1
|
Wang H, Tang S, Wu Q, He Y, Zhu W, Xie X, Qin Z, Wang X, Zhou S, Yao S, Xu X, Guo C, Tong X, Han S, Chou YH, Wang Y, Wong KK, Yang CG, Chen L, Hu L, Ji H. Integrative study of lung cancer adeno-to-squamous transition in EGFR TKI resistance identifies RAPGEF3 as a therapeutic target. Natl Sci Rev 2024; 11:nwae392. [PMID: 39687207 PMCID: PMC11647589 DOI: 10.1093/nsr/nwae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 12/18/2024] Open
Abstract
Although adeno-to-squamous transition (AST) has been observed in association with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in clinic, its causality, molecular mechanism and overcoming strategies remain largely unclear. We here demonstrate that squamous transition occurs concomitantly with TKI resistance in PC9-derived xenograft tumors. Perturbation of squamous transition via DNp63 overexpression or knockdown leads to significant changes in TKI responses, indicative of a direct causal link between squamous transition and TKI resistance. Integrative RNA-seq, ATAC-seq analyses and functional studies reveal that FOXA1 plays an important role in maintaining adenomatous lineage and contributes to TKI sensitivity. FOXM1 overexpression together with FOXA1 knockout fully recapitulates squamous transition and TKI resistance in both PC9 xenografts and patient-derived xenograft (PDX) models. Importantly, pharmacological inhibition of RAPGEF3 combined with EGFR TKI efficiently overcomes TKI resistance, especially in RAPGEF3high PDXs. Our findings provide novel mechanistic insights into squamous transition and therapeutic strategy to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qibiao Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyun Xie
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Qin
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyu Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shun Yao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chenchen Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Han
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yueh-Hung Chou
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, NY 10016, USA
| | - Cai-Guang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Kim Y, Je MA, Jeong M, Kwon H, Jang A, Kim J, Choi GE. Upregulation of NGF/TrkA-Related Proteins in Dorsal Root Ganglion of Paclitaxel-Induced Peripheral Neuropathy Animal Model. J Pain Res 2024; 17:3919-3932. [PMID: 39588524 PMCID: PMC11586490 DOI: 10.2147/jpr.s470671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Background Paclitaxel (PTX) can induce chemotherapy-induced peripheral neuropathy (CIPN) as a side effect. The aim of this study was to understand the neurochemical changes induced by NGF/TrkA signaling in PTX-induced neuropathic pain. Methods The PTX-induced CIPN mouse model was evaluated using nerve conduction velocity (NCV) and behavioral tests. Protein expression in mouse DRG was observed by Western blotting and immunohistochemistry. Nerve growth factor (NGF), IL-6, and IL-1β mRNA levels were determined using qRT-PCR by isolating total RNA from whole blood. Results PTX showed low amplitude and high latency values in NCV in mice, and induced cold allodynia and thermal hyperalgesia in behavioral assessment. Activating transcription factor 3 (ATF3) and MAPK pathway related proteins (ERK1/2), tropomyosin receptor kinase A (TrkA), calcitonin gene related peptide (CGRP) and transient receptor potential vanilloid 1 (TRPV1) were upregulated 7th and 14th days after 2 mg/kg and 10 mg/kg of PTX administration. Protein kinase C (PKC) was upregulated 7th days after 10 mg/kg PTX treatment and 14th days after 2 mg/kg and 10 mg/kg PTX administration. NGF, IL-6, and IL-1β fold change values also showed a time- and dose-dependent increase. Conclusion Taken together, our findings may improve our understanding of the nociceptive symptoms associated with PTX-induced neuropathic pain and lead to the development of new treatments for peripheral neuropathy.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Myeongguk Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| |
Collapse
|
3
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
4
|
Cheng J, Dong Y, Wu J, Shao C, Tang YC, Dong ZQ. RNA-seq revealed the protective effect of Huangqi Guizhi Wuwu Decoction against cisplatin induced PC12 cell injury. Int J Neurosci 2024:1-11. [PMID: 39155776 DOI: 10.1080/00207454.2024.2392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy not only affects the tolerability of chemotherapy, but also causes intolerable and prolonged neuropathic pain in cancer patients. Currently, duloxetine is the only drug used to treat chemotherapy-induced peripheral neuropathy. However, the clinical use of this drug still faces several challenges. Therefore, we focused on traditional Chinese medicine to find an effective and safe alternative medicine. Huangqi Guizhi Wuwu Decoction is a traditional Chinese medicine that has been clinically used for treating nerve pain for thousands of years. This study aimed to investigate the neuroprotective effect of Huangqi Guizhi Wuwu Decoction on cisplatin-induced nerve injury in PC12 cells and to elucidate its potential mechanism of action. METHODS Huangqi Guizhi Wuwu Decoction-containing serum and blank serum were prepared from a rat model. The protective effects of Huangqi Guizhi Wuwu Decoction on cisplatin (10 µmol/L)-induced PC12 cell injury were assessed by a Cell Counting Kit-8 assay. RNA expression in Huangqi Guizhi Wuwu Decoction-protected PC12 cells was analyzed using RNA-seq, and subsequently, differentially expressed genes were further analyzed using Gene Ontology and Gene Set Enrichment Analysis. RESULTS The Cell Counting Kit-8 results showed that pretreatment of PC12 cells with Huangqi Guizhi Wuwu Decoction-containing serum (5%, 10%, 15%) significantly increased cells' viability to 10 µmol/L cisplatin-induced cell death. RNA-seq analysis revealed 843 differentially expressed genes in the chemotherapy-induced peripheral neuropathy group and 249 in the Huangqi Guizhi Wuwu Decoction group. The gene set enrichment analysis results in this study suggest that Huangqi Guizhi Wuwu Decoction may treat chemotherapy-induced peripheral neuropathy by enhancing axon guidance. CONCLUSIONS This study provides valuable evidence for using Huangqi Guizhi Wuwu Decoction in treating chemotherapy-induced peripheral neuropathy, partially achieved by improving axon guidance pathways.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Clinical Pharmacy Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, PR China
| | - Yuan Dong
- Department of Clinical Pharmacy Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jing Wu
- Department of Clinical Pharmacy Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Chen Shao
- Department of Clinical Pharmacy Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yu-Chen Tang
- Department of Clinical Pharmacy Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zhi-Qiang Dong
- Department of Clinical Pharmacy Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| |
Collapse
|
5
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
6
|
