1
|
Uta D, Tsuboshima K, Mizumura K, Nishijo H, Taguchi T. Amitriptyline and duloxetine attenuate activities of superficial dorsal horn neurons in a rat reserpine-induced fibromyalgia model. J Pharmacol Sci 2024; 156:180-187. [PMID: 39313276 DOI: 10.1016/j.jphs.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Fibromyalgia (FM) is an intractable disease with a chief complaint of chronic widespread pain. Amitriptyline (AMI) and duloxetine (DLX), which are antidepressant drugs, have been reported to ameliorate pain in patients with FM and pain-related behaviors in several rodent models of FM. However, the mechanisms of action of AMI and DLX are not yet fully understood. Here, we examined the effects of these drugs on the responsiveness of superficial dorsal horn (SDH) neurons in the spinal cord, using a rat FM model developed by injecting a biogenic amine depleter (reserpine). Extracellular recordings of SDH neurons in vivo demonstrated that bath application of AMI and DLX at concentrations of 0.1-1.0 mM on the dorsal surface of the spinal cord markedly suppressed spontaneous discharge and von Frey filament-evoked mechanical firing in SDH neurons. The suppression induced by the drugs was noted in a concentration-dependent manner and the suppressive effects resolved after washing the spinal cord surface. These results show that SDH neurons are the site of action for AMI and DLX in a rat reserpine-induced FM model. Spinal mechanisms may underlie the therapeutic effects of these drugs in patients with FM.
Collapse
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Katsuyuki Tsuboshima
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan; Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Utsunomiya, 320-8551, Japan
| | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan; Faculty of Human Sciences, University of East Asia, Shimonoseki, 751-8503, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences (IHMMS), Niigata University of Health and Welfare, Niigata, 950-3198, Japan.
| |
Collapse
|
2
|
Kim YR, Kim SJ. Altered synaptic connections and inhibitory network of the primary somatosensory cortex in chronic pain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:69-75. [PMID: 35203057 PMCID: PMC8890942 DOI: 10.4196/kjpp.2022.26.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Chronic pain is induced by tissue or nerve damage and is accompanied by pain hypersensitivity (i.e., allodynia and hyperalgesia). Previous studies using in vivo two-photon microscopy have shown functional and structural changes in the primary somatosensory (S1) cortex at the cellular and synaptic levels in inflammatory and neuropathic chronic pain. Furthermore, alterations in local cortical circuits were revealed during the development of chronic pain. In this review, we summarize recent findings regarding functional and structural plastic changes of the S1 cortex and alteration of the S1 inhibitory network in chronic pain. Finally, we discuss potential neuromodulators driving modified cortical circuits and suggest further studies to understand the cortical mechanisms that induce pain hypersensitivity.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Departments of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang Jeong Kim
- Departments of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Departments of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
3
|
Uta D, Tsuboshima K, Nishijo H, Mizumura K, Taguchi T. Neuronal Sensitization and Synaptic Facilitation in the Superficial Dorsal Horn of a Rat Reserpine-induced Pain Model. Neuroscience 2021; 479:125-139. [PMID: 34673142 DOI: 10.1016/j.neuroscience.2021.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Chronic widespread pain is one of the important issues to be solved in medical practice. Impaired spinal descending pain inhibitory system due to decreased monoamine neurotransmitters is assumed to cause nociceptive hypersensitivities in chronic painful conditions like that described in patients with fibromyalgia (FM). However, response behaviors and synaptic transmission of the spinal dorsal horn neurons in response to reserpine remain to be clarified. Here we examined the activities of superficial dorsal horn (SDH) neurons, as well as excitatory and inhibitory postsynaptic inputs to SDH neurons, using a putative rat model of FM that was established by injecting reserpine. Extracellular recordings in vivo revealed that SDH neurons were sensitized to mechanical stimulation applied to the neurons' receptive fields, and the mechanically sensitized neurons were spontaneously more active. The sensitizing effect was evident 1 day and 3 days after the reserpine treatment, but subsided 5 days after the treatment or later. Using patch-clamp recordings in vivo, spontaneous excitatory postsynaptic currents (sEPSCs) to SDH neurons were found to increase in the pain model, while spontaneous inhibitory postsynaptic currents (sIPSCs) to SDH neurons decreased. These results demonstrate that the SDH neurons were strongly sensitized in response to the reserpine treatment, and that increased excitatory and decreased inhibitory postsynaptic inputs could be responsible for the spinal nociceptive hypersensitivity in the putative FM model.
