1
|
Ito A, Yang S, Shinto E, Shinto A, Toyofuku A, Kurata J. Interhemispheric and Corticothalamic White-Matter Dysfunction Underlies Affective Morbidity and Impaired Pain Modulation in Chronic Pain. Anesth Analg 2025; 140:465-475. [PMID: 38837907 PMCID: PMC11687938 DOI: 10.1213/ane.0000000000006992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Although patients with chronic pain show behavioral signs of impaired endogenous pain modulation, responsible cerebral networks have yet to be anatomically delineated. We used diffusion tensor imaging (DTI) to examine the white-matter alterations in patients with chronic pain compared with healthy subjects. We further measured thermal pain modulatory responses using the offset analgesia (OA) paradigm. We tested whether the white-matter indices be associated with psychophysical parameters reflecting morbidity and modulatory responses of pain in patients, and whether they could serve as diagnostic biomarkers of chronic pain. METHODS Twenty-six patients with chronic pain and 18 age- and gender-matched healthy controls were enrolled. After completing psychophysical questionnaires, they underwent OA measurement and whole-brain DTI in a 3 Tesla magnetic resonance imaging scanner. Fractional anisotropy (FA) and radial diffusivity (RD) of the white-matter were computed and compared between the groups with tract-based spatial statistics using the FMRIB Software Library (FSL) software. Correlations were sought among white-matter indices, thermal pain responses, and psychophysical parameters. The white-matter indices and OA-related parameters were tested whether they distinguish patients from controls by receiver operating characteristic analysis. RESULTS During OA, patients showed a shorter latency to the maximum (maximum visual analog scale [VAS] latency, 16.0 ± 3.7 vs 18.9 ± 3.1 second [mean ± standard deviation, SD]; P = .032) but a longer latency to the minimum pain (OA latency, 15.6 ± 3.5 vs 11.1 ± 4.2 seconds; P = .004) than controls. They showed a smaller mean FA (0.44 ± 0.12 vs 0.45 ± 0.11; P = .012) and a larger mean RD of the global white-matter (0.00057 ± 0.00002 vs 0.00056 ± 0.00002; P = .038) than controls, at specific areas including the corpus callosum, anterior thalamic radiation, and forceps major. FA of the splenium of the corpus callosum was associated with maximum VAS latency (r = 0.493) and OA latency (r = -0.552). The Pain Catastrophizing Scale scores showed strong negative correlations with FA across those specific areas (r = -0.405). Those latencies during OA and white-matter metrics distinguished patients from controls ( P < .05). CONCLUSIONS Patients with chronic pain showed dysfunction of the white matter concerned with interhemispheric communication of sensorimotor information as well as descending corticothalamic modulation of pain in association with affective morbidity and altered temporal dynamics of pain perception. We suggest that an impaired interhemispheric modulation of pain, through the corpus callosum, might be a novel cerebral mechanism in chronification of pain.
Collapse
Affiliation(s)
- Atsushi Ito
- From the Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Sushuang Yang
- Department of Anesthesiology, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Eri Shinto
- Department of Anesthesiology, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Shinto
- Department of Anesthesiology, Keio University Graduate School of Medicine, Tokyo, Japan
| | - Akira Toyofuku
- From the Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Jiro Kurata
- From the Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
- Department of Anesthesiology, Jikei University Graduate School of Medicine, Tokyo, Japan
- Department of Anesthesiology, Keio University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Carpenter JM, Hughes SN, Filipov NM. Longitudinal evaluation of structural brain alterations in two established mouse models of Gulf War Illness. Front Neurosci 2024; 18:1465701. [PMID: 39308947 PMCID: PMC11412963 DOI: 10.3389/fnins.2024.1465701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Gulf War Illness (GWI) affects nearly 30% of veterans from the 1990-1991 Gulf War (GW) and is a multi-symptom illness with many neurological effects attributed to in-theater wartime chemical overexposures. Brain-focused studies have revealed persistent structural and functional alterations in veterans with GWI, including reduced volumes, connectivity, and signaling that correlate with poor cognitive and motor performance. GWI symptomology components have been recapitulated in rodent models as behavioral, neurochemical, and neuroinflammatory aberrations. However, preclinical structural imaging studies remain limited. This study aimed to characterize the progression of brain structural alterations over the course of 12 months in two established preclinical models of GWI. In the PB/PM model, male C57BL/6 J mice (8-9 weeks) received daily exposure to the nerve agent prophylactic pyridostigmine bromide (PB) and the pyrethroid insecticide permethrin (PM) for 10 days. In the PB/DEET/CORT/DFP model, mice received daily exposure to PB and the insect repellent DEET (days 1-14) and corticosterone (CORT; days 7-14). On day 15, mice received a single injection of the sarin surrogate diisopropylfluorophosphate (DFP). Using a Varian 7 T Bore MRI System, structural (sagittal T2-weighted) scans were performed at 6-, 9-, and 12-months post GWI exposures. Regions of interest, including total brain, ventricles, cortex, hippocampus, cerebellum, and brainstem were delineated in the open source Aedes Toolbox in MATLAB, followed by brain volumetric and cortical thickness analyses in ImageJ. Limited behavioral testing 1 month after the last MRI was also performed. The results of this study compare similarities and distinctions between these exposure paradigms and aid in the understanding of GWI pathogenesis. Major similarities among the models include relative ventricular enlargement and reductions in hippocampal volumes with age. Key differences in the PB/DEET/CORT/DFP model included reduced brainstem volumes and an early and persistent loss of total brain volume, while the PB/PM model produced reductions in cortical thickness with age. Behaviorally, at 13 months, motor function was largely preserved in both models. However, the GWI mice in the PB/DEET/CORT/DFP model exhibited an elevation in anxiety-like behavior.