Mazevet M, Belhadef A, Ribeiro M, Dayde D, Llach A, Laudette M, Belleville T, Mateo P, Gressette M, Lefebvre F, Chen J, Bachelot-Loza C, Rucker-Martin C, Lezoualch F, Crozatier B, Benitah JP, Vozenin MC, Fischmeister R, Gomez AM, Lemaire C, Morel E. EPAC1 inhibition protects the heart from doxorubicin-induced toxicity. eLife 2023; 12:e83831. [PMID: 37551870 PMCID: PMC10484526 DOI: 10.7554/elife.83831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Marion Laudette
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | - Tiphaine Belleville
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | | | | | | | - Ju Chen
- Basic Cardiac Research UCSD School of Medicine La JollaSan DiegoUnited States
| | - Christilla Bachelot-Loza
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Catherine Rucker-Martin
- Faculté de Médecine, Université Paris-SaclayLe Kremlin BicêtreFrance
- Inserm UMR_S 999, Hôpital Marie LannelongueLe Plessis RobinsonFrance
| | - Frank Lezoualch
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | | | | | | | | | | | - Christophe Lemaire
- Université Paris-SaclayOrsayFrance
- Université Paris-Saclay, UVSQ, InsermOrsayFrance
| | | |
Collapse
|
7
|
Yang W, Xia F, Mei F, Shi S, Robichaux WG, Lin W, Zhang W, Liu H, Cheng X. Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37651112 PMCID: PMC10476449 DOI: 10.1167/iovs.64.11.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose The pathogenic mechanisms behind the development of ischemic retinopathy are complex and poorly understood. This study investigates the involvement of exchange protein directly activated by cAMP (Epac)1 signaling in pericyte injury during ischemic retinopathy, including diabetic retinopathy, a disease that threatens vision. Methods Mouse models of retinal ischemia-reperfusion injury and type 1 diabetes induced by streptozotocin were used to investigate the pathogenesis of these diseases. The roles of Epac1 signaling in the pathogenesis of ischemic retinopathy were determined by an Epac1 knockout mouse model. The cellular and molecular mechanisms of Epac1-mediated pericyte dysfunction in response to high glucose were investigated by specific modulation of Epac1 activity in primary human retinal pericytes using Epac1-specific RNA interference and a pharmacological inhibitor. Results Ischemic injury or diabetes-induced retinal capillary degeneration were associated with an increased expression of Epac1 in the mouse retinal vasculature, including both endothelial cells and pericytes. Genetic deletion of Epac1 protected ischemic injury-induced pericyte loss and capillary degeneration in the mouse retina. Furthermore, high glucose-induced Epac1 expression in retinal pericytes was accompanied by increased Drp1 phosphorylation, mitochondrial fission, reactive oxygen species production, and caspase 3 activation. Inhibition of Epac1 via RNA interference or pharmacological approaches blocked high glucose-mediated mitochondrial dysfunction and caspase 3 activation. Conclusions Our study reveals an important role of Epac1 signaling in mitochondrial dynamics, reactive oxygen species production, and apoptosis in retinal pericytes and identifies Epac1 as a therapeutic target for treating ischemic retinopathy.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
8
|
Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, Pintus G, Eid AH. Epac as a tractable therapeutic target. Eur J Pharmacol 2023; 945:175645. [PMID: 36894048 DOI: 10.1016/j.ejphar.2023.175645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In 1957, cyclic adenosine monophosphate (cAMP) was identified as the first secondary messenger, and the first signaling cascade discovered was the cAMP-protein kinase A (PKA) pathway. Since then, cAMP has received increasing attention given its multitude of actions. Not long ago, a new cAMP effector named exchange protein directly activated by cAMP (Epac) emerged as a critical mediator of cAMP's actions. Epac mediates a plethora of pathophysiologic processes and contributes to the pathogenesis of several diseases such as cancer, cardiovascular disease, diabetes, lung fibrosis, neurological disorders, and others. These findings strongly underscore the potential of Epac as a tractable therapeutic target. In this context, Epac modulators seem to possess unique characteristics and advantages and hold the promise of providing more efficacious treatments for a wide array of diseases. This paper provides an in-depth dissection and analysis of Epac structure, distribution, subcellular compartmentalization, and signaling mechanisms. We elaborate on how these characteristics can be utilized to design specific, efficient, and safe Epac agonists and antagonists that can be incorporated into future pharmacotherapeutics. In addition, we provide a detailed portfolio for specific Epac modulators highlighting their discovery, advantages, potential concerns, and utilization in the context of clinical disease entities.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | | | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Osennyaya Street 4-1-207, Moscow, 121609, Russia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
9
|
Ouyang X, Zhu D, Huang Y, Zhao X, Xu R, Wang J, Li W, Shen X. Khellin as a selective monoamine oxidase B inhibitor ameliorated paclitaxel-induced peripheral neuropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154673. [PMID: 36716674 DOI: 10.1016/j.phymed.2023.154673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Treatment of paclitaxel (PTX)-induced peripheral neuropathy (PIPN) is full of challenges because of the unclear pathogenesis of PIPN. Herbal folk medicine Khellin (Khe) is a natural compound extracted from Ammi visnaga for treatment of renal colics and muscle spasms. PURPOSE Here, we aimed to assess the potential of Khe in ameliorating PIPN-like pathology in mice and investigate the underlying mechanisms. METHODS PIPN model mice were conducted by injection of PTX based on the published approach. The capability of Khe in ameliorating the PTX-induced neurological dysfunctions was assayed by detection of nociceptive hypersensitivities including mechanical hyperalgesia, thermal hypersensitivity, and cold allodynia in mice. The underlying mechanisms were investigated by assays against the PIPN mice with MAOB-specific knockdown in spinal cord and dorsal root ganglion (DRG) tissues by injection of adeno-associated virus (AAV)-MAOB-shRNA. RESULTS We determined that MAOB not MAOA is highly overexpressed in the spinal cord and DRG tissues of PIPN mice and Khe as a selective MAOB inhibitor improved PIPN-like pathology in mice. Khe promoted neurite outgrowth, alleviated apoptosis, and improved mitochondrial dysfunction of DRG neurons by targeting MAOB. Moreover, Khe inhibited spinal astrocytes activation and suppressed neuroinflammation of spinal astrocytes via MAOB/NF-κB/NLRP3/ASC/Caspase1/IL-1β pathway. CONCLUSION Our work might be the first to report that MAOB not MAOA is selectively overexpressed in the spinal cord and DRG tissues of PIPN mice, and all findings have highly addressed the potency of selective MAOB inhibitor in the amelioration of PIPN-like pathology and highlighted the potential of Khe in treating PTX-induced side effects.
