1
|
Herrmann E, Schindehütte M, Kindl G, Reinhold AK, Aulbach F, Rose N, Dreiling J, Schwarzkopf D, Meir M, Jin Y, Teichmüller K, Widder A, Blum R, Sawalma A, Cebulla N, Sendtner M, Meissner W, Brack A, Pham M, Sommer C, Schlegel N, Rittner HL. Chronic postsurgical inguinal pain: incidence and diagnostic biomarkers from a large German national claims database. Br J Anaesth 2025:S0007-0912(25)00009-1. [PMID: 39909798 DOI: 10.1016/j.bja.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Chronic postsurgical inguinal pain (CPIP) is the most common complication of groin hernia surgery. The characteristics of patients, their medical care, and choice of diagnostic tools remain to be defined to optimise preventive and therapeutic interventions. METHODS Claims data from 2018 and a 1-yr follow-up were analysed for incidence and medical care. A separate cohort (141 healthy controls and 17 CPIP patients) was examined by deep phenotyping. This included sensory testing, blood and skin biopsies, MRI of the dorsal root ganglion (DRG), and patient-reported outcomes. RESULTS Of 11,221 patients with hernia surgery in 2018 identified, 8.5% had pain before that was relieved by surgery, but a similar percentage had novel pain in this region. Deep phenotyping of 141 healthy controls provided a map of the inguinal sensory system. The following analysis of patients with CPIP revealed that they suffered from moderate pain with neuropathic features, individual sensory abnormalities, and unilateral L1 DRG atrophy. In the blood, levels of C-C-motif chemokine ligand (CCL2) and brain-derived neurotrophic factor (BDNF) were upregulated, whereas apolipoprotein A1 (ApoA1) concentration was reduced. A cluster of DRG atrophy, BDNF, ApoA1, and anxiety correlated best with the diagnosis. CPIP patients with novel pain had significantly more DRG atrophy (-24% ipsilateral vs contralateral volume). CONCLUSIONS CPIP is often newly acquired after surgery. A combination of DRG imaging, serum markers, and anxiety screening can support the diagnosis. In the future, this could guide clinicians towards more personalised therapies (e.g. targeting anxiety or lipid profiles) and possible altered surgical techniques. CLINICAL TRIAL REGISTRATION German Trial Registry DRKS00024588 and DRKS00016790.
Collapse
Affiliation(s)
- Eva Herrmann
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Magnus Schindehütte
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Kindl
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ann-Kristin Reinhold
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Felix Aulbach
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Norman Rose
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Johannes Dreiling
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Daniel Schwarzkopf
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Michael Meir
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Yuying Jin
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Karolin Teichmüller
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Anna Widder
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Abdelrahman Sawalma
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Nadine Cebulla
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Sendtner
- Institute for Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Winfried Meissner
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Alexander Brack
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Burgess J, Marshall A, Rapteas L, Riley D, Matsumoto K, Boon C, Alchawaf A, Ferdousi M, Malik RA, Marshall A, Kaye S, Gosal D, Frank B, Alam U. Idiopathic Distal Sensory Polyneuropathy and Fibromyalgia Syndrome: A Comparative Phenotyping Study. Pain Ther 2024; 13:1541-1558. [PMID: 39264538 PMCID: PMC11543958 DOI: 10.1007/s40122-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Painful idiopathic distal sensory polyneuropathy (IDSP) and fibromyalgia syndrome (FMS) are cryptogenic chronic pain syndromes. The contribution of small fibre pathology (SFP) in FMS remains controversial. This study aims to quantify small nerve pathology in participants with IDSP and FMS and identify relationships of SFP with sensory phenotypes. METHODS In this study, 73 individuals (FMS: 25, IDSP: 23, healthy volunteers: 25) underwent comprehensive assessment, including neurological exams, questionnaires, sensory tests, and corneal confocal microscopy. RESULTS IDSP participants displayed lower wind-up ratio (WUR) relative to FMS (p < 0.001), loss of function to thermal and mechanical stimuli and elevated neuropathy disability scores compared to FMS and healthy volunteers (all p < 0.001). FMS participants demonstrated gain of function to heat and blunt pressure pain responses relative to IDSP, and healthy volunteers (heat: p = 0.002 and p = 0.003; pressure: both p < 0.001) and WUR (both p < 0.001). FMS participants exhibited reduced corneal nerve fibre density (p = 0.02), while IDSP participants had lower global corneal nerve measures (density, branch density, and length) relative to healthy volunteers (all p < 0.001). Utilising corneal nerve fibre length, SFP was demonstrated in 66.6% of participants (FMS: 13/25; IDSP: 22/23). CONCLUSION Participants with SFP, in both FMS and IDSP, reported symptoms indicative of small nerve fibre disease. Although distinctions in pain distributions are evident between individuals with FMS and IDSP, over 50% of participants between the two conditions displayed both a loss and gain of thermal and mechanical function suggestive of shared mechanisms. However, sensory phenotypes were associated with the presence of SFP in IDSP but not in FMS.