Collapse
Affiliation(s)
| | | | - Nikolay M. Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Čeko M, Baeuerle T, Webster L, Wager TD, Lumley MA. The effects of virtual reality neuroscience-based therapy on clinical and neuroimaging outcomes in patients with chronic back pain: a randomized clinical trial. Pain 2024; 165:1860-1874. [PMID: 38466872 DOI: 10.1097/j.pain.0000000000003198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/06/2024] [Indexed: 03/13/2024]
Abstract
ABSTRACT Chronic pain remains poorly managed. The integration of immersive technologies (ie, virtual reality [VR]) with neuroscience-based principles may provide effective pain treatment by targeting cognitive and affective neural processes that maintain pain and therefore potentially changing neurobiological circuits associated with pain chronification and amplification. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (waitlist control; n = 30) in a 2-arm randomized clinical trial ( NCT04468074) . We also conducted pre-treatment and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared with the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs pre-treatment, with effects persisting at 2-week follow-up. These improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved by VRNT, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with increases in dorsomedial prefrontal functional connectivity with the superior somatomotor, anterior prefrontal and visual cortices, and decreased white matter fractional anisotropy in the corpus callosum adjacent to the anterior cingulate, relative to the control condition. Thus, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly through changes in somatosensory and prefrontal brain networks.
Collapse
Affiliation(s)
- Marta Čeko
- Institute of Cognitive Science, University of Colorado, Boulder, CO, United States
| | | | - Lynn Webster
- U.S. Center for Policy, Scientific Affairs, Dr. Vince Clinical Research, Salt Lake City, UT, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Mark A Lumley
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
4
|
Ravichandar R, Gadelkarim F, Muthaiah R, Glynos N, Murlanova K, Rai NK, Saraswat D, Polanco JJ, Dutta R, Pal D, Sim FJ. Dysregulated Cholinergic Signaling Inhibits Oligodendrocyte Maturation Following Demyelination. J Neurosci 2024; 44:e0051242024. [PMID: 38749703 PMCID: PMC11236584 DOI: 10.1523/jneurosci.0051-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.
Collapse
Affiliation(s)
- Roopa Ravichandar
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Farah Gadelkarim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Rupadevi Muthaiah
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nicolas Glynos
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kateryna Murlanova
- Department of Physiology and Biophysics, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nagendra K Rai
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Jessie J Polanco
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fraser J Sim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
5
|
Silva-Passadouro B, Tamasauskas A, Khoja O, Casson AJ, Delis I, Brown C, Sivan M. A systematic review of quantitative EEG findings in Fibromyalgia, Chronic Fatigue Syndrome and Long COVID. Clin Neurophysiol 2024; 163:209-222. [PMID: 38772083 DOI: 10.1016/j.clinph.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Fibromyalgia Syndrome (FMS), Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID (LC) are similar multisymptom clinical syndromes but with difference in dominant symptoms in each individual. There is existing and emerging literature on possible functional alterations of the central nervous system in these conditions. This review aims to synthesise and appraise the literature on resting-state quantitative EEG (qEEG) in FMS, ME/CFS and LC, drawing on previous research on FMS and ME/CFS to help understand neuropathophysiology of the new condition LC. A systematic search of MEDLINE, Embase, CINHAL, PsycINFO and Web of Science databases for articles published between December 1994 and September 2023 was performed. Out of the initial 2510 studies identified, 17 articles were retrieved that met all the predetermined selection criteria, particularly of assessing qEEG changes in one of the three conditions compared to healthy controls. All studies scored moderate to high quality on the Newcastle-Ottawa scale. There was a general trend for decreased low-frequency EEG band activity (delta, theta, and alpha) and increased high-frequency EEG beta activity in FMS, differing to that found in ME/CFS. The limited LC studies included in this review focused mainly on cognitive impairments and showed mixed findings not consistent with patterns observed in FMS and ME/CFS. Our findings suggest different patterns of qEEG brainwave activity in FMS and ME/CFS. Further research is required to explore whether there are phenotypes within LC that have EEG signatures similar to FMS or ME/CFS. This could inform identification of reliable diagnostic markers and possible targets for neuromodulation therapies tailored to each clinical syndrome.
Collapse
Affiliation(s)
- Bárbara Silva-Passadouro
- Leeds Institute of Rheumatology and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Arnas Tamasauskas
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Omar Khoja
- Leeds Institute of Rheumatology and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Alexander J Casson
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
| | - Ioannis Delis
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christopher Brown
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Manoj Sivan
- Leeds Institute of Rheumatology and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK; National Demonstration Centre in Rehabilitation Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
6
|
Čeko M, Baeuerle T, Webster L, Wager TD, Lumley MA. The Effects of Virtual Reality Neuroscience-based Therapy on Clinical and Neuroimaging Outcomes in Patients with Chronic Back Pain: A Randomized Clinical Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.24.23293109. [PMID: 37546872 PMCID: PMC10402228 DOI: 10.1101/2023.07.24.23293109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Chronic pain remains poorly managed. The integration of innovative immersive technologies (i.e., virtual reality (VR)) with recent neuroscience-based principles that position the brain as the key organ of chronic pain may provide a more effective pain treatment than traditional behavioral therapies. By targeting cognitive and affective processes that maintain pain and potentially directly changing neurobiological circuits associated with pain chronification and amplification, VR-based pain treatment has the potential for significant and long-lasting pain relief. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (n = 30) in a 2-arm randomized clinical trial ( NCT04468074) . We also conducted pre- and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared to the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs. pre-treatment, with effects persisting at 2-week follow-up. The improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with modest increases in functional connectivity of the somatomotor and default mode networks and decreased white matter fractional anisotropy in the corpus callosum adjacent to anterior cingula, relative to the control condition. This, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly via changes in somatosensory and prefrontal brain networks.
Collapse
|
7
|
Carpenter JM, Brown KA, Veltmaat L, Ludwig HD, Clay KB, Norberg T, Harn DA, Wagner JJ, Filipov NM. Evaluation of delayed LNFPIII treatment initiation protocol on improving long-term behavioral and neuroinflammatory pathology in a mouse model of Gulf War Illness. Brain Behav Immun Health 2022; 26:100553. [DOI: 10.1016/j.bbih.2022.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
8
|
Ferguson S, McCartan R, Browning M, Hahn-Townsend C, Gratkowski A, Morin A, Abdullah L, Ait-Ghezala G, Ojo J, Sullivan K, Mullan M, Crawford F, Mouzon B. Impact of gulf war toxic exposures after mild traumatic brain injury. Acta Neuropathol Commun 2022; 10:147. [PMID: 36258255 PMCID: PMC9580120 DOI: 10.1186/s40478-022-01449-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.
