1
|
Ba F, Wei J, Feng QY, Yu CY, Song MX, Hu S, Xu GY, Zhang HL, Jiang GQ. GluR2 overexpression in ACC glutamatergic neurons alleviates cancer-induced bone pain in rats. Mol Med 2025; 31:130. [PMID: 40197156 PMCID: PMC11974031 DOI: 10.1186/s10020-025-01183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Cancer-induced bone pain (CIBP) is a complex chronic pain with poorly understood mechanisms. The anterior cingulate cortex (ACC) plays a critical role in processing and modulating chronic pain. This study investigates how the GluR2 receptors (calcium impermeable AMPA receptors) in ACC glutamatergic neurons regulate CIBP. METHODS The CIBP models were established by injecting Walker 256 cells into the tibia of SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used as indicators of hyperalgesia. The immunofluorescence staining was employed to detect the expression of c-Fos in ACC and identify the subtypes of co-labeled c-Fos+ neurons. Real-time monitoring of calcium activity in ACC glutamatergic neurons was achieved through the fiber photometry. The excitability of glutamatergic neurons in ACC was modulated using chemicalgenetics and optogenetics techniques. The expression of GluR2 at the mRNA and protein level in ACC were assessed using RT-qPCR and Western blotting. RESULTS There were significant reductions in PWT and PWL of CIBP rats after Walker 256 cell injection. The ACC of CIBP rats showed increased c-Fos expression compared to sham rats, with mainly activated c-Fos co-localized with glutamatergic neurons. Optogenetic or chemogenetic activation of ACC glutamatergic neurons led to increased hyperalgesia in sham rats, while suppression of their activity alleviated hyperalgesia in CIBP rats. Calcium activity in ACC glutamatergic neurons of CIBP rats was increased with suprathreshold stimulation of von Frey filament. Notably, surface GluR2 protein and mRNA were reduced in ACC of CIBP rats. Furthermore, overexpression of GluR2 by AAV-CaMKII-GluR2 injection was decreased c-Fos expression in ACC and alleviated hyperalgesia in CIBP rats. CONCLUSIONS These findings suggest that decreased surface GluR2 receptors in ACC glutamatergic neurons contribute to calcium activity and excessive excitability, thereby inducing CIBP in rats. Conversely, GluR2 overexpression in ACC glutamatergic neurons alleviates CIBP in rats. This study provides a new potential therapeutic approach for targeting the GluR2 receptor to alleviate CIBP for cancer patients.
Collapse
Affiliation(s)
- Futing Ba
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Qi-Yan Feng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Chen-Yang Yu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Meng-Xue Song
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Shufen Hu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Guang-Yin Xu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China.
| |
Collapse
|
2
|
Yin X, Zeng XL, Lin JJ, Xu WQ, Cui KY, Guo XT, Li W, Xu SF. Brain functional changes following electroacupuncture in a mouse model of comorbid pain and depression: A resting-state functional magnetic resonance imaging study. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:159-168. [PMID: 40024869 DOI: 10.1016/j.joim.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/20/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Comorbid pain and depression are common but remain difficult to treat. Electroacupuncture (EA) can effectively improve symptoms of depression and relieve pain, but its neural mechanism remains unclear. Therefore, we used resting-state functional magnetic resonance imaging (rs-fMRI) to detect cerebral changes after initiating a mouse pain model via constriction of the infraorbital nerve (CION) and then treating these animals with EA. METHODS Forty male C57BL/6J mice were divided into 4 groups: control, CION model, EA, and sham acupuncture (without needle insertion). EA was performed on the acupoints Baihui (GV20) and Zusanli (ST36) for 20 min, once a day for 10 consecutive days. The mechanical withdrawal threshold was tested 3 days after the surgery and every 3 days after the intervention. The depressive behavior was evaluated with the tail suspension test, open-field