Collapse
Affiliation(s)
- Jamie Burgess
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Anne Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Leandros Rapteas
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David Riley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Kohei Matsumoto
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Division of Medicine, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Neurophysiology, The Walton Centre, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Stephen Kaye
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Bernhard Frank
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
- Department of Diabetes and Endocrinology, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
3
|
Pacifico P, Menichella DM. Molecular mechanisms of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:279-309. [PMID: 39580215 DOI: 10.1016/bs.irn.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Peripheral neuropathic pain, which occurs after a lesion or disease affecting the peripheral somatosensory nervous system, is a complex and challenging condition to treat. This chapter will cover molecular mechanisms underlying the pathophysiology of peripheral neuropathic pain, focusing on (1) sensitization of nociceptors, (2) neuro-immune crosstalk, and (3) axonal degeneration and regeneration. The chapter will also emphasize the importance of identifying novel therapeutic targets in non-neuronal cells. A comprehensive understanding of how changes at both neuronal and non-neuronal levels contribute to peripheral neuropathic pain may significantly improve pain management and treatment options, expanding to topical application that bypass the side effects associated with systemic administration.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Daniela M Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
4
|
Miclescu A, Rönngren C, Bengtsson M, Gordh T, Hedin A. Increased risk of persistent neuropathic pain after traumatic nerve injury and surgery for carriers of a human leukocyte antigen haplotype. Pain 2024; 165:1404-1412. [PMID: 38147413 PMCID: PMC11090029 DOI: 10.1097/j.pain.0000000000003143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/28/2023]
Abstract
ABSTRACT It is not known why some patients develop persistent pain after nerve trauma while others do not. Among multiple risk factors for the development of persistent posttrauma and postsurgical pain, a neuropathic mechanism due to iatrogenic nerve lesion has been proposed as the major cause of these conditions. Because there is some evidence that the human leukocyte antigen (HLA) system plays a role in persistent postsurgical pain, this study aimed to identify the genetic risk factors, specifically among HLA loci, associated with chronic neuropathic pain after traumatic nerve injuries and surgery in the upper extremities. Blood samples were taken to investigate the contribution of HLA alleles (ie, HLA-A, HLA-B, HLA-DRB1, HLA-DQB1, and HLA-DPB1) in a group of patients with persistent neuropathic pain (n = 70) and a group of patients with neuropathy without pain (n = 61). All subjects had intraoperatively verified nerve damage in the upper extremity. They underwent bedside clinical neurological examination to identify the neuropathic pain component according to the present grading system of neuropathic pain. Statistical analyses on the allele and haplotype were conducted using the BIGDAWG package. We found that the HLA haplotype A*02:01-B*15:01-C*03:04-DRB1*04:01-DQB1*03:02 was associated with an increased risk of developing persistent neuropathic pain in the upper extremity (OR = 9.31 [95% CI 1.28-406.45], P < 0.05). No significant associations were found on an allele level when correcting for multiple testing. Further studies are needed to investigate whether this association is on a haplotypic level or if certain alleles may be causing the association.