Collapse
Affiliation(s)
- Scott Ferguson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Robyn McCartan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | | | | | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | | | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimberly Sullivan
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St. T4W, Boston, MA, 02118, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
9
|
Iannucci J, Nizamutdinov D, Shapiro LA. Neurogenesis and chronic neurobehavioral outcomes are partially improved by vagus nerve stimulation in a mouse model of Gulf War Illness. Neurotoxicology 2022; 90:205-215. [DOI: 10.1016/j.neuro.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
|
10
|
Cruz-Almeida Y, Coombes S, Febo M. Pain differences in neurite orientation dispersion and density imaging measures among community-dwelling older adults. Exp Gerontol 2021; 154:111520. [PMID: 34418483 PMCID: PMC9091979 DOI: 10.1016/j.exger.2021.111520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023]
Abstract
Neurite orientation dispersion and density imaging (NODDI) is a technique providing more detailed information on the microstructural bases of white matter. Given the previously reported white matter contributions to chronic pain, the present study aims to investigate pain-specific differences in NODDI measures across white matter tracts in a sample of community-dwelling older adults with (n = 29) and without (n = 18) chronic musculoskeletal pain. We further aimed to investigate associations between NODDI measures and clinical and experimental pain measures. As part of the Nepal study, a subset of older adults (>60 years old), underwent multiple laboratory sessions providing self-reported and experimental pain measures and a diffusion weighted neuroimaging sequence. Older adults with chronic musculoskeletal pain had a lower neurite density with less geometric complexity across a number of white matter tracts compared to older pain-free controls (corrected p's < 0.05). Lower neurite density was associated with greater self-reported pain intensity and anatomical pain sites, as well as greater experimental pain sensitivity (p's < 0.05). There were also significant pain-by-sex differences in neurite density and geometric complexity across multiple white matter tracts mainly around the hippocampus (corrected p's < 0.05). Finally, there were no pain differences with respect to extra-cellular water diffusion (corrected p's > 0.05). Our study demonstrates less geometric complexity in neurite density and architecture in chronic musculoskeletal pain, partly in a sex-dependent manner. An increased understanding of neurobiological mechanisms such as those measured by NODDI may contribute to the potential targeting of interventions in our older population suffering from chronic pain.
Collapse
Affiliation(s)
- Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, United States of America; Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, United States of America; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Stephen Coombes
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, United States of America; Department of Applied Kinesiology & Physiology, College of Health & Human Performance, University of Florida, Gainesville, FL, United States of America
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
11
|
Kimono DA. Gastrointestinal problems, mechanisms and possible therapeutic directions in Gulf war illness: a mini review. Mil Med Res 2021; 8:50. [PMID: 34503577 PMCID: PMC8431926 DOI: 10.1186/s40779-021-00341-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
By its nature, Gulf war illness (GWI) is multisymptomatic and affects several organ systems in the body. Along with other symptoms, veterans who suffer from GWI commonly report chronic gastrointestinal issues such as constipation, pain, indigestion, etc. However, until recently, most attention has been focused on neurological disturbances such as cognitive impairments, chronic fatigue, and chronic pain among affected veterans. With such high prevalence of gastrointestinal problems among Gulf war (GW) veterans, it is surprising that there is little research to investigate the mechanisms behind these issues. This review summarizes all the available works on the mechanisms behind gastrointestinal problems in GWI that have been published to date in various databases. Generally, these studies, which were done in rodent models, in vitro and human cohorts propose that an altered microbiome, a reactive enteric nervous system or a leaky gut among other possible mechanisms are the major drivers of gastrointestinal problems reported in GWI. This review aims to draw attention to the gastrointestinal tract as an important player in GWI disease pathology and a potential therapeutic target.
Collapse
|
12
|
Moffet EW, Jones SG, Snyder T, Riedner B, Benca RM, Juergens T. Gulf War veterans exhibit broadband sleep EEG power reductions in regions overlying the frontal lobe. Life Sci 2021; 280:119702. [PMID: 34111462 PMCID: PMC12019881 DOI: 10.1016/j.lfs.2021.119702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
AIMS Nearly a third of U.S. veterans who deployed in support of the 1990-1991 Persian Gulf War are affected by Gulf War illness (GWI). Here we aimed to characterize whether subjective sleep complaints in GWI veterans are associated with objective sleep EEG disturbances relative to healthy veterans and controls; and whether Gulf War veterans show alterations in neural activity during sleep that differentiate them from healthy subjects. MAIN METHODS We used high-density EEG (HDEEG) to assess regional patterns of rapid eye movement (REM) sleep and non-REM (NREM) sleep between three groups: Gulf War male veterans with fatigue and GWI, Gulf War male veterans without fatigue or GWI, and control males. The groups were matched relative to age, sex and obstructive sleep apnea. Topographic comparisons of nocturnal NREM and REM sleep were made between groups for all frequency bands. KEY FINDINGS Topographic analysis revealed a broadband reduction in EEG power in a circumscribed region overlying the frontal lobe in both groups of Gulf War veterans, regardless of GWI and fatigue. This frontal reduction in neural activity was present, to some extent, across all frequency bands in NREM and REM sleep. SIGNIFICANCE Given that our findings were observed in all Gulf War veterans, it appears unlikely that frontal sleep HDEEG power reductions prove wholly responsible for fatigue symptoms. These results provide avenues for research which may someday contribute to improved clinical care of formerly deployed veterans of the Persian Gulf War.
Collapse
Affiliation(s)
- Eric W Moffet
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Stephanie G Jones
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Theodore Snyder
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Brady Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Ruth M Benca
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States; Department of Psychiatry and Human Behavior, University of California, Irvine, CA, United States
| | - Timothy Juergens
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States; Department of Psychiatry, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| |
Collapse
|
13
|
Lindheimer JB, Stegner AJ, Van Riper SM, Ninneman JV, Ellingson LD, Cook DB. Nociceptive stress interferes with neural processing of cognitive stimuli in Gulf War Veterans with chronic musculoskeletal pain. Life Sci 2021; 279:119653. [PMID: 34051215 PMCID: PMC8243383 DOI: 10.1016/j.lfs.2021.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
AIMS Disrupted cognition and chronic musculoskeletal pain (CMP) are prevalent experiences among Gulf War Veterans (GWV). A negative association between CMP and cognition (i.e., chronic pain-related cognitive interference) has been observed in some chronic pain populations but has not been evaluated in GWV. Additional research suggests that disrupted cognition in GWV with CMP may be exacerbated by stressing the nociceptive system. Therefore, we compared cognitive performance and related neural activity between CMP and healthy control (CO) GWV in the absence and presence of experimental pain. MAIN METHODS During functional magnetic resonance imaging (fMRI), Veterans (CMP = 29; CO = 27) completed cognitive testing via congruent and incongruent conditions of a modified Stroop task (Stroop-only). A random subset (CMP = 13; CO = 13) also completed cognitive testing with experimental pain (Pain+Stroop). Yuen's modified t-test and robust mixed-model analysis of variance (ANOVA) models were used for analyzing cognitive performance data. Independent t-tests and repeated-measures ANOVA models were employed for fMRI data with thresholding for multiple-comparisons (p < 0.005) and cluster size (> 320 mm3). KEY FINDINGS Functional MRI analysis revealed significant between-group differences for the incongruent but not congruent-Stroop run. Neither correct responses nor reaction time differed between groups in either Stroop condition (all p ≥ 0.21). Significant group (CMP, CO) by run (Stroop-only, Pain+Stroop) interactions revealed greater neural responses in CMP Veterans during Pain+Stroop runs. No significant interactions were observed for correct responses or reaction time (p ≥ 0.31). SIGNIFICANCE GWV with CMP require a greater amount of neural resources to sustain cognitive performance during nociceptive stress.