test, elevated plus maze (EPM), sucrose preference test, and marble burying test. The rs-fMRI was used to detect the cerebral changes of the functional connectivity (FC) in the mice following EA treatment. RESULTS Compared with the CION group, the mechanical withdrawal threshold increased in the EA group at the end of the intervention (P < 0.05); the immobility time in tail suspension test decreased (P < 0.05); and the times of the open arm entry and the open arm time in the EPM increased (both P < 0.001). There was no difference in the sucrose preference or marble burying tests (both P > 0.05). The fMRI results showed that EA treatment downregulated the amplitude of low-frequency fluctuations and regional homogeneity values, while these indicators were elevated in brain regions including the amygdala, hippocampus and cerebral cortex in the CION model for comorbid pain and depression. Selecting the amygdala as the seed region, we found that the FC was higher in the CION group than in the control group. Meanwhile, EA treatment was able to decrease the FC between the amygdala and other brain regions including the caudate putamen, thalamus, and parts of the cerebral cortex. CONCLUSION EA can downregulate the abnormal activation of neurons in the amygdala and improve its FC with other brain regions, thus exerting analgesic and antidepressant effects. Please cite this article as: Yin X, Zeng XL, Lin JJ, Xu WQ, Cui KY, Guo XT, Li W, Xu SF. Brain functional changes following electroacupuncture in a mouse model of comorbid pain and depression: a resting-state functional magnetic resonance imaging study. J Integr Med. 2025; 23(2): 159-168.
Collapse
Affiliation(s)
- Xuan Yin
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xiao-Ling Zeng
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jing-Jing Lin
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wen-Qing Xu
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Kai-Yu Cui
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xiu-Tian Guo
- Department of Anorectal Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wei Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Shi-Fen Xu
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
3
|
Wei X, Lai Y, Lan X, Tan Y, Zhang J, Liu J, Chen J, Wang C, Zhou X, Tang Y, Liu D, Zhang J. Uncovering brain functional connectivity disruption patterns of lung cancer-related pain. Brain Imaging Behav 2024; 18:576-587. [PMID: 38316730 DOI: 10.1007/s11682-023-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/07/2024]
Abstract
Pain is a pervasive symptom in lung cancer patients during the onset of the disease. This study aims to investigate the connectivity disruption patterns of the whole-brain functional network in lung cancer patients with cancer pain (CP+). We constructed individual whole-brain, region of interest (ROI)-level functional connectivity (FC) networks for 50 CP+ patients, 34 lung cancer patients without pain-related complaints (CP-), and 31 matched healthy controls (HC). Then, a ROI-based FC analysis was used to determine the disruptions of FC among the three groups. The relationships between aberrant FCs and clinical parameters were also characterized. The ROI-based FC analysis demonstrated that hypo-connectivity was present both in CP+ and CP- patients compared to HC, which were particularly clustered in the somatomotor and ventral attention, frontoparietal control, and default mode modules. Notably, compared to CP- patients, CP+ patients had hyper-connectivity in several brain regions mainly distributed in the somatomotor and visual modules, suggesting these abnormal FC patterns may be significant for cancer pain. Moreover, CP+ patients also showed increased intramodular and intermodular connectivity strength of the functional network, which could be replicated in cancer stage IV and lung adenocarcinoma. Finally, abnormal FCs within the prefrontal cortex and somatomotor cortex were positively correlated with pain intensity and pain duration, respectively. These findings suggested that lung cancer patients with cancer pain had disrupted connectivity in the intrinsic brain functional network, which may be the underlying neuroimaging mechanisms.