Collapse
Affiliation(s)
- Xingnan Ouyang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Danyang Zhu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Huang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuejian Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Xu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenjun Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China..
| |
Collapse
|
10
|
Park SE, Neupane C, Noh C, Sharma R, Shin HJ, Pham TL, Lee GS, Park KD, Lee CJ, Kang DW, Lee SY, Kim HW, Park JB. Antiallodynic effects of KDS2010, a novel MAO-B inhibitor, via ROS-GABA inhibitory transmission in a paclitaxel-induced tactile hypersensitivity model. Mol Brain 2022; 15:41. [PMID: 35526002 PMCID: PMC9078011 DOI: 10.1186/s13041-022-00924-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Monoamine oxidase (MAO) inhibitors have been investigated for the treatment of neuropathic pain. Here, we assessed the antiallodynic effects of a novel MAO-B inhibitor, KDS2010, on paclitaxel (PTX)-induced mechanical hypersensitivity. Oral administration of KDS2010 effectively relieved PTX-induced mechanical hypersensitivity in a dose-dependent manner. KDS2010 (25 mg/Kg) significantly prevented and suppressed PTX-induced pain responses with minimal effects on the body weight, motor activity, and working memory. KDS2010 significantly reduced reactive astrocytosis and reactive oxygen species (ROS) level in the L4–L6 spinal cord of PTX-treated mice. Furthermore, KDS2010 reversed the attenuation of GABAergic spontaneous inhibitory postsynaptic current (sIPSC) frequency in spinal dorsal horn neurons, although it failed to restore the reduced tonic GABAA inhibition nor the increased GABA transporter 1 (GAT1) expression in PTX-treated mice. In addition, bath application of a reactive oxygen species (ROS) scavenger (PBN) restored the sIPSC frequency in PTX-treated mice but not in control and PTX + KDS2010-treated mice. These results indicated that the antiallodynic effect of KDS2010 is not due to a MAO-B-dependent GABA production. Finally, PBN alone also exerted a similar analgesic effect as KDS2010, but a co-treatment of PBN with KDS2010 showed no additive effect, suggesting that inhibition of MAO-B-dependent ROS production is responsible for the analgesic effect by KDS2010 on PTX-induced allodynia. Overall, KDS2010 attenuated PTX-induced pain behaviors by restoring the altered ROS level and GABAergic inhibitory signaling in the spinal cord, suggesting that KDS2010 is a promising therapeutic strategy for chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Su Eun Park
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Chiranjivi Neupane
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chan Noh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Ramesh Sharma
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyun Jin Shin
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Thuy Linh Pham
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Gyu-Seung Lee
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Dong-Gu Health Promotion Center 301-01, 30 Bogeunso Avenue, Samseung-Dong, Dong-gu, Daejeon, South Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Korea
| | - Dong-Wook Kang
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyun-Woo Kim
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Jin Bong Park
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea. .,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea. .,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
11
|
Yang W, Robichaux WG, Mei FC, Lin W, Li L, Pan S, White MA, Chen Y, Cheng X. Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates. SCIENCE ADVANCES 2022; 8:eabm2960. [PMID: 35442725 PMCID: PMC9020664 DOI: 10.1126/sciadv.abm2960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Protein SUMOylation plays an essential role in maintaining cellular homeostasis when cells are under stress. However, precisely how SUMOylation is regulated, and a molecular mechanism linking cellular stress to SUMOylation, remains elusive. Here, we report that cAMP, a major stress-response second messenger, acts through Epac1 as a regulator of cellular SUMOylation. The Epac1-associated proteome is highly enriched with components of the SUMOylation pathway. Activation of Epac1 by intracellular cAMP triggers phase separation and the formation of nuclear condensates containing Epac1 and general components of the SUMOylation machinery to promote cellular SUMOylation. Furthermore, genetic knockout of Epac1 obliterates oxidized low-density lipoprotein-induced cellular SUMOylation in macrophages, leading to suppression of foam cell formation. These results provide a direct nexus connecting two major cellular stress responses to define a molecular mechanism in which cAMP regulates the dynamics of cellular condensates to modulate protein SUMOylation.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Fang C. Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Li Li
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Sheng Pan
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Mark A. White
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, CA, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
12
|
Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, Speek O, Morra F, van der Veen CHJT, Lezoualc’h F, Cheng X, Schmidt M, Dolga AM. Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants (Basel) 2022; 11:antiox11020314. [PMID: 35204198 PMCID: PMC8868285 DOI: 10.3390/antiox11020314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Exchange proteins directly activated by cAMP (Epac) proteins are implicated in a wide range of cellular functions including oxidative stress and cell survival. Mitochondrial-dependent oxidative stress has been associated with progressive neuronal death underlying the pathology of many neurodegenerative diseases. The role of Epac modulation in neuronal cells in relation to cell survival and death, as well as its potential effect on mitochondrial function, is not well established. In immortalized hippocampal (HT-22) neuronal cells, we examined mitochondria function in the presence of various Epac pharmacological modulators in response to oxidative stress due to ferroptosis. Our study revealed that selective pharmacological modulation of Epac1 or Epac2 isoforms, exerted differential effects in erastin-induced ferroptosis conditions in HT-22 cells. Epac1 inhibition prevented cell death and loss of mitochondrial integrity induced by ferroptosis, while Epac2 inhibition had limited effects. Our data suggest Epac1 as a plausible therapeutic target for preventing ferroptosis cell death associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nshunge Musheshe
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| | - Asmaa Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Sarah C. Mitchel
