence of important side effects. Our findings show that the pain-resistant phenotype of Fmr1KO mice against nociceptive and emotional manifestations triggered by persistent nerve damage requires the participation of the cannabinoid receptor CB2, raising the interest in targeting this receptor for neuropathic pain treatment. Additional multidisciplinary studies more closely related to human pain experience should be conducted to explore the potential use of cannabinoids as adequate analgesic tools.
Collapse
Affiliation(s)
- Angela Ramírez-López
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Antoni Pastor
- IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Carmen La Porta
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Andrés Ozaita
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
40
|
Selective modulation of tonic aversive qualities of neuropathic pain by morphine in the central nucleus of the amygdala requires endogenous opioid signaling in the anterior cingulate cortex. Pain 2021; 161:609-618. [PMID: 31725062 DOI: 10.1097/j.pain.0000000000001748] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The amygdala is a key subcortical region believed to contribute to emotional components of pain. As opioid receptors are found in both the central (CeA) and basolateral (BLA) nuclei of the amygdala, we investigated the effects of morphine microinjection on evoked pain responses, pain-motivated behaviors, dopamine release in the nucleus accumbens (NAc), and descending modulation in rats with left-side spinal nerve ligation (SNL). Morphine administered into the right or left CeA had no effect on nerve injury-induced tactile allodynia or mechanical hyperalgesia. Right, but not left, CeA morphine produced conditioned place preference (CPP) and increased extracellular dopamine in the NAc selectively in SNL rats, suggesting relief of aversive qualities of ongoing pain. In SNL rats, CPP and NAc dopamine release following right CeA morphine was abolished by blocking mu opioid receptor signaling in the rostral anterior cingulate cortex (rACC). Right CeA morphine also significantly restored SNL-induced loss of the diffuse noxious inhibitory controls, a spino-bulbo-spinal pain modulatory mechanism, termed conditioned pain modulation in humans. Microinjection of morphine into the BLA had no effects on evoked behaviors and did not produce CPP in nerve-injured rats. These findings demonstrate that the amygdalar action of morphine is specific to the right CeA contralateral to the side of injury and results in enhancement of net descending inhibition. In addition, engagement of mu opioid receptors in the right CeA modulates affective qualities of ongoing pain through endogenous opioid neurotransmission within the rACC, revealing opioid-dependent functional connections from the CeA to the rACC.
Collapse
|
41
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
42
|
Wilson TD, Valdivia S, Khan A, Ahn HS, Adke AP, Martinez Gonzalez S, Sugimura YK, Carrasquillo Y. Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain. Cell Rep 2020; 29:332-346.e5. [PMID: 31597095 PMCID: PMC6816228 DOI: 10.1016/j.celrep.2019.09.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 07/27/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury.
Collapse
Affiliation(s)
- Torri D Wilson
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Spring Valdivia
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Aleisha Khan
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Hye-Sook Ahn
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Anisha P Adke
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Santiago Martinez Gonzalez
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Yae K Sugimura
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Yarimar Carrasquillo
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
43
|
Allen HN, Bobnar HJ, Kolber BJ. Left and right hemispheric lateralization of the amygdala in pain. Prog Neurobiol 2020; 196:101891. [PMID: 32730859 DOI: 10.1016/j.pneurobio.2020.101891] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 02/04/2023]
Abstract
Hemispheric asymmetries within the brain have been identified across taxa and have been extensively studied since the early 19th century. Here, we discuss lateralization of a brain structure, the amygdala, and how this lateralization is reshaping how we understand the role of the amygdala in pain processing. The amygdala is an almond-shaped, bilateral brain structure located within the limbic system. Historically, the amygdala was known to have a role in the processing of emotions and attaching emotional valence to memories and other experiences. The amygdala has been extensively studied in fear conditioning and affect but recently has been shown to have an important role in processing noxious information and impacting pain. The amygdala is composed of multiple nuclei; of special interest is the central nucleus of the amygdala (CeA). The CeA receives direct nociceptive inputs from the parabrachial nucleus (PBN) through the spino-parabrachio-amygdaloid pathway as well as more highly processed cortical and thalamic input via the lateral and basolateral amygdala. Although the amygdala is a bilateral brain region, most data investigating the amygdala's role in pain have been generated from the right CeA, which has an overwhelmingly pro-nociceptive function across pain models. The left CeA has often been characterized to have no effect on pain modulation, a dampened pro-nociceptive function, or most recently an anti-nociceptive function. This review explores the current literature on CeA lateralization and the hemispheres' respective roles in the processing and modulation of different forms of pain.