Collapse
Affiliation(s)
- Xiaotong Wei
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yong Lai
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
4
|
Vande Vyvere T, De Groote A, De Groef A, Haenen V, Tjalma W, Van Dyck P, Meeus M. Morphological and functional brain changes in chronic cancer-related pain: A systematic review. Anat Rec (Hoboken) 2024; 307:285-297. [PMID: 36342941 DOI: 10.1002/ar.25113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to perform a systematic review of the available literature on morphological and functional brain changes measured by modern neuroimaging techniques in patients suffering from chronic cancer-related pain. A systematic search was conducted in PubMed, Embase, and Web of Science using different keyword combinations. In addition, a hand search was performed on the reference lists and several databases to retrieve supplementary primary studies. Eligible articles were assessed for methodological quality and risk of bias and reviewed by two independent researchers. The search yielded only four studies, three of which used MRI and one PET-CT. None of the studies measured longitudinal morphological (i.e., gray or white matter) changes. All studies investigated functional brain changes and found differences in specific brain regions and networks between patients with chronic cancer-related pain and pain-free cancer patients or healthy volunteers. Some of these alterations were found in brain networks that also show changes in non-cancer populations with chronic pain (e.g., the default mode network and salience network). However, specific findings were inconsistent, and there was substantial variation in imaging methodology, analysis, sample size, and study quality. There is a striking lack of research on morphological brain changes in patients with chronic cancer-related pain. Moreover, only a few studies investigated functional brain changes. In the retrieved studies, there is some evidence that alterations occur in brain networks also involved in other chronic non-cancer pain syndromes. However, the low sample sizes of the studies, finding inconsistencies, and methodological heterogeneity do not allow for robust conclusions.
Collapse
Affiliation(s)
- Thijs Vande Vyvere
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - Amber De Groote
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - An De Groef
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Vincent Haenen
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Wiebren Tjalma
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
- Multidisciplinary Breast Clinic, Antwerp University Hospital, Antwerp, Belgium
| | - Pieter Van Dyck
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- mVISION, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mira Meeus
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Tang Y, Shi Y, Xu Z, Hu J, Zhou X, Tan Y, Lan X, Zhou X, Yang J, Zhang J, Deng B, Liu D. Altered gray matter volume and functional connectivity in lung cancer patients with bone metastasis pain. J Neurosci Res 2024; 102. [PMID: 38284835 DOI: 10.1002/jnr.25256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 01/30/2024]
Abstract
Bone metastasis pain (BMP) is a severe chronic pain condition. Our previous studies on BMP revealed functional brain abnormalities. However, the potential effect of BMP on brain structure and function, especially gray matter volume (GMV) and related functional networks, have not yet been clearly illustrated. Voxel-based morphometry and functional connectivity (FC) analysis methods were used to investigate GMV and intrinsic FC differences in 45 right-handed lung cancer patients with BMP(+), 37 lung cancer patients without BMP(-), and 45 healthy controls (HCs). Correlation analysis was performed thereafter with all clinical variables by Pearson correlation. Compared to HCs, BMP(+) group exhibited decreased GMV in medial frontal gyrus (MFG) and right middle temporal gyrus (MTG). Compared with BMP(-) group, BMP(+) group exhibited reduced GMV in cerebelum_6_L and left lingual gyrus. However, no regions with significant GMV differences were found between BMP(-) and HCs groups. Receiver operating characteristic analysis indicated the potential classification power of these aberrant regions. Correlation analysis revealed that GMV in the right MTG was positively associated with anxiety in BMP(+) group. Further FC analysis demonstrated enhanced interactions between MFG/right MTG and cerebellum in BMP(+) patients compared with HCs. These results showed that BMP was closely associated with cerebral alterations, which may induce the impairment of pain moderation circuit, deficits in cognitive function, dysfunction of emotional control, and sensorimotor processing. These findings may provide a fresh perspective and further neuroimaging evidence for the possible mechanisms of BMP. Furthermore, the role of the cerebellum in pain processing needs to be further investigated.