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Ahmed Adzemovic
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Oliver Speek
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Francesca Morra
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Christina H. J. T. van der Veen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Frank Lezoualc’h
- Inserm UMR-1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse Paul Sabatier, 31400 Toulouse, France;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX 7000, USA;
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Groningen Research Institute of Asthma and COPD (GRIAC), Groningen Research Institute of Pharmacy (GRIP), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| |
Collapse
|
13
|
Silva NR, Gomes FIF, Lopes AHP, Cortez IL, Dos Santos JC, Silva CEA, Mechoulam R, Gomes FV, Cunha TM, Guimarães FS. The Cannabidiol Analog PECS-101 Prevents Chemotherapy-Induced Neuropathic Pain via PPARγ Receptors. Neurotherapeutics 2022; 19:434-449. [PMID: 34904193 PMCID: PMC9130439 DOI: 10.1007/s13311-021-01164-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the main dose-limiting adverse effect of chemotherapy drugs such as paclitaxel (PTX). PTX causes marked molecular and cellular damage, mainly in the peripheral nervous system, including sensory neurons in the dorsal root ganglia (DRG). Several studies have shown the therapeutic potential of cannabinoids, including cannabidiol (CBD), the major non-psychotomimetic compound found in the Cannabis plant, to treat peripheral neuropathies. Here, we investigated the efficacy of PECS-101 (former HUF-101), a CBD fluorinated analog, on PTX-induced neuropathic pain in mice. PECS-101, administered after the end of treatment with PTX, did not reverse mechanical allodynia. However, PECS-101 (1 mg/kg) administered along with PTX treatment caused a long-lasting relief of the mechanical and cold allodynia. These effects were blocked by a PPARγ, but not CB1 and CB2 receptor antagonists. Notably, the effects of PECS-101 on the relief of PTX-induced mechanical and cold allodynia were not found in macrophage-specific PPARγ-deficient mice. PECS-101 also decreased PTX-induced increase in Tnf, Il6, and Aif1 (Iba-1) gene expression in the DRGs and the loss of intra-epidermal nerve fibers. PECS-101 did not alter motor coordination, produce tolerance, or show abuse potential. In addition, PECS-101 did not interfere with the chemotherapeutic effects of PTX. Thus, PECS-101, a new fluorinated CBD analog, could represent a novel therapeutic alternative to prevent mechanical and cold allodynia induced by PTX potentially through the activation of PPARγ in macrophages.
Collapse
Affiliation(s)
- Nicole Rodrigues Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | | | | | - Isadora Lopes Cortez
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Conceição Elidianne Aníbal Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Felipe Villela Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francisco Silveira Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- National Institute of Science and Translational Medicine, Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
14
|
Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:60-74. [PMID: 34481421 PMCID: PMC8716520 DOI: 10.1111/bcpt.13654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity that affects 30%-40% of patients undergoing cancer treatment. Although multiple mechanisms of chemotherapy-induced neurotoxicity have been described in preclinical models, these have not been translated into widely effective strategies for the prevention or treatment of CIPN. Predictive biomarkers to inform therapeutic approaches are also lacking. Recent studies have examined genetic risk factors associated with CIPN susceptibility. This review provides an overview of the clinical and pathologic features of CIPN and summarizes efforts to identify target pathways through genetic and functional studies. Structurally and mechanistically diverse chemotherapeutics are associated with CIPN; however, the current review is focused on microtubule-targeting agents since these are the focus of most pharmacogenetic association and functional studies of CIPN. Genome-wide pharmacogenetic association studies are useful tools to identify not only causative genes and genetic variants but also genetic networks implicated in drug response or toxicity and have been increasingly applied to investigations of CIPN. Induced pluripotent stem cell-derived models of human sensory neurons are especially useful to understand the mechanistic significance of genomic findings. Combined genetic and functional genomic efforts to understand CIPN hold great promise for developing therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Katherina C. Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94143-2911,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Nura El-Haj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-2911
| |
Collapse
|
15
|
Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22168733. [PMID: 34445439 PMCID: PMC8396047 DOI: 10.3390/ijms22168733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic effects for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.
Collapse
|
16
|
Doyle TM, Salvemini D. Mini-Review: Mitochondrial dysfunction and chemotherapy-induced neuropathic pain. Neurosci Lett 2021; 760:136087. [PMID: 34182057 DOI: 10.1016/j.neulet.2021.136087] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a somatosensory axonopathy in cancer patients receiving any of a variety of widely-use antitumor agents. CIPN can lead to long-lasting neuropathic pain that limits the dose or length of otherwise life-saving cancer therapy. Accumulating evidence over the last two decades indicates that many chemotherapeutic agents cause mitochondrial injury in the peripheral sensory nerves by disrupting mitochondrial structure and bioenergetics, increasing nitro-oxidative stress and altering mitochondrial transport, fission, fusion and mitophagy. The accumulation of abnormal and dysfunctional mitochondria in sensory neurons are linked to axonal growth defects resulting in the loss of intraepidermal nerve fibers in the hands and feet, increased spontaneous discharge and the sensitization of peripheral sensory neurons that provoke and promote changes in the central nervous system that establish a chronic neuropathic pain state. This has led to the propose mitotoxicity theory of CIPN. Strategies that improve mitochondrial function have shown success in preventing and reversing CIPN in pre-clinical animal models and have begun to show some progress toward translation to the clinic. In this review, we will review the evidence for, the causes and effects of and current strategies to target mitochondrial dysfunction in CIPN.