Collapse
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Katsuyuki Tsuboshima
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences (IHMMS), Niigata University of Health and Welfare, Niigata 950-3198, Japan.
| |
Collapse
|
4
|
Nakata T, Doi A, Uta D, Shin MC, Yoshimura M. Free gait in a shallow pool accelerates recovery after exercise in model mice with fibromyalgia. J Exerc Rehabil 2020; 16:398-409. [PMID: 33178641 PMCID: PMC7609855 DOI: 10.12965/jer.2040672.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 11/30/2022] Open
Abstract
This study aimed to determine the effect of pool gait exercise using fibromyalgia-induced model mice. The sensory threshold, locomotive behavior, electrocardiogram, and onset time after the gait test in shallow water using male C57BL/6J mice (weight, 30–35 g; n=21) were investigated. To induce fibromyalgia in model mice, reserpine was injected intraperitoneally into wild-type mice once a day for 3 days. Subsequently, the fibromyalgia-induced model mice were randomly classified into two groups as follows: the control group (n=11) and the pool gait group (n=10). The mice in the pool gait group walked in the same cage containing shallow warm water 5 times per week. Both groups underwent sensory thresholds and video recordings to determine locomotive behaviors weekly. Further, both heart rate and video recordings for observation of a recovery after the gait test in shallow water were undertaken (control group; n=5, pool gait group; n=5). The pool gait did not affect sensory thresholds and locomotive behavior; however, in the pool gait group, both the recovery after the test, such as onset time and gait distance, were considerably better than those of the control group. Furthermore, changes in heart rate and heart rate irregularity after the test were more apparent in the control group than in the pool gait group. The free gait in a shallow pool accelerated recovery after exercise, unlike the sensory threshold.
Collapse
Affiliation(s)
- Taiki Nakata
- Department of Rehabilitation, Kumamoto-Saiseikai Hospital, Kumamoto, Japan.,Graduate School of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Atsushi Doi
- Graduate School of Health Science, Kumamoto Health Science University, Kumamoto, Japan.,Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Min-Chul Shin
- Graduate School of Health Science, Kumamoto Health Science University, Kumamoto, Japan.,Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
| | - Megumu Yoshimura
- Department of Orthopedic Surgery, Nakamura Hospital, Fukuoka, Japan
| |
Collapse
|
5
|
Li D, Yoo JH, Kim SK. Long-Lasting and Additive Analgesic Effects of Combined Treatment of Bee Venom Acupuncture and Venlafaxine on Paclitaxel-Induced Allodynia in Mice. Toxins (Basel) 2020; 12:toxins12100620. [PMID: 32998357 PMCID: PMC7600305 DOI: 10.3390/toxins12100620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel, a primary chemotherapeutic agent used to treat numerous solid malignancies, is commonly associated with debilitating peripheral neuropathy. However, a satisfactory gold-standard monotherapy for this neuropathic pain is not currently available. A combination strategy of two or more medications with different properties may achieve more beneficial effects than monotherapy. Thus, we investigated the analgesic efficacies and spinal mechanisms of the combination strategy, including bee venom acupuncture (BVA) and venlafaxine (VLX) against paclitaxel-induced allodynia in mice. Four intraperitoneal infusions of paclitaxel on alternating days (2 mg/kg/day) induced cold and mechanical allodynia for at least 1 week as assessed using acetone and the von Frey hair test, respectively. Co-treatment of BVA (1.0 mg/kg, s.c., ST36) with VLX (40 mg/kg, i.p.) at the medium dose produced a longer-lasting and additive effect than each monotherapy at the highest dose (BVA, 2.5 mg/kg; VLX, 60 mg/kg). Spinal pre-administration of idazoxan (α2-adrenergic receptor antagonist, 10 μg), methysergide (mixed 5-HT1/5-HT2 receptor antagonist, 10 μg), or MDL-72222 (5-HT3 receptor antagonist, 10 μg) abolished this analgesia. These results suggest that the combination therapy with BVA and VLX produces long-lasting and additive analgesic effects on paclitaxel-induced allodynia, via the spinal noradrenergic and serotonergic mechanism, providing a promising clinical strategy.
Collapse
Affiliation(s)
- Daxian Li
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Ju Hyuk Yoo
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
6
|
Koga K, Yamada A, Song Q, Li XH, Chen QY, Liu RH, Ge J, Zhan C, Furue H, Zhuo M, Chen T. Ascending noradrenergic excitation from the locus coeruleus to the anterior cingulate cortex. Mol Brain 2020; 13:49. [PMID: 32216807 PMCID: PMC7098117 DOI: 10.1186/s13041-020-00586-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 11/10/2022] Open
Abstract
Anterior cingulate cortex (ACC) plays important roles in sensory perception including pain and itch. Neurons in the ACC receive various neuromodulatory inputs from subcortical structures, including locus coeruleus noradrenaline (LC-NA) neurons. Few studies have been reported about synaptic and behavioral functions of LC-NA projections to the ACC. Using viral-genetic method (AAV-DIO-eYFP) on DBH-cre mice, we found that LC-NA formed synaptic connections to ACC pyramidal cells but not interneurons. This is further supported by the electron microscopic study showing NAergic fibers contact the presynaptic inputs and post-synaptic areas of the pyramidal cells. NA application produced both pre- and post-synaptic potentiation effects in ACC excitatory transmission in vivo and in vitro. Activation of LC-NA projection to the ACC by optogenetic method produced enhancement of excitatory transmission in vitro and induced scratching and behavioral sensitization for mechanical stimulation. Our results demonstrate that LC-NA projections enhance or facilitate brain responses to pain and itch by potentiating glutamatergic synaptic transmissions in the ACC.