Collapse
Affiliation(s)
- Jacob B Lindheimer
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Aaron J Stegner
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie M Van Riper
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacob V Ninneman
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura D Ellingson
- Division of Health and Exercise Science, Western Oregon University, Monmouth, OR, USA
| | - Dane B Cook
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Addiego FM, Zajur K, Knack S, Jamieson J, Rayhan RU, Baraniuk JN. Subcortical brain segment volumes in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Life Sci 2021; 282:119749. [PMID: 34214570 DOI: 10.1016/j.lfs.2021.119749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023]
Abstract
AIMS There is controversy about brain volumes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Subcortical regions were assessed because of significant differences in blood oxygenation level dependent signals in the midbrain between these diseases. MATERIALS AND METHOD Magnetization-prepared rapid acquisition with gradient echo (MPRAGE) images from 3 Tesla structural magnetic resonance imaging scans from sedentary control (n = 34), CFS (n = 38) and GWI (n = 90) subjects were segmented in FreeSurfer. Segmented subcortical volumes were regressed against intracranial volume and age, then iteratively analyzed by multivariate general linear modeling with disease status, gender and demographics as independent co-variates. KEY FINDINGS The optimal model for all subjects used disease status and gender as fixed factors with independent variables eliminated after iteration. Volumes of anterior and midanterior corpus callosum were significantly larger in GWI than CFS. Gender was a significant variable for many segment volumes, and so female and male subjects were analyzed separately. CFS females had smaller left putamen, right caudate and left cerebellum white matter than control women. CFS males had larger left hippocampus than GWI males. Orthostatic status and posttraumatic distress syndrome were not significant covariates. SIGNIFICANCE CFS and GWI were appropriate "illness controls" for each other. The different patterns of adjusted segment volumes suggested that sexual dimorphisms contributed to pathological changes. Previous volumetric studies may need to be reevaluated to account for gender differences. The findings are framed by comparison to the spectrum of magnetic resonance imaging outcomes in the literature.
Collapse
Affiliation(s)
| | - Kristina Zajur
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - Sarah Knack
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - Jessie Jamieson
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - Rakib U Rayhan
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - James N Baraniuk
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA.
| |
Collapse
|
15
|
Nkiliza A, Joshi U, Evans JE, Ait-Ghezala G, Parks M, Crawford F, Mullan M, Abdullah L. Adaptive Immune Responses Associated with the Central Nervous System Pathology of Gulf War Illness. Neurosci Insights 2021; 16:26331055211018458. [PMID: 34104887 PMCID: PMC8155779 DOI: 10.1177/26331055211018458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Gulf War Illness is a multisymptomatic condition which affects 30% of veterans
from the 1991 Gulf War. While there is evidence for a role of peripheral
cellular and humoral adaptive immune responses in Gulf War Illness, a potential
role of the adaptive immune system in the central nervous system pathology of
this condition remains unknown. Furthermore, many of the clinical features of
Gulf War Illness resembles those of autoimmune diseases, but the biological
processes are likely different as the etiology of Gulf War Illness is linked to
hazardous chemical exposures specific to the Gulf War theatre. This review
discusses Gulf War chemical–induced maladaptive immune responses and a potential
role of cellular and humoral immune responses that may be relevant to the
central nervous system symptoms and pathology of Gulf War Illness. The
discussion may stimulate investigations into adaptive immunity for developing
novel therapies for Gulf War Illness.
Collapse
|
16
|
Wang X, Ali N, Lin CLG. Emerging role of glutamate in the pathophysiology and therapeutics of Gulf War illness. Life Sci 2021; 280:119609. [PMID: 33991547 DOI: 10.1016/j.lfs.2021.119609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Gulf War illness (GWI) is a chronic and multi-symptomatic disorder affecting veterans who served in the Gulf War. The commonly reported symptoms in GWI veterans include mood problems, cognitive impairment, muscle and joint pain, migraine/headache, chronic fatigue, gastrointestinal complaints, skin rashes, and respiratory problems. Neuroimaging studies have revealed significant brain structure alterations in GWI veterans, including subcortical atrophy, decreased volume of the hippocampus, reduced total grey and white matter, and increased brain white matter axial diffusivity. These brain changes may contribute to or increase the severities of the GWI-related symptoms. Epidemiological studies have revealed that neurotoxic exposures and stress may be significant contributors to the development of GWI. However, the mechanism underlying how the exposure and stress could contribute to the multi-symptomatic disorder of GWI remains unclear. We and others have demonstrated that rodent models exposed to GW-related agents and stress exhibited higher extracellular glutamate levels, as well as impaired structure and function of glutamatergic synapses. Restoration of the glutamatergic synapses ameliorated the GWI-related pathological and behavioral deficits. Moreover, recent studies showed that a low-glutamate diet reduced multiple symptoms in GWI veterans, suggesting an important role of the glutamatergic system in GWI. Currently, growing evidence has indicated that abnormal glutamate neurotransmission may contribute to the GWI symptoms. This review summarizes the potential roles of glutamate dyshomeostasis and dysfunction of the glutamatergic system in linking the initial cause to the multi-symptomatic outcomes in GWI and suggests the glutamatergic system as a therapeutic target for GWI.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Noor Ali
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Bigelow A, Fausone CA. Service Impact on Veteran Health: Case Examples From Recent Eras. J Nurse Pract 2021. [DOI: 10.1016/j.nurpra.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Zhang F, Li F, Yang H, Jin Y, Lai W, Roberts N, Jia Z, Gong Q. Effect of experimental orthodontic pain on gray and white matter functional connectivity. CNS Neurosci Ther 2021; 27:439-448. [PMID: 33369178 PMCID: PMC7941220 DOI: 10.1111/cns.13557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
AIM Over 90% of patients receiving orthodontic treatment experience clinically significant pain. However, little is known about the neural correlates of orthodontic pain and which has therefore been investigated in the present study of healthy subjects using an experimental paradigm. METHODS Resting-state functional magnetic resonance imaging (rsfMRI) was performed in 44 healthy subjects 24 hours after an elastic separator had been introduced between the first and the second molar on the right side of the lower jaw and in 49 age- and sex-matched healthy control (HC) subjects. A K-means clustering algorithm was used to identify functional gray matter (GM) and white matter (WM) resting-state networks, and differences in functional connectivity (FC) of GM and WM between the group of subjects with experimental orthodontic pain and HC were analyzed. RESULTS Twelve GM networks and 14 WM networks with high stability were identified. Compared with HC, subjects with orthodontic pain showed significantly increased FC between WM12, which includes posterior thalamic radiation and posterior cingulum bundle, and most GM networks. Besides, the WM12 network showed significant differences in FC with three GM-WM loops involving the default mode network, dorsal attention network, and salience network, respectively. CONCLUSIONS Orthodontic pain is shown to produce an alteration of FC in networks relevant to pain processing, which may be mediated by a WM network relevant to emotion perception and cognitive processing.