Collapse
Affiliation(s)
- Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
17
|
Shi X, Bai H, Wang J, Wang J, Huang L, He M, Zheng X, Duan Z, Chen D, Zhang J, Chen X, Wang J. Behavioral Assessment of Sensory, Motor, Emotion, and Cognition in Rodent Models of Intracerebral Hemorrhage. Front Neurol 2021; 12:667511. [PMID: 34220676 PMCID: PMC8248664 DOI: 10.3389/fneur.2021.667511] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common type of stroke and has one of the highest fatality rates of any disease. There are many clinical signs and symptoms after ICH due to brain cell injury and network disruption resulted from the rupture of a tiny artery and activation of inflammatory cells, such as motor dysfunction, sensory impairment, cognitive impairment, and emotional disturbance, etc. Thus, researchers have established many tests to evaluate behavioral changes in rodent ICH models, in order to achieve a better understanding and thus improvements in the prognosis for the clinical treatment of stroke. This review summarizes existing protocols that have been applied to assess neurologic function outcomes in the rodent ICH models such as pain, motor, cognition, and emotion tests. Pain tests include mechanical, hot, and cold pain tests; motor tests include the following 12 types: neurologic deficit scale test, staircase test, rotarod test, cylinder test, grid walk test, forelimb placing test, wire hanging test, modified neurologic severity score, beam walking test, horizontal ladder test, and adhesive removal test; learning and memory tests include Morris water maze, Y-maze, and novel object recognition test; emotion tests include elevated plus maze, sucrose preference test, tail suspension test, open field test, and forced swim test. This review discusses these assessments by examining their rationale, setup, duration, baseline, procedures as well as comparing their pros and cons, thus guiding researchers to select the most appropriate behavioral tests for preclinical ICH research.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiying Bai
- Zhengzhou University Hospital Outpatient Surgery Center, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiarui Wang
- Keieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD, United States
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Meimei He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zitian Duan
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danyang Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaxin Zhang
- Saint John Paul the Great Catholic High School, Dumfries, VA, United States
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Agalave NM, Mody PH, Szabo-Pardi TA, Jeong HS, Burton MD. Neuroimmune Consequences of eIF4E Phosphorylation on Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 12:642420. [PMID: 33912169 PMCID: PMC8071873 DOI: 10.3389/fimmu.2021.642420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect that occurs in up to 63% of patients and has no known effective treatment. A majority of studies do not effectively assess sex differences in the onset and persistence of CIPN. Here we investigated the onset of CIPN, a point of therapeutic intervention where we may limit, or even prevent the development of CIPN. We hypothesized that cap-dependent translation mechanisms are important in early CIPN development and the bi-directional crosstalk between immune cells and nociceptors plays a complementary role to CIPN establishment and sex differences observed. In this study, we used wild type and eIF4E-mutant mice of both sexes to investigate the role of cap-dependent translation and the contribution of immune cells and nociceptors in the periphery and glia in the spinal cord during paclitaxel-induced peripheral neuropathy. We found that systemically administered paclitaxel induces pain-like behaviors in both sexes, increases helper T-lymphocytes, downregulates cytotoxic T-lymphocytes, and increases mitochondrial dysfunction in dorsal root ganglia neurons; all of which is eIF4E-dependent in both sexes. We identified a robust paclitaxel-induced, eIF4E-dependent increase in spinal astrocyte immunoreactivity in males, but not females. Taken together, our data reveals that cap-dependent translation may be a key pathway that presents relevant therapeutic targets during the early phase of CIPN. By targeting the eIF4E complex, we may reduce or reverse the negative effects associated with chemotherapeutic treatments.
Collapse
Affiliation(s)
- Nilesh M Agalave
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Han S Jeong
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
19
|
Boukelmoune N, Laumet G, Tang Y, Ma J, Mahant I, Nijboer C, Benders M, Kavelaars A, Heijnen CJ, Heijnen CJ. Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain Behav Immun 2021; 93:43-54. [PMID: 33316379 PMCID: PMC8826497 DOI: 10.1016/j.bbi.2020.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequently reported adverse effects of cancer treatment. CIPN often persists long after treatment completion and has detrimental effects on patient's quality of life. There are no efficacious FDA-approved drugs for CIPN. We recently demonstrated that nasal administration of mesenchymal stem cells (MSC) reverses the cognitive deficits induced by cisplatin in mice. Here we show that nasal administration of MSC after cisplatin- or paclitaxel treatment- completely reverses signs of established CIPN, including mechanical allodynia, spontaneous pain, and loss of intraepidermal nerve fibers (IENF) in the paw. The resolution of CIPN is associated with normalization of the cisplatin-induced decrease in mitochondrial bioenergetics in DRG neurons. Nasally administered MSC enter rapidly the meninges of the brain, spinal cord and peripheral lymph nodes to promote IL-10 production by macrophages. MSC-mediated resolution of mechanical allodynia, recovery of IENFs and restoration of DRG mitochondrial function critically depends on IL-10 production. MSC from IL-10 knockout animals are not capable of reversing the symptoms of CIPN. Moreover, WT MSC do not reverse CIPN in mice lacking IL-10 receptors on peripheral sensory neurons. In conclusion, only two nasal administrations of MSC fully reverse CIPN and the associated mitochondrial abnormalities via an IL-10 dependent pathway. Since MSC are already applied clinically, we propose that nasal MSC treatment could become a powerful treatment for the large group of patients suffering from neurotoxicities of cancer treatment.