Collapse
Affiliation(s)
| | | | - Mats Bengtsson
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anders Hedin
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Jänsch S, Evdokimov D, Egenolf N, Meyer zu Altenschildesche C, Kreß L, Üçeyler N. Distinguishing fibromyalgia syndrome from small fiber neuropathy: a clinical guide. Pain Rep 2024; 9:e1136. [PMID: 38283649 PMCID: PMC10811691 DOI: 10.1097/pr9.0000000000001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) are distinct pain conditions that share commonalities and may be challenging as for differential diagnosis. Objective To comprehensively investigate clinical characteristics of women with FMS and SFN to determine clinically applicable parameters for differentiation. Methods We retrospectively analyzed medical records of 158 women with FMS and 53 with SFN focusing on pain-specific medical and family history, accompanying symptoms, additional diseases, and treatment. We investigated data obtained using standardized pain, depression, and anxiety questionnaires. We further analyzed test results and findings obtained in standardized small fiber tests. Results FMS patients were on average ten years younger at symptom onset, described higher pain intensities requiring frequent change of pharmaceutics, and reported generalized pain compared to SFN. Pain in FMS was accompanied by irritable bowel or sleep disturbances, and in SFN by paresthesias, numbness, and impaired glucose metabolism (P < 0.01 each). Family history was informative for chronic pain and affective disorders in FMS (P < 0.001) and for neurological disorders in SFN patients (P < 0.001). Small fiber pathology in terms of skin denervation and/or thermal sensory threshold elevation was present in 110/158 (69.7 %) FMS patients and 39/53 (73.6 %) SFN patients. FMS patients mainly showed proximally reduced skin innervation and higher corneal nerve branch densities (p<0.001) whereas SFN patients were characterized by reduced cold detection and prolonged electrical A-delta conduction latencies (P < 0.05). Conclusions Our data show that FMS and SFN differ substantially. Detailed pain, drug and family history, investigating blood glucose metabolism, and applying differential small fiber tests may help to improve diagnostic differentiation and targeted therapy.
Collapse
Affiliation(s)
- Sarah Jänsch
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Dimitar Evdokimov
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Nadine Egenolf
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Caren Meyer zu Altenschildesche
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Luisa Kreß
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Fernandez A, Graf G, Lasserre A, Daeppen JB, Chu Sin Chung P, Berna C, Suter MR. Somatosensory profiling of patients undergoing alcohol withdrawal: Do neuropathic pain and sensory loss represent a problem? J Peripher Nerv Syst 2023; 28:490-499. [PMID: 37419872 DOI: 10.1111/jns.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Chronic heavy alcohol use is known to cause neurological complications such as peripheral neuropathy. Concerning the pathophysiology, few sural nerve and skin biopsy studies showed that small fibers might be selectively vulnerable to degeneration in alcohol-related peripheral neuropathy. Pain has rarely been properly evaluated in this pathology. The present study aims at assessing pain intensity, potential neuropathic characteristics as well as the functionality of both small and large nerve sensitive fibers. METHODS In this observational study, 27 consecutive adult patients, hospitalized for alcohol withdrawal and 13 healthy controls were recruited. All the participants underwent a quantitative sensory testing (QST) according to the standardized protocol of the German Research Network Neuropathic Pain, a neurological examination and filled standardized questionnaires assessing alcohol consumption and dependence as well as pain characteristics and psychological comorbidities. RESULTS Nearly half of the patients (13/27) reported pain. Yet, pain intensity was weak, leading to a low interference with daily life, and its characteristics did not support a neuropathic component. A functional impairment of small nerve fibers was frequently described, with thermal hypoesthesia observed in 52% of patients. Patients with a higher alcohol consumption over the last 2 years showed a greater impairment of small fiber function. DISCUSSION Patients report pain but it is however unlikely to be caused by peripheral neuropathy given the non-length-dependent distribution and the absence of neuropathic pain features. Chronic pain in AUD deserves to be better evaluated and managed as it represents an opportunity to improve long-term clinical outcomes, potentially participating to relapse prevention.