Collapse
Affiliation(s)
- Heather N Allen
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, 15282, United States
| | - Harley J Bobnar
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, 15282, United States
| | - Benedict J Kolber
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, 15282, United States; Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, 75080, United States.
| |
Collapse
|
44
|
Supraspinal Opioid Circuits Differentially Modulate Spinal Neuronal Responses in Neuropathic Rats. Anesthesiology 2020; 132:881-894. [PMID: 31977518 DOI: 10.1097/aln.0000000000003120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The anterior cingulate cortex and central nucleus of the amygdala connect widely with brainstem nuclei involved in descending modulation, including the rostral ventromedial medulla. Endogenous opioids in these circuits participate in pain modulation. The hypothesis was that a differential opioidergic role for the brain nuclei listed in regulation of spinal neuronal responses because separable effects on pain behaviors in awake animals were previously observed. METHODS This study utilized in vivo electrophysiology to determine the effects of morphine microinjection into the anterior cingulate cortex, right or left central nucleus of the amygdala, or the rostral ventromedial medulla on spinal wide dynamic range neuronal responses in isoflurane-anesthetized, male Sprague-Dawley rats. Ongoing activity in the ventrobasal thalamus was also measured. In total, 33 spinal nerve ligated and 26 control age- and weight-matched control rats were used. RESULTS Brainstem morphine reduced neuronal firing to 60-g von Frey stimulation in control rats (to 65 ± 12% of control response (means ± 95% CI), P < 0.001) with a greater inhibition in neuropathic rats (to 53 ± 17% of control response, P < 0.001). Contrasting anterior cingulate cortex morphine had only marginal modulatory effects on spinal neuronal responses with limited variance in effect between control and neuropathic rats. The inhibitory effects of morphine in the central nucleus of the amygdala were dependent on pain state and laterality; only right-side morphine reduced neuronal firing to 60-g stimulation in neuropathic rats (to 65 ± 14% of control response, P = 0.001). In addition, in neuropathic rats elevated ongoing neuronal activity in the ventral posterolateral thalamus was not inhibited by anterior cingulate cortex morphine, in contrast to evoked responses. CONCLUSIONS Cumulatively the data support opioid modulation of evoked responses predominately through a lateralized output from the right amygdala, as well as from the brainstem that is enhanced in injured conditions. Minimal modulation of dorsal horn responses was observed after anterior cingulate cortex opioid administration regardless of injury state.
Collapse
|
45
|
Abstract
General anesthetics during surgery are presumed to block pain by dampening brain activity and promoting loss-of-consciousness. A new study shows that anesthetics activate an endogenous analgesia neural ensemble in the central nucleus of the amygdala.
Collapse
Affiliation(s)
- Nora M McCall
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Wojick
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Hua T, Chen B, Lu D, Sakurai K, Zhao S, Han BX, Kim J, Yin L, Chen Y, Lu J, Wang F. General anesthetics activate a potent central pain-suppression circuit in the amygdala. Nat Neurosci 2020; 23:854-868. [PMID: 32424286 PMCID: PMC7329612 DOI: 10.1038/s41593-020-0632-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
General anesthesia (GA) can produce analgesia (loss of pain) independent of inducing loss of consciousness, but the underlying mechanisms remain unclear. We hypothesized that GA suppresses pain in part by activating supraspinal analgesic circuits. We discovered a distinct population of GABAergic neurons activated by GA in the mouse central amygdala (CeAGA neurons). In vivo calcium imaging revealed that different GA drugs activate a shared ensemble of CeAGA neurons. CeAGA neurons also possess basal activity that mostly reflects animals' internal state rather than external stimuli. Optogenetic activation of CeAGA potently suppressed both pain-elicited reflexive and self-recuperating behaviors across sensory modalities and abolished neuropathic pain-induced mechanical (hyper-)sensitivity. Conversely, inhibition of CeAGA activity exacerbated pain, produced strong aversion and canceled the analgesic effect of low-dose ketamine. CeAGA neurons have widespread inhibitory projections to many affective pain-processing centers. Our study points to CeAGA as a potential powerful therapeutic target for alleviating chronic pain.