Collapse
Affiliation(s)
- Feifei Zhang
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Fei Li
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Hong Yang
- State Key Laboratory of Oral DiseaseDepartment of OrthodonticsWest China School of Stomatology, Sichuan UniversityChengdu
| | - Yu Jin
- State Key Laboratory of Oral DiseaseDepartment of OrthodonticsWest China School of Stomatology, Sichuan UniversityChengdu
| | - Wenli Lai
- State Key Laboratory of Oral DiseaseDepartment of OrthodonticsWest China School of Stomatology, Sichuan UniversityChengdu
| | - Neil Roberts
- School of Clinical SciencesUniversity of EdinburghEdinburghUK
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Department of Nuclear MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| |
Collapse
|
19
|
Lei K, Kunnel A, Metzger-Smith V, Golshan S, Javors J, Wei J, Lee R, Vaninetti M, Rutledge T, Leung A. Diminished corticomotor excitability in Gulf War Illness related chronic pain symptoms; evidence from TMS study. Sci Rep 2020; 10:18520. [PMID: 33116195 PMCID: PMC7595115 DOI: 10.1038/s41598-020-75006-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Chronic diffuse body pain is unequivocally highly prevalent in Veterans who served in the 1990-91 Persian Gulf War and diagnosed with Gulf War Illness (GWI). Diminished motor cortical excitability, as a measurement of increased resting motor threshold (RMT) with transcranial magnetic stimulation (TMS), is known to be associated with chronic pain conditions. This study compared RMT in Veterans with GWI related diffuse body pain including headache, muscle and joint pain with their military counterparts without GWI related diffuse body pain. Single pulse TMS was administered over the left motor cortex, using anatomical scans of each subject to guide the TMS coil, starting at 25% of maximum stimulator output (MSO) and increasing in steps of 2% until a motor response with a 50 µV peak to peak amplitude, defined as the RMT, was evoked at the contralateral flexor pollicis brevis muscle. RMT was then analyzed using Repeated Measures Analysis of Variance (RM-ANOVA). Veterans with GWI related chronic headaches and body pain (N = 20, all males) had a significantly (P < 0.001) higher average RMT (% ± SD) of 77.2% ± 16.7% compared to age and gender matched military controls (N = 20, all males), whose average was 55.6% ± 8.8%. Veterans with GWI related diffuse body pain demonstrated a state of diminished corticomotor excitability, suggesting a maladaptive supraspinal pain modulatory state. The impact of this observed supraspinal functional impairment on other GWI related symptoms and the potential use of TMS in rectifying this abnormality and providing relief for pain and co-morbid symptoms requires further investigation.Trial registration: This study was registered on January 25, 2017, on ClinicalTrials.gov with the identifier: NCT03030794. Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT03030794 .
Collapse
Affiliation(s)
- Karen Lei
- Veterans Medical Research Foundation, 3350 La Jolla Village Dr (151A), Building 13, San Diego, CA, 92161, USA.,College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA, 95757, USA
| | - Alphonsa Kunnel
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Valerie Metzger-Smith
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Shahrokh Golshan
- Veterans Medical Research Foundation, 3350 La Jolla Village Dr (151A), Building 13, San Diego, CA, 92161, USA
| | - Jennifer Javors
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Jennie Wei
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Roland Lee
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Michael Vaninetti
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Thomas Rutledge
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Albert Leung
- Veterans Medical Research Foundation, 3350 La Jolla Village Dr (151A), Building 13, San Diego, CA, 92161, USA. .,Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA. .,School of Medicine, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Dickey B, Madhu LN, Shetty AK. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol Ther 2020; 220:107716. [PMID: 33164782 DOI: 10.1016/j.pharmthera.2020.107716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Gulf War Illness (GWI), a chronic multisymptom health problem, afflicts ~30% of veterans served in the first GW. Impaired brain function is among the most significant symptoms of GWI, which is typified by persistent cognitive and mood impairments, concentration problems, headaches, chronic fatigue, and musculoskeletal pain. This review aims to discuss findings from animal prototypes and veterans with GWI on mechanisms underlying its pathophysiology and emerging therapeutic strategies for alleviating brain dysfunction in GWI. Animal model studies have linked brain impairments to incessantly elevated oxidative stress, chronic inflammation, inhibitory interneuron loss, altered lipid metabolism and peroxisomes, mitochondrial dysfunction, modified expression of genes relevant to cognitive function, and waned hippocampal neurogenesis. Furthermore, the involvement of systemic alterations such as the increased intensity of reactive oxygen species and proinflammatory cytokines in the blood, transformed gut microbiome, and activation of the adaptive immune response have received consideration. Investigations in veterans have suggested that brain dysfunction in GWI is linked to chronic activation of the executive control network, impaired functional connectivity, altered blood flow, persistent inflammation, and changes in miRNA levels. Lack of protective alleles from Class II HLA genes, the altered concentration of phospholipid species and proinflammatory factors in the circulating blood have also been suggested as other aiding factors. While some drugs or combination therapies have shown promise for alleviating symptoms in clinical trials, larger double-blind, placebo-controlled trials are needed to validate such findings. Based on improvements seen in animal models of GWI, several antioxidants and anti-inflammatory compounds are currently being tested in clinical trials. However, reliable blood biomarkers that facilitate an appropriate screening of veterans for brain pathology need to be discovered. A liquid biopsy approach involving analysis of brain-derived extracellular vesicles in the blood appears efficient for discerning the extent of neuropathology both before and during clinical trials.