Collapse
Affiliation(s)
- Aurore Fernandez
- Pain Center, Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Center for Integrative and Complementary Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Guillaume Graf
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Lasserre
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry-Addiction Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Bernard Daeppen
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry-Addiction Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Chantal Berna
- Pain Center, Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Center for Integrative and Complementary Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Marc R Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Krämer HH, Bücker P, Jeibmann A, Richter H, Rosenbohm A, Jeske J, Baka P, Geber C, Wassenberg M, Fangerau T, Karst U, Schänzer A, van Thriel C. Gadolinium contrast agents: dermal deposits and potential effects on epidermal small nerve fibers. J Neurol 2023:10.1007/s00415-023-11740-z. [PMID: 37138180 DOI: 10.1007/s00415-023-11740-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Small fiber neuropathy (SFN) affects unmyelinated and thinly myelinated nerve fibers causing neuropathic pain with distal distribution and autonomic symptoms. In idiopathic SFN (iSFN), 30% of the cases, the underlying aetiology remains unknown. Gadolinium (Gd)-based contrast agents (GBCA) are widely used in magnetic resonance imaging (MRI). However, side-effects including musculoskeletal disorders and burning skin sensations were reported. We investigated if dermal Gd deposits are more prevalent in iSFN patients exposed to GBCAs, and if dermal nerve fiber density and clinical parameters are likewise affected. 28 patients (19 females) with confirmed or no GBCA exposure were recruited in three German neuromuscular centers. ISFN was confirmed by clinical, neurophysiological, laboratory and genetic investigations. Six volunteers (two females) served as controls. Distal leg skin biopsies were obtained according to European recommendations. In these samples Gd was quantified by elemental bioimaging and intraepidermal nerve fibers (IENF) density via immunofluorescence analysis. Pain phenotyping was performed in all patients, quantitative sensory testing (QST) only in a subset (15 patients; 54%). All patients reported neuropathic pain, described as burning (n = 17), jabbing (n = 16) and hot (n = 11) and five QST scores were significantly altered. Compared to an equal distribution significantly more patients reported GBCA exposures (82%), while 18% confirmed no exposures. Compared to unexposed patients/controls significantly increased Gd deposits and lower z-scores of the IENF density were confirmed in exposed patients. QST scores and pain characteristics were not affected. This study suggests that GBCA exposure might alter IENF density in iSFN patients. Our results pave the road for further studies investigating the possible role of GBCA in small fiber damage, but more investigations and larger samples are needed to draw firm conclusions.
Collapse
Affiliation(s)
- Heidrun H Krämer
- Department of Neurology, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Patrick Bücker
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149, Münster, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Henning Richter
- Clinic for Diagnostic Imaging, Diagnostic Imaging Research Unit (DIRU),Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | | | - Johanna Jeske
- Department of Neurology, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Panoraia Baka
- Department of Neurology, University Medical Center, 55101, Mainz, Germany
| | - Christian Geber
- Department of Neurology, University Medical Center, 55101, Mainz, Germany
- DRK Pain Center Mainz, 55131, Mainz, Germany
| | - Matthias Wassenberg
- Department of Neurology, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Tanja Fangerau
- Department of Neurology, University of Ulm, 89081, Ulm, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149, Münster, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, 35392, Giessen, Germany.
| | - Christoph van Thriel
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany.