Collapse
Affiliation(s)
- Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Geoffroy Laumet
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA.,Current affiliation: Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Yongfu Tang
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Itee Mahant
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Cora Nijboer
- Department of Developmental Origins of Disease, Division Woman and Baby, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Manon Benders
- Department of Neonatology, Division Woman and Baby, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA.,Corresponding author at: Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Z8.5034, Houston, Texas, 77030. (Cobi J. Heijnen)
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Koyanagi M, Imai S, Matsumoto M, Iguma Y, Kawaguchi-Sakita N, Kotake T, Iwamitsu Y, Ntogwa M, Hiraiwa R, Nagayasu K, Saigo M, Ogihara T, Yonezawa A, Omura T, Nakagawa S, Nakagawa T, Matsubara K. Pronociceptive Roles of Schwann Cell-Derived Galectin-3 in Taxane-Induced Peripheral Neuropathy. Cancer Res 2021; 81:2207-2219. [PMID: 33608316 DOI: 10.1158/0008-5472.can-20-2799] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of taxanes such as paclitaxel and docetaxel. Despite the high medical needs, insufficient understanding of the complex mechanism underlying CIPN pathogenesis precludes any endorsed causal therapy to prevent or relieve CIPN. In this study, we report that elevation of plasma galectin-3 level is a pathologic change common to both patients with taxane-treated breast cancer with CIPN and a mouse model of taxane-related CIPN. Following multiple intraperitoneal injections of paclitaxel in mice, galectin-3 levels were elevated in Schwann cells within the sciatic nerve but not in other peripheral organs or cells expressing galectin-3. Consistent with this, paclitaxel treatment of primary cultures of rat Schwann cells induced upregulation and secretion of galectin-3. In vitro migration assays revealed that recombinant galectin-3 induced a chemotactic response of the murine macrophage cell line RAW 264.7. In addition, perineural administration of galectin-3 to the sciatic nerve of naive mice mimicked paclitaxel-induced macrophage infiltration and mechanical hypersensitivity. By contrast, chemical depletion of macrophages by clodronate liposomes suppressed paclitaxel-induced mechanical hypersensitivity despite the higher level of plasma galectin-3. Deficiency (Galectin-3 -/- mice) or pharmacologic inhibition of galectin-3 inhibited paclitaxel-induced macrophage infiltration and mechanical hypersensitivity. In conclusion, we propose that Schwann cell-derived galectin-3 plays a pronociceptive role via macrophage infiltration in the pathogenesis of taxane-induced peripheral neuropathy. Therapies targeting this phenomenon, which is common to patients with CIPN and mouse models, represent a novel approach to suppress taxane-related CIPN. SIGNIFICANCE: These findings demonstrate that the elevation of plasma galectin-3 is a CIPN-related pathologic change common to humans and mice, and that targeting galectin-3 is a therapeutic option to delay CIPN progression.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.
| | - Mayuna Matsumoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Yoko Iguma
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Nobuko Kawaguchi-Sakita
- Department of Breast Surgery, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.,Department of Clinical Oncology, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takeshi Kotake
- Department of Breast Surgery, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.,Department of Clinical Oncology, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Yuki Iwamitsu
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Mpumelelo Ntogwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ren Hiraiwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mamiko Saigo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takashi Ogihara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
22
|
Meregalli C, Monza L, Chiorazzi A, Scali C, Guarnieri C, Fumagalli G, Alberti P, Pozzi E, Canta A, Ballarini E, Rodriguez-Menendez V, Oggioni N, Cavaletti G, Marmiroli P. Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity. Int J Mol Sci 2021; 22:ijms22031058. [PMID: 33494384 PMCID: PMC7865319 DOI: 10.3390/ijms22031058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.
Collapse
Affiliation(s)
- Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Carla Scali
- Global Medical and R&D Department, Kedrion S.p.A., Località Ai Conti, Castelvecchio Pascoli, 55051 Lucca, Italy; (C.S.); (C.G.)
| | - Chiara Guarnieri
- Global Medical and R&D Department, Kedrion S.p.A., Località Ai Conti, Castelvecchio Pascoli, 55051 Lucca, Italy; (C.S.); (C.G.)
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
- Correspondence:
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
23
|
Maeda Y, Kikuchi R, Kawagoe J, Tsuji T, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Anti-cancer strategy targeting the energy metabolism of tumor cells surviving a low-nutrient acidic microenvironment. Mol Metab 2020; 42:101093. [PMID: 33007425 PMCID: PMC7578269 DOI: 10.1016/j.molmet.2020.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tumor cells experience hypoxia, acidosis, and hypoglycemia. Metabolic adaptation to glucose shortage is essential to maintain tumor cells' survival because of their high glucose requirement. This study evaluated the hypothesis that acidosis might promote tumor survival during glucose shortage and if so, explored a novel drug targeting metabolic vulnerability to glucose shortage. METHODS Cell survival and bioenergetics metabolism were assessed in lung cancer cell lines. Our in-house small-molecule compounds were screened to identify those that kill cancer cells under low-glucose conditions. Cytotoxicity against non-cancerous cells was also assessed. Tumor growth was evaluated in vivo using a mouse engraft model. RESULTS Acidosis limited the cellular consumption of glucose and ATP, causing tumor cells to enter a metabolically dormant but energetically economic state, which promoted tumor cell survival during glucose deficiency. We identified ESI-09, a previously known exchange protein directly activated by cAMP (EAPC) inhibitor, as an anti-cancer compound that inhibited cancer cells under low-glucose conditions even when associated with acidosis. Bioenergetic studies showed that independent of EPAC inhibition, ESI-09 was a safer mitochondrial uncoupler than a classical uncoupler and created a futile cycle of mitochondrial respiration, leading to decreased ATP production, increased ATP dissipation, and fuel scavenging. Accordingly, ESI-09 exhibited more cytotoxic effects under low-glucose conditions than under normal glucose conditions. ESI-09 was also more effective than actively proliferating cells on quiescent glucose-restricted cells. Cisplatin showed opposite effects. ESI-09 inhibited tumor growth in lung cancer engraft mice. CONCLUSIONS This study highlights the acidosis-induced promotion of tumor survival during glucose shortage and demonstrates that ESI-09 is a novel potent anti-cancer mitochondrial uncoupler that targets a metabolic vulnerability to glucose shortage even when associated with acidosis. The higher cytotoxicity under lower-than-normal glucose conditions suggests that ESI-09 is safer than conventional chemotherapy, can target the metabolic vulnerability of tumor cells to low-glucose stress, and is applicable to many cancer cell types.