Collapse
Affiliation(s)
- Brandon Dickey
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA; Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA.
| |
Collapse
|
21
|
Kimono D, Bose D, Seth RK, Mondal A, Saha P, Janulewicz P, Sullivan K, Lasley S, Horner R, Klimas N, Chatterjee S. Host Akkermansia muciniphila Abundance Correlates With Gulf War Illness Symptom Persistence via NLRP3-Mediated Neuroinflammation and Decreased Brain-Derived Neurotrophic Factor. Neurosci Insights 2020; 15:2633105520942480. [PMID: 32832901 PMCID: PMC7440889 DOI: 10.1177/2633105520942480] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders are commonly reported among veterans who returned from the Gulf war. Veterans who suffer from Gulf War illness (GWI) complain of continued symptom persistence that includes neurological disorders, muscle weakness, headaches, and memory loss, that developed during or shortly after the war. Our recent research showed that chemical exposure associated microbial dysbiosis accompanied by a leaky gut connected the pathologies in the intestine, liver, and brain. However, the mechanisms that caused the symptoms to persist even 30 years after the war remained elusive to investigators. In this study, we used a rodent model of GWI to investigate the persistence of microbiome alterations, resultant chronic inflammation, and its effect on neurotrophic and synaptic plasticity marker BDNF. The results showed that exposure to GW chemicals (the pesticide permethrin and prophylactic drug pyridostigmine bromide) resulted in persistent pathology characterized by the low relative abundance of the probiotic bacteria Akkermansia muciniphila in the gut, which correlated with high circulatory HMGB1 levels, blood-brain barrier dysfunction, neuroinflammation and lowered neurotrophin BDNF levels. Mechanistically, we used mice lacking the NLRP3 gene to investigate this inflammasome's role in observed pathology. These mice had significantly decreased inflammation and a subsequent increase in BDNF in the frontal cortex. This suggests that a persistently low species abundance of Akkermansia muciniphila and associated chronic inflammation due to inflammasome activation might be playing a significant role in contributing to chronic neurological problems in GWI. A therapeutic approach with various small molecules that can target both the restoration of a healthy microbiome and decreasing inflammasome activation might have better outcomes in treating GWI symptom persistence.
Collapse
Affiliation(s)
- Diana Kimono
- Environmental Health and Disease Laboratory, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Ayan Mondal
- Environmental Health and Disease Laboratory, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Patricia Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Stephen Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Ronnie Horner
- Department of Health Services Policy and Management, University of South Carolina, Columbia, SC, USA
| | - Nancy Klimas
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
22
|
Zhang Y, Vakhtin AA, Jennings JS, Massaband P, Wintermark M, Craig PL, Ashford JW, Clark JD, Furst AJ. Diffusion tensor tractography of brainstem fibers and its application in pain. PLoS One 2020; 15:e0213952. [PMID: 32069284 PMCID: PMC7028272 DOI: 10.1371/journal.pone.0213952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Evaluation of brainstem pathways with diffusion tensor imaging (DTI) and tractography may provide insights into pathophysiologies associated with dysfunction of key brainstem circuits. However, identification of these tracts has been elusive, with relatively few in vivo human studies to date. In this paper we proposed an automated approach for reconstructing nine brainstem fiber trajectories of pathways that might be involved in pain modulation. We first performed native-space manual tractography of these fiber tracts in a small normative cohort of participants and confirmed the anatomical precision of the results using existing anatomical literature. Second, region-of-interest pairs were manually defined at each extracted fiber's termini and nonlinearly warped to a standard anatomical brain template to create an atlas of the region-of-interest pairs. The resulting atlas was then transformed non-linearly into the native space of 17 veteran patients' brains for automated brainstem tractography. Lastly, we assessed the relationships between the integrity levels of the obtained fiber bundles and pain severity levels. Fractional anisotropy (FA) measures derived using automated tractography reflected the respective tracts' FA levels obtained via manual tractography. A significant inverse relationship between FA and pain levels was detected within the automatically derived dorsal and medial longitudinal fasciculi of the brainstem. This study demonstrates the feasibility of DTI in exploring brainstem circuitries involved in pain processing. In this context, the described automated approach is a viable alternative to the time-consuming manual tractography. The physiological and functional relevance of the measures derived from automated tractography is evidenced by their relationships with individual pain severities.