| |
Collapse
|
8
|
Pan W, Huang X, Yu Z, Ding Q, Xia L, Hua J, Gu B, Xiong Q, Yu H, Wang J, Xu Z, Zeng L, Bai G, Liu H. Netrin-3 Suppresses Diabetic Neuropathic Pain by Gating the Intra-epidermal Sprouting of Sensory Axons. Neurosci Bull 2023; 39:745-758. [PMID: 36587114 PMCID: PMC10169969 DOI: 10.1007/s12264-022-01011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/08/2022] [Indexed: 01/02/2023] Open
Abstract
Diabetic neuropathic pain (DNP) is the most common disabling complication of diabetes. Emerging evidence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area; however, the underlying molecular events remain poorly understood. Here we found that an axon guidance molecule, Netrin-3 (Ntn-3), was expressed in the sensory neurons of mouse dorsal root ganglia (DRGs), and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model. Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice. In contrast, the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice. In conclusion, our studies identified Ntn-3 as an important regulator of DNP pathogenesis by gating the aberrant sprouting of sensory axons, indicating that Ntn-3 is a potential druggable target for DNP treatment.
Collapse
Affiliation(s)
- Weiping Pan
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueyin Huang
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zikai Yu
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiongqiong Ding
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
| | - Liping Xia
- Department of Anesthesiology and Department of Neurobiology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jianfeng Hua
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bokai Gu
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qisong Xiong
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hualin Yu
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junbo Wang
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
| | - Zhenzhong Xu
- Department of Anesthesiology and Department of Neurobiology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Linghui Zeng
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
| | - Ge Bai
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
- Institute of Brain and Cognition, Zhejiang University City College School of Medicine, Hangzhou, 310015, China.
| | - Huaqing Liu
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China.
- Institute of Brain and Cognition, Zhejiang University City College School of Medicine, Hangzhou, 310015, China.
| |
Collapse
|
9
|
Wright J, Massey H, Hollis S, Vale T, Bennett DLH, Maley M, Montgomery H, Tipton M, Eglin C. Peripheral sensory function in non-freezing cold injury patients and matched controls. Exp Physiol 2023; 108:438-447. [PMID: 36807948 PMCID: PMC10988457 DOI: 10.1113/ep090720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/20/2022] [Indexed: 02/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is peripheral sensory function impaired in the chronic phase of non-freezing cold injury (NFCI)? What is the main finding and its importance? Warm and mechanical detection thresholds are elevated and intraepidermal nerve fibre density is reduced in individuals with NFCI in their feet when compared to matched controls. This indicates impaired sensory function in individuals with NFCI. Interindividual variation was observed in all groups, and therefore a diagnostic cut-off for NFCI has yet to be established. Longitudinal studies are required to follow NFCI progression from formation to resolution ABSTRACT: The aim of this study was to compare peripheral sensory neural function of individuals with non-freezing cold injury (NFCI) with matched controls (without NFCI) with either similar (COLD) or minimal previous cold exposure (CON). Thirteen individuals with chronic NFCI in their feet were matched with the control groups for sex, age, race, fitness, body mass index and foot volume. All undertook quantitative sensory testing (QST) on the foot. Intraepidermal nerve fibre density (IENFD) was assessed 10 cm above the lateral malleolus in nine NFCI and 12 COLD participants. Warm detection threshold was higher at the great toe in NFCI than COLD (NFCI 45.93 (4.71)°C vs. COLD 43.44 (2.72)°C, P = 0.046), but was non-significantly different from CON (CON 43.92 (5.01)°C, P = 0.295). Mechanical detection threshold on the dorsum of the foot was higher in NFCI (23.61 (33.59) mN) than in CON (3.83 (3.69) mN, P = 0.003), but was non-significantly different from COLD (10.49 (5.76) mN, P > 0.999). Remaining QST measures did not differ significantly between groups. IENFD was lower in NFCI than COLD (NFCI 8.47 (2.36) fibre/mm2 vs. COLD 11.93 (4.04) fibre/mm2 , P = 0.020). Elevated warm and mechanical detection thresholds may indicate hyposensitivity to sensory stimuli in the injured foot for individuals with NFCI and may be due to reduced innervation given the reduction in IENFD. Longitudinal studies are required to identify the progression of sensory neuropathy from the formation of injury to its resolution, with appropriate control groups employed.