Collapse
Affiliation(s)
- Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yumei Shi
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Zhen Xu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Junlin Hu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Xueying Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jing Yang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Benmin Deng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
7
|
Liu D, Zhou X, Tan Y, Yu H, Cao Y, Tian L, Yang L, Wang S, Liu S, Chen J, Liu J, Wang C, Yu H, Zhang J. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary resting-state fMRI study. Front Neurol 2022; 13:936012. [PMID: 36212659 PMCID: PMC9532555 DOI: 10.3389/fneur.2022.936012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis pain (BMP) is one of the most prevalent symptoms among cancer survivors. The present study aims to explore the brain functional activity and connectivity patterns in BMP of lung cancer patients preliminarily. Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex were recruited from inpatients and communities, respectively. All participants underwent fMRI data acquisition and pain assessment. Low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate brain functional activity. Then, functional connectivity (FC) was calculated for the ALFF- and ReHo-identified seed brain regions. A two-sample t-test or Manny–Whitney U-test was applied to compare demographic and neuropsychological data as well as the neuroimaging indices according to the data distribution. A correlation analysis was conducted to explore the potential relationships between neuroimaging indices and pain intensity. Receiver operating characteristic curve analysis was applied to assess the classification performance of neuroimaging indices in discriminating individual subjects between the BMP patients and HCs. No significant intergroup differences in demographic and neuropsychological data were noted. BMP patients showed reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in the bilateral thalamus and left fusiform gyrus. The lower FC was found within the prefrontal cortex. No significant correlation between the neuroimaging indices and pain intensity was observed. The neuroimaging indices showed satisfactory classification performance between the BMP patients and HCs, and the combined ALFF and ReHo showed a better accuracy rate (93.7%) than individual indices. In conclusion, altered brain functional activity and connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be associated with the neuropathology of BMP and may represent a potential biomarker for classifying BMP patients and healthy controls.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ling Tian
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Liejun Yang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sixiong Wang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shihong Liu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huiqing Yu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Huiqing Yu
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Jiuquan Zhang
| |
Collapse
|
8
|
Zhou X, Tan Y, Chen J, Wang C, Tang Y, Liu J, Lan X, Yu H, Lai Y, Hu Y, Zhang J, Cao Y, Liu D, Zhang J. Altered Functional Connectivity in Pain-Related Brain Regions and Its Correlation with Pain Duration in Bone Metastasis with Cancer Pain. DISEASE MARKERS 2022; 2022:3044186. [PMID: 36072897 PMCID: PMC9441405 DOI: 10.1155/2022/3044186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022]
Abstract
Bone metastatic pain is thought to be a severe type of cancer pain that has refractory characteristics and a long duration. This study is aimed at exploring the brain functional connectivity (FC) pattern in lung cancer patients with bone metastatic pain. In this study, 27 lung cancer patients with bone metastatic pain (CP+), 27 matched lung cancer patients without pain-related complaints (CP-), and 27 matched healthy controls (HC) were recruited. All participants underwent fMRI data acquisition and clinical assessments. One-way ANOVA or a Mann-Whitney U test was applied to compare clinical data according to data distribution. Seventeen hypothesis-driven pain-related brain regions were selected as regions of interest (ROIs). FC values among pain-related brain regions across the three groups were computed by using ROI-ROI functional connectivity analysis. ANCOVA with a post hoc test was applied to compare FC differences among the three groups. p < 0.05 indicated statistical significance. Correlation analysis was conducted to explore the potential relationship between the FC values and clinical characteristics. Except for years of education, no significant differences were revealed among the three groups in age, gender, or neuropsychological assessment. In the CP+ group, FC alterations were mainly concentrated in the dorsal lateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), secondary somatosensory cortex (SII), and amygdala compared to the CP- group. Among these brain regions with statistical differences, FC between the right DLPFC and the right ACC showed a positive correlation with the duration of cancer pain in the CP+ group. In addition, in the CP- group, altered FC was found in the bilateral SII, ACC, and thalamus compared to the HC group. Altered FC in pain-related brain regions may be a brain pattern of bone metastatic pain and may be associated with the long duration of cancer pain.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yong Lai