Collapse
Affiliation(s)
- Yu Zhang
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Andrei A. Vakhtin
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Jennifer S. Jennings
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Payam Massaband
- Radiology, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Max Wintermark
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Neuroradiology at Stanford University, Stanford, California, United States of America
| | - Patricia L. Craig
- Radiology, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - J. Wesson Ashford
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - J. David Clark
- Pain Clinic, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, United States of America
| | - Ansgar J. Furst
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Neurology and Neurological Sciences, Stanford University, Stanford, California, United States of America
| |
Collapse
|
23
|
Shetty AK, Attaluri S, Kodali M, Shuai B, Shetty GA, Upadhya D, Hattiangady B, Madhu LN, Upadhya R, Bates A, Rao X. Monosodium luminol reinstates redox homeostasis, improves cognition, mood and neurogenesis, and alleviates neuro- and systemic inflammation in a model of Gulf War Illness. Redox Biol 2019; 28:101389. [PMID: 31778892 PMCID: PMC6888767 DOI: 10.1016/j.redox.2019.101389] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Enduring brain dysfunction is amid the highly manifested symptoms in veterans with Gulf War Illness (GWI). Animal studies have established that lasting brain dysfunction in GWI is concomitant with augmented oxidative stress, inflammation, and declined neurogenesis in the brain, and systemic inflammation. We hypothesize that drugs capable of restoring redox homeostasis in GWI will improve cognitive and mood function with modulation of neuroinflammation and neurogenesis. We examined the efficacy of monosodium luminol-GVT (MSL), a drug that promotes redox homeostasis, for improving cognitive and mood function in GWI rats. Young rats were exposed to GWI-related chemicals and moderate restraint stress for four weeks. Four months later, GWI rats received different doses of MSL or vehicle for eight weeks. Behavioral analyses in the last three weeks of treatment revealed that GWI rats receiving higher doses of MSL displayed better cognitive and mood function associated with reinstatement of redox homeostasis. Such restoration was evident from the normalized expression of multiple genes encoding proteins involved in combating oxidative stress in the brain and the return of several oxidative stress markers to control levels in the brain and the circulating blood. Sustained redox homeostasis by MSL also resulted in antiinflammatory and pro-neurogenic effects, which were apparent from reduced densities of hypertrophied astrocytes and activated microglia, and increased neurogenesis with augmented neural stem cell proliferation. Moreover, MSL treatment normalized the concentration of multiple proinflammatory markers in the circulating blood. Thus, MSL treatment reinstated redox homeostasis in an animal model of GWI, which resulted in alleviation of both brain and systemic inflammation, improved neurogenesis, and better cognitive and mood function. Brain dysfunction in an animal model of Gulf War Illness is linked with persistently elevated oxidative stress. Monosodium Luminol treatment reinstated redox homeostasis in a model of Gulf War Illness. Reinstatement of redox balance improved cognitive and mood function. Restoration of redox balance modulated reactive astrocytes and activated microglia in the brain. Return of redox homeostasis enhanced neurogenesis and suppressed systemic inflammation.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Geetha A Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Dinesh Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Adrian Bates
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| |
Collapse
|
24
|
Lindheimer JB, Stegner AJ, Ellingson-Sayen LD, Van Riper SM, Dougherty RJ, Falvo MJ, Cook DB. Influence of pain anticipation on brain activity and pain perception in Gulf War Veterans with chronic musculoskeletal pain. Psychophysiology 2019; 56:e13452. [PMID: 31429944 DOI: 10.1111/psyp.13452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Anticipation of a painful experience can influence brain activity and increase sensitivity to experimental somatosensory stimuli in healthy adults, but this response is poorly understood among individuals with chronic musculoskeletal pain (CMP). Studies of brain and perceptual responses to somatosensory stimuli are used to make inferences about central nervous system dysfunction as a potential mechanism of symptoms. As such, we sought to (a) determine the influence of pain anticipation on pain-relevant brain regions and pain perception, and (b) characterize potential differences in these responses between Gulf War Veterans with CMP and matched healthy control (CO) Veterans. CMP (N = 30) and CO Veterans (N = 31) were randomized to conditions designed to generate expectations that either painful (pain) or nonpainful (no pain) stimuli would be administered. Brain responses to five nonpainful thermal stimuli were measured during fMRI, and each stimulus was rated for pain intensity and unpleasantness. In the pain condition, an incremental linear decrease in activity across stimuli was observed in the posterior cingulate cortex, cingulate cortex, and middle temporal gyrus. Further, in the pain condition, differential responses were observed between CMP and CO Veterans in the middle temporal gyrus. These findings indicate that brain responses to nonpainful thermal stimuli in Veterans with CMP are sensitive to pain anticipation, and we recommend accounting for the influence of pain anticipation in future investigations of central nervous system dysfunction in CMP.
Collapse
Affiliation(s)
- Jacob B Lindheimer
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aaron J Stegner
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Stephanie M Van Riper
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan J Dougherty
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael J Falvo
- Department of Veterans Affairs, NJ Health Care System, War Related Illness and Injury Study Center, East Orange, New Jersey.,New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Dane B Cook
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
25
|
Belgrad J, Dutta DJ, Bromley-Coolidge S, Kelly KA, Michalovicz LT, Sullivan KA, O'Callaghan JP, Fields RD. Oligodendrocyte involvement in Gulf War Illness. Glia 2019; 67:2107-2124. [PMID: 31339622 PMCID: PMC6899710 DOI: 10.1002/glia.23668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Low level sarin nerve gas and other anti‐cholinesterase agents have been implicated in Gulf War illness (GWI), a chronic multi‐symptom disorder characterized by cognitive, pain and fatigue symptoms that continues to afflict roughly 32% of veterans from the 1990–1991 Gulf War. How disrupting cholinergic synaptic transmission could produce chronic illness is unclear, but recent research indicates that acetylcholine also mediates communication between axons and oligodendrocytes. Here we investigated the hypothesis that oligodendrocyte development is disrupted by Gulf War agents, by experiments using the sarin‐surrogate acetylcholinesterase inhibitor, diisopropyl fluorophosphate (DFP). The effects of corticosterone, which is used in some GWI animal models, were also investigated. The data show that DFP decreased both the number of mature and dividing oligodendrocytes in the rat prefrontal cortex (PFC), but differences were found between PFC and corpus callosum. The differences seen between the PFC and corpus callosum likely reflect the higher percentage of proliferating oligodendroglia in the adult PFC. In cell culture, DFP also decreased oligodendrocyte survival through a non‐cholinergic mechanism. Corticosterone promoted maturation of oligodendrocytes, and when used in combination with DFP it had protective effects by increasing the pool of mature oligodendrocytes and decreasing proliferation. Cell culture studies indicate direct effects of both DFP and corticosterone on OPCs, and by comparison with in vivo results, we conclude that in addition to direct effects, systemic effects and interruption of neuron–glia interactions contribute to the detrimental effects of GW agents on oligodendrocytes. Our results demonstrate that oligodendrocytes are an important component of the pathophysiology of GWI.