Collapse
Affiliation(s)
- Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Tsuji
- Department of Medicine, Otsuki Municipal Hospital, 1255 Hanasaki, Otsuki-chou, Otsuki-shi, Yamanashi, 401-0015, Japan
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| |
Collapse
|
24
|
Lopez ER, Carbajal AG, Tian JB, Bavencoffe A, Zhu MX, Dessauer CW, Walters ET. Serotonin enhances depolarizing spontaneous fluctuations, excitability, and ongoing activity in isolated rat DRG neurons via 5-HT 4 receptors and cAMP-dependent mechanisms. Neuropharmacology 2020; 184:108408. [PMID: 33220305 DOI: 10.1016/j.neuropharm.2020.108408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Ongoing activity in nociceptors, a driver of spontaneous pain, can be generated in dorsal root ganglion neurons in the absence of sensory generator potentials if one or more of three neurophysiological alterations occur - prolonged depolarization of resting membrane potential (RMP), hyperpolarization of action potential (AP) threshold, and/or increased amplitude of depolarizing spontaneous fluctuations of membrane potential (DSFs) to bridge the gap between RMP and AP threshold. Previous work showed that acute, sustained exposure to serotonin (5-HT) hyperpolarized AP threshold and potentiated DSFs, leading to ongoing activity if a separate source of maintained depolarization was present. Cellular signaling pathways that increase DSF amplitude and promote ongoing activity acutely in nociceptors are not known for any neuromodulator. Here, isolated DRG neurons from male rats were used to define the pathway by which low concentrations of 5-HT enhance DSFs, hyperpolarize AP threshold, and promote ongoing activity. A selective 5-HT4 receptor antagonist blocked these 5-HT-induced hyperexcitable effects, while a selective 5-HT4 agonist mimicked the effects of 5-HT. Inhibition of cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), attenuated 5-HT's hyperexcitable effects, but a blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels had no significant effect. 5-HT4-dependent PKA activation was specific to DRG neurons that bind isolectin B4 (a nonpeptidergic nociceptor marker). 5-HT's effects on AP threshold, DSFs, and ongoing activity were mimicked by a cAMP analog. Sustained exposure to 5-HT promotes ongoing activity in nonpeptidergic nociceptors through the Gs-coupled 5-HT4 receptor and downstream cAMP signaling involving both PKA and EPAC.
Collapse
Affiliation(s)
- Elia R Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Jin Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Liu W, Ha Y, Xia F, Zhu S, Li Y, Shi S, Mei FC, Merkley K, Vizzeri G, Motamedi M, Cheng X, Liu H, Zhang W. Neuronal Epac1 mediates retinal neurodegeneration in mouse models of ocular hypertension. J Exp Med 2020; 217:133574. [PMID: 31918438 PMCID: PMC7144517 DOI: 10.1084/jem.20190930] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Progressive loss of retinal ganglion cells (RGCs) leads to irreversible visual deficits in glaucoma. Here, we found that the level of cyclic AMP and the activity and expression of its mediator Epac1 were increased in retinas of two mouse models of ocular hypertension. Genetic depletion of Epac1 significantly attenuated ocular hypertension–induced detrimental effects in the retina, including vascular inflammation, neuronal apoptosis and necroptosis, thinning of ganglion cell complex layer, RGC loss, and retinal neuronal dysfunction. With bone marrow transplantation and various Epac1 conditional knockout mice, we further demonstrated that Epac1 in retinal neuronal cells (especially RGCs) was responsible for their death. Consistently, pharmacologic inhibition of Epac activity prevented RGC loss. Moreover, in vitro study on primary RGCs showed that Epac1 activation was sufficient to induce RGC death, which was mechanistically mediated by CaMKII activation. Taken together, these findings indicate that neuronal Epac1 plays a critical role in retinal neurodegeneration and suggest that Epac1 could be considered a target for neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonju Ha
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Shuang Zhu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Yi Li
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX
| | - Kevin Merkley
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Gianmarco Vizzeri
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX.,Departments of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
26
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72:486-507. [PMID: 32394362 PMCID: PMC7329796 DOI: 10.1007/s43440-020-00109-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background Despite the increasing knowledge of the etiology of neuropathic pain, this type of chronic pain is resistant to available analgesics in approximately 50% of patients and therefore is continuously a subject of considerable interest for physiologists, neurologists, medicinal chemists, pharmacologists and others searching for more effective treatment options for this debilitating condition. Materials and methods The present review article is the first of the two articles focused on chemotherapy-induced peripheral neuropathy (CIPN). Results CIPN is regarded as one of the most common drug-induced neuropathies and is highly pharmacoresistant. The lack of efficacious pharmacological methods for treating CIPN and preventing its development makes CIPN-related neuropathic pain a serious therapeutic gap in current medicine and pharmacotherapy. In this paper, the most recent advances in the field of studies on CIPN caused by platinum compounds (namely oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib are summarized. Conclusions The prevalence of CIPN, potential causes, risk factors, symptoms and molecular mechanisms underlying this pharmacoresistant condition are discussed. Graphic abstract ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
28
|
Gray JL, von Delft F, Brennan PE. Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angew Chem Int Ed Engl 2020; 59:6342-6366. [PMID: 30869179 PMCID: PMC7204875 DOI: 10.1002/anie.201900585] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
The Ras superfamily of small GTPases are guanine-nucleotide-dependent switches essential for numerous cellular processes. Mutations or dysregulation of these proteins are associated with many diseases, but unsuccessful attempts to target the small GTPases directly have resulted in them being classed as "undruggable". The GTP-dependent signaling of these proteins is controlled by their regulators; guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in the Rho and Rab subfamilies, guanine nucleotide dissociation inhibitors (GDIs). This review covers the recent small molecule and biologics strategies to target the small GTPases through their regulators. It seeks to critically re-evaluate recent chemical biology practice, such as the presence of PAINs motifs and the cell-based readout using compounds that are weakly potent or of unknown specificity. It highlights the vast scope of potential approaches for targeting the small GTPases in the future through their regulatory proteins.