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yixin Hu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| |
Collapse
|
9
|
Zheng XQ, Wu YH, Huang JF, Wu AM. Neurophysiological mechanisms of cancer-induced bone pain. J Adv Res 2022; 35:117-127. [PMID: 35003797 PMCID: PMC8721251 DOI: 10.1016/j.jare.2021.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Cancer-induced Bone Pain (CIBP) is an important factor affecting their quality of life of cancer survivors. In addition, current clinical practice and scientific research suggest that neuropathic pain is a representative component of CIBP. However, given the variability of cancer conditions and the complexity of neuropathic pain, related mechanisms have been continuously supplemented but have not been perfected. Aim of Review Therefore, the current review highlights the latest progress in basic research on the field and proposes potential therapeutic targets, representative drugs and upcoming therapies. Key Scientific Concepts of Review Notably, factors such as central sensitization, neuroinflammation, glial cell activation and an acidic environment are considered to be related to neuropathic pain in CIBP. Nonetheless, further research is needed to ascertain the mechanism of CIBP in order to develop highly effective drugs. Moreover, more attention needs to be paid to the care of patients with advanced cancer.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yu-hao Wu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jin-feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
10
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Calapai F, Mondello E, Mannucci C, Sorbara EE, Gangemi S, Quattrone D, Calapai G, Cardia L. Pain Biomarkers in Cancer: An Overview. Curr Pharm Des 2021; 27:293-304. [PMID: 33138755 DOI: 10.2174/1381612826666201102103520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pain is a common symptom in oncologic patients and its management is generally guided with reference to pain individually perceived by patients and expressed through self-reported scales. However, the utility of these tools is limited as it strongly depends on patients' opinions. For this reason, more objective instruments are desirable. OBJECTIVE In this overview, scientific articles indicating potential markers to be used for pain management in cancer were collected and discussed. METHODS Research was performed on principal electronic scientific databases by using the words "pain", "cancer", "markers" and "biomarkers" as the main keywords, and findings describing potential biomarkers for the management of cancer pain were reported. RESULTS Studies on pain markers not specific for cancer typology (inflammatory, genetic markers predicting response to analgesic drugs, neuroimaging markers) and pain markers for specific types of cancer (bone cancer, breast cancer, lung cancer, head and neck cancer, prostate cancer, cancer in pediatrics) have been presented and commented on. CONCLUSION This overview supports the view of the involvement of inflammatory mediators in the mechanisms underlying cancer pain. Only a small amount of data from research up till today is available on markers that can help in the management of pain, except for pro-inflammatory cytokines and other inflammatory indexes such as C-reactive protein (CRP). However, biomarkers are a promising strategy useful to predict pain intensity and to objectively quantify analgesic response in guiding decisions regarding individual-tailored treatments for cancer patients.
Collapse
Affiliation(s)
- Fabrizio Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging - University of Messina, Messina, Italy
| | - Epifanio Mondello
- Anesthesia, Intensive Care and Pain Therapy, Policlinico "G. Martino" - University of Messina, Messina, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging - University of Messina, Messina, Italy
| | - Emanuela E Sorbara
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging - University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Quattrone
- Pain Therapy Unit, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli" - Reggio Calabria, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging - University of Messina, Messina, Italy
| | - Luigi Cardia
- IRCCS Centro Neurolesi Bonino- Pulejo, Messina, Italy
| |
Collapse
|
12
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Pereira GC, Lückemeyer DD, Antoniazzi CT, Kudsi SQ, Araújo DMPA, Oliveira SM, Ferreira J, Trevisan G. Role of transient receptor potential ankyrin 1 (TRPA1) on nociception caused by a murine model of breast carcinoma. Pharmacol Res 2020; 152:104576. [DOI: 10.1016/j.phrs.2019.104576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
|
13
|
Grandjean J, Canella C, Anckaerts C, Ayrancı G, Bougacha S, Bienert T, Buehlmann D, Coletta L, Gallino D, Gass N, Garin CM, Nadkarni NA, Hübner NS, Karatas M, Komaki Y, Kreitz S, Mandino F, Mechling AE, Sato C, Sauer K, Shah D, Strobelt S, Takata N, Wank I, Wu T, Yahata N, Yeow LY, Yee Y, Aoki I, Chakravarty MM, Chang WT, Dhenain M, von Elverfeldt D, Harsan LA, Hess A, Jiang T, Keliris GA, Lerch JP, Meyer-Lindenberg A, Okano H, Rudin M, Sartorius A, Van der Linden A, Verhoye M, Weber-Fahr W, Wenderoth N, Zerbi V, Gozzi A. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. Neuroimage 2019; 205:116278. [PMID: 31614221 DOI: 10.1016/j.neuroimage.2019.116278] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 01/07/2023] Open
Abstract
Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.