Collapse
Affiliation(s)
- Jillian Belgrad
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Dipankar J Dutta
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Samantha Bromley-Coolidge
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Kimberly A Kelly
- Centers for Disease Control and Prevention, Morgantown, West Virginia
| | | | - Kimberly A Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | | | - Richard Douglas Fields
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
26
|
Rayhan RU, Washington SD, Garner R, Zajur K, Martinez Addiego F, VanMeter JW, Baraniuk JN. Exercise challenge alters Default Mode Network dynamics in Gulf War Illness. BMC Neurosci 2019; 20:7. [PMID: 30791869 PMCID: PMC6385399 DOI: 10.1186/s12868-019-0488-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War and has no known cause. Everyday symptoms include pain, fatigue, migraines, and dyscognition. A striking syndromic feature is post-exertional malaise (PEM). This is recognized as an exacerbation of everyday symptoms following a physically stressful or cognitively demanding activity. The underlying mechanism of PEM is unknown. We previously reported a novel paradigm that possibly captured evidence of PEM by utilizing fMRI scans taken before and after sub-maximal exercises. We hypothesized that A) exercise would be a sufficient physically stressful activity to induce PEM and B) Comparison of brain activity before and after exercise would provide evidence of PEM's effect on cognition. We reported two-exercise induced GWI phenotypes with distinct changes in brain activation patterns during the completion of a 2-back working memory task (also known as two-back > zero-back). RESULTS Here we report unanticipated findings from the reverse contrast (zero-back > two-back), which allowed for the identification of task-related deactivation patterns. Following exercise, patients developed a significant increase in deactivation patterns within the Default Mode Network (DMN) that was not seen in controls. The DMN is comprised of regions that are consistently down regulated during external goal-directed activities and is often altered within many neurological disease states. CONCLUSIONS Exercise-induced alterations within the DMN provides novel evidence of GWI pathophysiology. More broadly, results suggest that task-related deactivation patterns may have biomarker potential in Gulf War Illness.
Collapse
Affiliation(s)
- Rakib U Rayhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Adams Building Rm 2420, 520 W Street NW, Washington, DC, 20059, USA. .,Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA.
| | - Stuart D Washington
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Richard Garner
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Kristina Zajur
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Florencia Martinez Addiego
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - John W VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, 3900 Reservoir Road Suite LM14, Washington, DC, 20007, USA
| | - James N Baraniuk
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| |
Collapse
|
27
|
Nizamutdinov D, Mukherjee S, Deng C, Stauss HM, Shapiro LA. Gulf War agents pyridostigmine bromide and permethrin cause hypersensitive nociception that is restored after vagus nerve stimulation. Neurotoxicology 2018; 69:93-96. [DOI: 10.1016/j.neuro.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 01/30/2023]
|
28
|
The Multiple Hit Hypothesis for Gulf War Illness: Self-Reported Chemical/Biological Weapons Exposure and Mild Traumatic Brain Injury. Brain Sci 2018; 8:brainsci8110198. [PMID: 30428552 PMCID: PMC6266762 DOI: 10.3390/brainsci8110198] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
The Gulf War Illness Consortium (GWIC) was designed to identify objective biomarkers of Gulf War Illness (GWI) in 1991 Gulf War veterans. The symptoms of GWI include fatigue, pain, cognitive problems, gastrointestinal, respiratory, and skin problems. Neurotoxicant exposures during deployment, such as pesticides, sarin, and pyridostigmine bromide pills have been identified as contributors to GWI. We have also found an association between mild traumatic brain injury (mTBI) and increased rates of GWI. However, the combined impact of these physical and chemical exposures has not yet been explored in GWI. The objective of this study was to examine both self-reported mTBI and exposure to chemical/biological weapons (CBW) as a multiple or two hit model for increased risk of GWI and other chronic health conditions. The study population included 125 Gulf War (GW) veterans from the Boston GWIC. Exposure to CBW was reported in 47.2% of the study population, and 35.2% reported sustaining a mTBI during the war. Results confirmed that those with both exposures (mTBI and CBW) had higher rates of comorbid chronic health conditions while rates of GWI were equivalent for mTBI and CBW or mTBI alone. The timing of exposure to mTBI was found to be strikingly different between those with GWI and those without it. Correspondingly, 42.3% of GWI cases reported experiencing a mTBI during military service while none of the controls did (p = 0.0002). Rates of mTBI before and after the war did not differ between the cases and controls. In addition, 54% of cases compared to 14.3% of controls (p = <0.001) reported being exposed to CBW during military service. The current study examined the relation of the separate and combined effects of exposure to mTBI and CBW in 1991 GW veterans. The findings from this study suggest that both exposure to mTBI and CBW are associated with the development of GWI and multiple chronic health conditions and that combined exposure appears to lead to higher risk of chronic health effects.
Collapse
|
29
|
Kodali M, Hattiangady B, Shetty G, Bates A, Shuai B, Shetty A. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav Immun 2018; 69:499-514. [PMID: 29454881 PMCID: PMC7023905 DOI: 10.1016/j.bbi.2018.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Diminished cognitive and mood function are among the most conspicuous symptoms of Gulf War Illness (GWI). Our previous studies in a rat model of GWI have demonstrated that persistent cognitive and mood impairments are associated with substantially declined neurogenesis, chronic low-grade inflammation, increased oxidative stress and mitochondrial dysfunction in the hippocampus. We tested the efficacy of curcumin (CUR) to maintain better cognitive and mood function in a rat model of GWI because of its neurogenic, antiinflammatory, antioxidant, and memory and mood enhancing properties. Male rats were exposed daily to low doses of GWI-related chemicals, pyridostigmine bromide, N,N-diethyl-m-toluamide (DEET) and permethrin, and 5-minutes of restraint stress for 28 days. Animals were next randomly assigned to two groups, which received daily CUR or vehicle treatment for 30 days. Animals also received 5'-bromodeoxyuridine during the last seven days of treatment for analysis of neurogenesis. Behavioral studies through object location, novel object recognition and novelty suppressed feeding tests performed sixty days after treatment revealed better cognitive and mood function in CUR treated GWI rats. These rats also displayed enhanced neurogenesis and diminished inflammation typified by reduced astrocyte hypertrophy and activated microglia in the hippocampus. Additional studies showed that CUR treatment to GWI rats enhanced the expression of antioxidant genes and normalized the expression of multiple genes related to mitochondrial respiration. Thus, CUR therapy is efficacious for maintaining better memory and mood function in a model of GWI. Enhanced neurogenesis, restrained inflammation and oxidative stress with normalized mitochondrial respiration may underlie better memory and mood function mediated by CUR treatment.
Collapse
Affiliation(s)
- M. Kodali
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Hattiangady
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - G.A. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A. Bates
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Shuai
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A.K. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA,Corresponding author at: Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843, USA. (A.K. Shetty)
| |
Collapse
|