Collapse
Affiliation(s)
- Jennifer Wright
- Extreme Environments Laboratory, School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Heather Massey
- Extreme Environments Laboratory, School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Sarah Hollis
- Regional Occupational Health Team (ROHT) CatterickCatterick GarrisonUK
| | - Tom Vale
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
| | | | - Matthew Maley
- Environmental Ergonomics Research Centre, Loughborough School of Design and Creative ArtsLoughborough UniversityLoughboroughUK
| | | | - Michael Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Clare Eglin
- Extreme Environments Laboratory, School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
10
|
Miclescu AA, Granlund P, Butler S, Gordh T. Association between systemic inflammation and experimental pain sensitivity in subjects with pain and painless neuropathy after traumatic nerve injuries. Scand J Pain 2023; 23:184-199. [PMID: 35531763 DOI: 10.1515/sjpain-2021-0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Peripheral neuropathies that occur secondary to nerve injuries may be painful or painless, and including a low-grade inflammation and pro-inflammatory cytokines associated with both regeneration and damage of peripheral nerve cells and fibers. Currently, there are no validated methods that can distinguished between neuropathic pain and painless neuropathy. The aim of this study was to search for proinflammatory and anti-inflammatory proteins associated with pain and experimental pain sensitivity in subjects with surgeon-verified nerve injuries in the upper extremities. METHODS One hundred and thirty-one subjects [69 with neuropathic pain, NP; 62 with painless neuropathy, nP] underwent a conditioned pain modulation (CPM) test that included a cold pressor task (CPT) conducted with the non-injured hand submerged in cold water (4 °C) until pain was intolerable. CPM was assessed by pain ratings to pressure stimuli before and after applying the CPT. Efficient CPM effect was defined as the ability of the individual's CS to inhibit at least 29% of pain (eCPM). The subjects were assigned to one of two subgroups: pain sensitive (PS) and pain tolerant (PT) after the time they could tolerate their hand in cold water (PS<40 s and PT=60 s) . Plasma samples were analyzed for 92 proteins incorporated in the inflammation panel using multiplex Protein Extension Array Technology (PEA). Differentially expressed proteins were investigated using both univariate and multivariate analysis (principal component analysis-PCA and orthogonal partial least-squares discriminant analysis-OPLS-DA). RESULTS Significant differences in all protein levels were found between PS and PT subgroups (CV-ANOVA p<0.001), but not between NP and nP groups (p=0.09) or between inefficient CPM (iCPM) and eCPM (p=0.53) subgroups. Several top proteins associated with NP could be detected using multivariate regression analysis such as stromelysin 2 (MMPs), interleukin-2 receptor subunit beta (IL2RB), chemokine (C-X-C motif) ligand 3 (CXCL3), fibroblast growth factor 5 (FGF5), chemokine (C-C motif) ligand 28 (CCL28), CCL25, CCL11, hepatocyte growth factor (HGF), interleukin 4 (IL4), IL13. After adjusting for multiple testing, none of these proteins correlated significantly with pain. Higher levels of CCL20 (p=0.049) and CUB domain-containing protein (CDCP-1; p=0.047) were found to correlate significantly with cold pain sensitivity. CDCP-1 was highly associated with both PS and iCPM (p=0.042). CONCLUSIONS No significant alterations in systemic proteins were found comparing subjects with neuropathic pain and painless neuropathy. An expression of predominant proinflammatory proteins was associated with experimental cold pain sensitivity in both subjects with pain and painless neuropathy. One these proteins, CDC-1 acted as "molecular fingerprint" overlapping both CPM and CPT. This observation might have implications for the study of pain in general and should be addressed in more detail in future experiments.