Collapse
Affiliation(s)
- Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore.
| | - Carola Canella
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy; CIMeC, Centre for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Cynthia Anckaerts
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gülebru Ayrancı
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Salma Bougacha
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Thomas Bienert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - David Buehlmann
- Institute for Biomedical Engineering, University and ETH Zürich, Wolfgang-Pauli-Str. 27, 8093, Zürich, Switzerland
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy; CIMeC, Centre for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Daniel Gallino
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Natalia Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Clément M Garin
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Nachiket Abhay Nadkarni
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Neele S Hübner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Meltem Karatas
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; The Engineering Science, Computer Science and Imaging Laboratory (ICube), Department of Biophysics and Nuclear Medicine, University of Strasbourg and University Hospital of Strasbourg, 67000, Strasbourg, France
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore; Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Anna E Mechling
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Chika Sato
- Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, Japan
| | - Katja Sauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Disha Shah
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium; Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, O&N4 Herestraat 49 Box 602, 3000, Leuven, Belgium
| | - Sandra Strobelt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Norio Takata
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Tong Wu
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Centre for Medical Image Computing, Department of Computer Science, & Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Computational, Cognitive and Clinical Imaging Lab, Division of Brain Sciences, Department of Medicine, Imperial College London, W12 0NN, UK; UK DRI Centre for Care Research and Technology, Imperial College London, W12 0NN, UK
| | - Noriaki Yahata
- Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, Japan
| | - Ling Yun Yeow
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore
| | - Yohan Yee
- Hospital for Sick Children and Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Ichio Aoki
- Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, Japan
| | - M Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Wei-Tang Chang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore
| | - Marc Dhenain
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Laura-Adela Harsan
- The Engineering Science, Computer Science and Imaging Laboratory (ICube), Department of Biophysics and Nuclear Medicine, University of Strasbourg and University Hospital of Strasbourg, 67000, Strasbourg, France
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Tianzi Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Jason P Lerch
- Hospital for Sick Children and Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Markus Rudin
- Institute for Biomedical Engineering, University and ETH Zürich, Wolfgang-Pauli-Str. 27, 8093, Zürich, Switzerland; Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Alexander Sartorius
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy
| |
Collapse
|
14
|
Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice. Pain 2019; 160:151-159. [PMID: 30161041 DOI: 10.1097/j.pain.0000000000001388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancer-induced bone pain is abundant among advanced-stage cancer patients and arises from a primary tumor in the bone or skeletal metastasis of common cancer types such as breast, lung, or prostate cancer. Recently, antibodies targeting nerve growth factor (NGF) have been shown to effectively relieve neuropathic and inflammatory pain states in mice and in humans. Although efficacy has been shown in mice on a behavioral level, effectiveness in preventing pain-induced functional rearrangements in the central nervous system has not been shown. Therefore, we assessed longitudinal whole-brain functional connectivity using resting-state functional magnetic resonance imaging in a mouse model of cancer-induced bone pain. We found functional connectivity between major hubs of ascending and descending pain pathways such as the periaqueductal gray, amygdala, thalamus, and cortical somatosensory regions to be affected by a developing cancer pain state. These changes could be successfully prevented through prospective administration of a monoclonal anti-NGF antibody (mAb911). This indicates efficacy of anti-NGF treatment to prevent pain-induced adaptations in brain functional networks after persistent nociceptive input from cancer-induced bone pain. In addition, it highlights the suitability of resting-state functional magnetic resonance imaging readouts as an indicator of treatment response on the basis of longitudinal functional network changes.