Collapse
Affiliation(s)
- Thuy Hua
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | - Bin Chen
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Dongye Lu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Jiwoo Kim
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Luping Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Jinghao Lu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
47
|
Nahman‐Averbuch H, Schneider VJ, Chamberlin LA, Kroon Van Diest AM, Peugh JL, Lee GR, Radhakrishnan R, Hershey AD, King CD, Coghill RC, Powers SW. Alterations in Brain Function After Cognitive Behavioral Therapy for Migraine in Children and Adolescents. Headache 2020; 60:1165-1182. [DOI: 10.1111/head.13814] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hadas Nahman‐Averbuch
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Victor J. Schneider
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Leigh Ann Chamberlin
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | | | - James L. Peugh
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
| | - Gregory R. Lee
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
- Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Pediatric NeuroImaging Research Consortium Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences Indiana University School of Medicine Riley Hospital for Children at Indiana University Health Indianapolis IN USA
| | - Andrew D. Hershey
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Christopher D. King
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
| | - Robert C. Coghill
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
- Pediatric NeuroImaging Research Consortium Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Scott W. Powers
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
| |
Collapse
|
48
|
Abstract
The amygdala has emerged as an important brain area for the emotional-affective dimension of pain and pain modulation. The amygdala receives nociceptive information through direct and indirect routes. These excitatory inputs converge on the amygdala output region (central nucleus) and can be modulated by inhibitory elements that are the target of (prefrontal) cortical modulation. For example, inhibitory neurons in the intercalated cell mass in the amygdala project to the central nucleus to serve gating functions, and so do inhibitory (PKCdelta) interneurons within the central nucleus. In pain conditions, synaptic plasticity develops in output neurons because of an excitation-inhibition imbalance and drives pain-like behaviors and pain persistence. Mechanisms of pain related neuroplasticity in the amygdala include classical transmitters, neuropeptides, biogenic amines, and various signaling pathways. An emerging concept is that differences in amygdala activity are associated with phenotypic differences in pain vulnerability and resilience and may be predetermining factors of the complexity and persistence of pain.
Collapse
Affiliation(s)
- Volker Neugebauer
- Professor and Chair, Department of Pharmacology and Neuroscience, Giles McCrary Endowed Chair in Addiction Medicine, Director, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center
- School of Medicine, 3601 4th Street
- Mail Stop 6592, Lubbock, Texas 79430-6592
| |
Collapse
|
49
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
50
|
Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, Jiang L, Yu L, Zhuo M, Qiu S. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 2020; 11:640. [PMID: 32005806 PMCID: PMC6994462 DOI: 10.1038/s41467-020-14281-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional awareness and consequently guides behavioral responses. Here, we demonstrate that the right-side aIC CamKII+ (aICCamKII) neurons in mice are activated by aversive visceral signals. Hyperactivation of the right-side aICCamKII neurons attenuates food consumption, while inhibition of these neurons increases feeding and reverses aversive stimuli-induced anorexia and weight loss. Similar manipulation at the left-side aIC does not cause significant behavioral changes. Furthermore, virus tracing reveals that aICCamKII neurons project directly to the vGluT2+ neurons in the lateral hypothalamus (LH), and the right-side aICCamKII-to-LH pathway mediates feeding suppression. Our studies uncover a circuit from the cortex to the hypothalamus that senses aversive visceral signals and controls feeding behavior.
Collapse
Affiliation(s)
- Yu Wu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Changwan Chen
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ming Chen
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Kai Qian
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Xinyou Lv
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Haiting Wang
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lifei Jiang
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lina Yu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Shuang Qiu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|