Collapse
Affiliation(s)
- Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Akihiro Yamada
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Qian Song
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun Ge
- Department of Anatomy, Histology & Embryology, Air Force Medical University, Xi'an, 710032, China
| | - Cheng Zhan
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Tao Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Anatomy, Histology & Embryology, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Uta D, Yoshimura M, Koga K. Chronic pain models amplify transient receptor potential vanilloid 1 (TRPV1) receptor responses in adult rat spinal dorsal horn. Neuropharmacology 2019; 160:107753. [PMID: 31493465 DOI: 10.1016/j.neuropharm.2019.107753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Persistent pain is associated with negative affect originating from hypersensitivity and/or allodynia. The spinal cord is a key area for nociception as well as chronic pain processing. Specifically, the dorsal horn neurons in lamina II (substantia gelatinosa: SG) receive nociceptive inputs from primary afferents such as C fibers and/or Aδ fibers. Transient receptor potential vanilloid 1 (TRPV1) is a major receptor to sense heat as well as nociception. TRPV1 are expressed in the periphery and the central axon terminals of C fibers and/or Aδ fibers in the spinal cord. Activating TRPV1 enhances the release of glutamate in the spinal cord from naïve rodents. Here, we studied whether or not chronic pain could alter the response of TRPV1 channels to exogenous, capsaicin through study of synaptic transmission and neural activity in rat SG neurons. Using in vitro whole-cell patch-clamp recording, we found that bath application of capsaicin facilitated both the frequency and amplitude of miniature and spontaneous excitatory postsynaptic currents beyond a nerve injury and a complete Freund's adjuvant injection observed in the naïve group. Strikingly, capsaicin produced larger amplitudes of inward currents in pain models than compared to the naïve group. By contrast, the proportions of neurons that show capsaicin-induced inward currents were similar among naïve and pain groups. Importantly, the capsaicin-induced inward currents were conducted by TRPV1 and required calcium influx that was independent of voltage-gated calcium channels. Our study provides fundamental evidence that chronic inflammation and neuropathic pain models amplify the release of glutamate through the activation of TRPV1 in central axon terminals, and that facilitation of TRPV1 function in rat spinal SG neurons may contribute to enhanced capsaicin-induced inward currents.
Collapse
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Megumu Yoshimura
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research Division for Life Sciences, Kumamoto Health Science University, Kumamoto, Japan; Nogata Nakamura Hospital, Fukuoka, Japan
| | - Kohei Koga
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Yamada A, Koga K, Kume K, Ohsawa M, Furue H. Ethanol-induced enhancement of inhibitory synaptic transmission in the rat spinal substantia gelatinosa. Mol Pain 2018; 14:1744806918817969. [PMID: 30453825 PMCID: PMC6293375 DOI: 10.1177/1744806918817969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shown that ethanol produces a widespread modulation
of neuronal activity in the central nervous system. It is not fully
understood, however, how ethanol changes nociceptive transmission. We
investigated acute effects of ethanol on synaptic transmission in the
substantia gelatinosa (lamina II of the spinal dorsal horn) and
mechanical responses in the spinal dorsal horn. In substantia
gelatinosa neurons, bath application of ethanol at low concentration
(10 mM) did not change the frequency and amplitude of spontaneous
inhibitory postsynaptic currents. At medium to high concentrations
(20–100 mM), however, ethanol elicited a barrage of large amplitude
spontaneous inhibitory postsynaptic currents. In the presence of
tetrodotoxin, such enhancement of spontaneous inhibitory postsynaptic
currents was not detected. In addition, ethanol (20–100 mM) increased
the frequency of spontaneous discharge of vesicular GABA
transporter-Venus-labeled neurons and suppressed the mechanical
nociceptive response in wide-dynamic range neurons in the spinal
dorsal horn. The present results suggest that ethanol may reduce
nociceptive information transfer in the spinal dorsal horn by
enhancement of inhibitory GABAergic and glycinergic synaptic
transmission.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
| | - Kohei Koga
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
- School of Life Science, Graduate University for
Advanced Studies, Okazaki, Japan
- Hidemasa Furue, Department of
Neurophysiology 663–8131, Hyogo College of Medicine, Nishinomiya,
Japan.
| |
Collapse
|