Collapse
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Frank von Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
| |
Collapse
|
29
|
Gray JL, Delft F, Brennan PE. Targeting der kleinen GTPasen über ihre regulatorischen Proteine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201900585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
| | - Frank Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
- Department of BiochemistryUniversity of Johannesburg Auckland Park 2006 Südafrika
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of Oxford Oxford OX3 7FZ Großbritannien
| |
Collapse
|
30
|
Styczynski LM, Schappacher KA, Baccei ML. Early life vincristine fails to prime developing pain pathways. Neurosci Lett 2020; 720:134764. [PMID: 31958538 DOI: 10.1016/j.neulet.2020.134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Early life administration of vincristine (VNC), commonly used to treat pediatric leukemia, evokes peripheral neuropathy and mechanical pain hypersensitivity in rats that lasts into adolescence. However, the degree to which VNC-evoked neuropathic pain persists throughout adulthood has yet to be examined. It also remains unclear if pediatric VNC exposure can 'prime' developing nociceptive pathways and thereby exacerbate chronic pain following subsequent trauma later in life. To address these issues, rats received five total doses of VNC (60 μg/kg; or vehicle) on postnatal days (P) 11, 13, 17, 19 and 21 followed by a hindpaw surgical incision during adulthood. In addition, in order to model the clinical scenario where cancer relapse necessitates another round of chemotherapy, separate groups of rats that had been treated with VNC (or vehicle) as neonates were subsequently administered VNC as adults (five injections at 100 μg/kg). Intraepidermal nerve fiber density and baseline mechanical pain sensitivity were similar between the neonatal VNC and vehicle-treated littermate controls at 13-15 weeks of age, suggesting that the peripheral neuropathy, and resulting chronic pain, had resolved by adulthood. Importantly, there was no significant overall effect of early life VNC on the severity of post-operative pain following adult incision. Similarly, prior VNC exposure did not significantly influence the degree of mechanical pain hypersensitivity produced by adult VNC treatment. Collectively, these findings suggest that early life VNC administration does not increase the susceptibility to develop chronic pain as adults.
Collapse
Affiliation(s)
- Lauren M Styczynski
- Medical Sciences Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Katie A Schappacher
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
31
|
EPAC1 and EPAC2 promote nociceptor hyperactivity associated with chronic pain after spinal cord injury. NEUROBIOLOGY OF PAIN 2019; 7:100040. [PMID: 31890991 PMCID: PMC6926371 DOI: 10.1016/j.ynpai.2019.100040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic pain following spinal cord injury (SCI) is associated with electrical hyperactivity (spontaneous and evoked) in primary nociceptors. Cyclic adenosine monophosphate (cAMP) signaling is an important contributor to nociceptor excitability, and knockdown of the cAMP effector, exchange protein activated by cAMP (EPAC), has been shown to relieve pain-like responses in several chronic pain models. To examine potentially distinct roles of each EPAC isoform (EPAC1 and 2) in maintaining chronic pain, we used rat and mouse models of contusive spinal cord injury (SCI). Pharmacological inhibition of EPAC1 or 2 in a rat SCI model was sufficient to reverse SCI-induced nociceptor hyperactivity, indicating that EPAC1 and 2 signaling activity are complementary, with both required to maintain hyperactivity. However, EPAC activation was not sufficient to induce similar hyperactivity in nociceptors from naïve rats, and we observed no change in EPAC protein expression after SCI. In the mouse SCI model, inhibition of both EPAC isoforms through a combination of pharmacological inhibition and genetic deletion was required to reverse SCI-induced nociceptor hyperactivity. This was consistent with our finding that neither EPAC1-/- nor EPAC2-/- mice were protected against SCI-induced chronic pain as assessed with an operant mechanical conflict test. Thus, EPAC1 and 2 activity may play a redundant role in mouse nociceptors, although no corresponding change in EPAC protein expression levels was detected after SCI. Despite some differences between these species, our data demonstrate a fundamental role for both EPAC1 and EPAC2 in mechanisms maintaining nociceptor hyperactivity and chronic pain after SCI.
Collapse
|
32
|
Ahmed A, Boulton S, Shao H, Akimoto M, Natarajan A, Cheng X, Melacini G. Recent Advances in EPAC-Targeted Therapies: A Biophysical Perspective. Cells 2019; 8:E1462. [PMID: 31752286 PMCID: PMC6912387 DOI: 10.3390/cells8111462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
The universal second messenger cAMP regulates diverse intracellular processes by interacting with ubiquitously expressed proteins, such as Protein Kinase A (PKA) and the Exchange Protein directly Activated by cAMP (EPAC). EPAC is implicated in multiple pathologies, thus several EPAC-specific inhibitors have been identified in recent years. However, the mechanisms and molecular interactions underlying the EPAC inhibition elicited by such compounds are still poorly understood. Additionally, being hydrophobic low molecular weight species, EPAC-specific inhibitors are prone to forming colloidal aggregates, which result in non-specific aggregation-based inhibition (ABI) in aqueous systems. Here, we review from a biophysical perspective the molecular basis of the specific and non-specific interactions of two EPAC antagonists-CE3F4R, a non-competitive inhibitor, and ESI-09, a competitive inhibitor of EPAC. Additionally, we discuss the value of common ABI attenuators (e.g., TX and HSA) to reduce false positives at the expense of introducing false negatives when screening aggregation-prone compounds. We hope this review provides the EPAC community effective criteria to evaluate similar compounds, aiding in the optimization of existing drug leads, and informing the development of the next generation of EPAC-specific inhibitors.
Collapse
Affiliation(s)
- Alveena Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Hongzhao Shao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| |
Collapse
|
33
|
Boyette-Davis JA, Hou S, Abdi S, Dougherty PM. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag 2018; 8:363-375. [PMID: 30212277 PMCID: PMC6462837 DOI: 10.2217/pmt-2018-0020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 01/16/2023] Open
Abstract
The burdensome condition of chemotherapy-induced peripheral neuropathy occurs with various chemotherapeutics, including bortezomib, oxaliplatin, paclitaxel and vincristine. The symptoms, which include pain, numbness, tingling and loss of motor function, can result in therapy titrations that compromise therapy efficacy. Understanding the mechanisms of chemotherapy-induced peripheral neuropathy is therefore essential, yet incompletely understood. The literature presented here will address a multitude of molecular and cellular mechanisms, beginning with the most well-understood cellular and molecular-level changes. These modifications include alterations in voltage-gated ion channels, neurochemical transmission, organelle function and intracellular pathways. System-level alterations, including changes to glial cells and cytokine activation are also explored. Finally, we present research on the current understanding of genetic contributions to this condition. Suggestions for future research are provided.
Collapse
Affiliation(s)
- Jessica A Boyette-Davis
- Department of Psychology & Behavioral Neuroscience, St Edward's University, 3001 S Congress, Austin, TX 78704, USA
| | - Saiyun Hou
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Patrick M Dougherty
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| |
Collapse
|