Collapse
|
15
|
Goudman L, Linderoth B, Nagels G, Huysmans E, Moens M. Cortical Mapping in Conventional and High Dose Spinal Cord Stimulation: An Exploratory Power Spectrum and Functional Connectivity Analysis With Electroencephalography. Neuromodulation 2019; 23:74-81. [PMID: 31453651 DOI: 10.1111/ner.12969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) is considered an effective pain-relieving treatment for patients with Failed Back Surgery Syndrome (FBSS). Despite the clinical effectiveness, it is unknown whether the altered functional connectivity in such patients, as compared to healthy persons, can be influenced by SCS. Therefore, the goal of this study is to evaluate whether brain connectivity assessed by EEG differs between baseline and SCS in patients with FBSS. MATERIALS AND METHODS Eight patients with FBSS underwent a resting-state EEG protocol before SCS, 1.5 months and 2.5 months after receiving SCS. At each frequency band, power spectrums were compared for no SCS, conventional (CON) SCS and High Dose (HD) SCS. Functional connectivity, with the aid of eConnectome was also calculated. RESULTS Significant differences in the average power density spectrum over the whole scalp were observed between no SCS, CON SCS and HD SCS in delta, theta and beta frequency bands (p < 0.01). The average power spectrum for CON SCS was significantly lower than the average power spectrum for HD SCS. Marked increases in strength of the information flow between electrode pair FC3-TP9 in the beta frequency band (p = 0.006) were found in favor of HD SCS. CONCLUSIONS The differences in power spectrum and connectivity between the three conditions lead to the hypothesis that HD SCS differs from CON SCS on average power spectrum, suggesting that HD SCS may have a higher contribution on the excitatory bottom-up pathway.
Collapse
Affiliation(s)
- Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Pain in Motion International Research Group, www.paininmotion.be.,Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Guy Nagels
- National MS Center, Neurology, Melsbroek, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Eva Huysmans
- Pain in Motion International Research Group, www.paininmotion.be.,Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Public Health (GEWE), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Lin WY, Chu WH, Chao THH, Sun WZ, Yen CT. Longitudinal FDG-PET scan study of brain changes in mice with cancer-induced bone pain and after morphine analgesia. Mol Pain 2019; 15:1744806919841194. [PMID: 30868934 PMCID: PMC6492350 DOI: 10.1177/1744806919841194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 01/21/2023] Open
Abstract
Morphine is the most commonly used drug for treating physical and psychological suffering caused by advanced cancer. Although morphine is known to elicit multiple supraspinal analgesic effects, its behavioral correlates with respect to the whole-brain metabolic activity during cancer-induced bone pain have not been elucidated. We injected 4T1 mouse breast cancer cells into the left femur bone marrow cavity of BALB/c mice. All mice developed limb use deficits, mechanical allodynia, and hypersensitivity to cold, which were effectively suppressed with morphine. Serial 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) was performed for each mouse before cancer induction (0 day), after cancer-induced bone pain was established (14 days), and during effective morphine treatment (16 days). The longitudinal FDG-PET imaging analysis demonstrated that cancer-induced bone pain increased glucose uptake in the insular cortex and hypothalamus and decreased the activity of the retrosplenial cortex. Morphine reversed the activation of the insular cortex and hypothalamus. Furthermore, morphine activated the amygdala and rostral ventromedial medulla and suppressed the activity of anterior cingulate cortex. Our findings of hypothalamic and insular cortical activation support the hypothesis that cancer-induced bone pain has strong inflammatory and affective components in freely moving animals. Morphine may provide descending inhibitory and facilitatory actions in the treatment of cancer-induced bone pain in a clinical setting.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Life Science, National Taiwan University,
Taipei
- Department of Anesthesiology, National Taiwan University
Hospital, Taipei
- National Taiwan University Cancer Center, National Taiwan
University College of Medicine, Taipei
| | - Wen-Hua Chu
- Department of Life Science, National Taiwan University,
Taipei
| | | | - Wen-Zen Sun
- Department of Anesthesiology, National Taiwan University
Hospital, Taipei
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University,
Taipei
| |
Collapse
|