Collapse
Affiliation(s)
| | - Pontus Granlund
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Stephen Butler
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Steenken L, Conde RM, Müller JK, Escolano-Lozano F, Birklein F, Dimova V. Nociceptive two-point discrimination acuity and body representation failure in polyneuropathy. Scand J Pain 2023; 23:66-75. [PMID: 35922150 DOI: 10.1515/sjpain-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Although patients' complaints suggest polyneuropathy (PNP) and neuropathic pain, routine investigations do not always support the diagnosis. Assessing two-point-pain discrimination thresholds (2ptDT) and quantify body representation disturbances might be useful to close this diagnostic gap. METHODS Pinprick pain and laser-heat pain perception thresholds and 2ptDT on hands, forearms, lower legs and feet were obtained in 20 PNP patients (mean age: 57.6 ± 13.9) and 20 healthy subjects (mean age: 50.6 ± 4.7 years). Body representation disturbances were assessed by self-estimating feet size and the Bath CRPS body perception disturbances questionnaire adapted for PNP. RESULTS Pain perception thresholds and laser-heat pain 2ptDT were unaltered, but patients had higher pinprick pain 2ptDT then the healthy subjects. The 2ptDT for pinprick at the hands discriminate best between groups (U-test; p=0.001). Furthermore, patients estimated their feet longer than they are. In subsequent multivariate discriminant analyses, 2ptDT for pinprick pain at the hands, 2ptDT for laser-heat pain and the perception thresholds for laser-heat pain at the feet classified 85% of PNP vs. HC correctly. The combination of 2ptDT for pinprick pain at the hands, pinprick pain perception thresholds at the calves and foot length estimation differentiates painful vs. non-painful PNPs correctly in 90% of the cases. CONCLUSIONS Testing 2ptDT for painful pinprick stimuli at the hands and asking for foot length estimation might add to diagnostic accuracy in painful PNP.
Collapse
Affiliation(s)
- Livia Steenken
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Rodrigo M Conde
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Neurosciences and Behavior Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julia K Müller
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Fabiola Escolano-Lozano
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Violeta Dimova
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Raputova J, Rajdova A, Vollert J, Srotova I, Rebhorn C, Üçeyler N, Birklein F, Sommer C, Vlckova E, Bednarik J. Continuum of sensory profiles in diabetes mellitus patients with and without neuropathy and pain. Eur J Pain 2022; 26:2198-2212. [PMID: 36069121 PMCID: PMC9825847 DOI: 10.1002/ejp.2034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Quantitative sensory testing (QST) assesses the functional integrity of small and large nerve fibre afferents and central somatosensory pathways; QST was assumed to provide insight into the mechanisms of neuropathy. We analysed QST profiles and phenotypes in patients with diabetes mellitus to study whether these could differentiate patients with and without pain and neuropathy. METHODS A standardized QST protocol was performed and 'loss and gain of function' abnormalities were analysed in four groups of subjects: diabetic patients with painful (pDSPN; n = 220) and non-painful distal symmetric polyneuropathy (nDSPN; n = 219), diabetic patients without neuropathy (DM; n = 23) and healthy non-diabetic subjects (n = 37). Based on the QST findings, diabetic subjects were further stratified into four predefined prototypic phenotypes: sensory loss (SL), thermal hyperalgesia (TH), mechanical hyperalgesia (MH) and healthy individuals. RESULTS Patients in the pDSPN group showed the greatest hyposensitivity ('loss of function'), and DM patients showed the lowest, with statistically significant increases in thermal, thermal pain, mechanical and mechanical pain sensory thresholds. Accordingly, the frequency of the SL phenotype was significantly higher in the pDSPN subgroup (41.8%), than expected (p < 0.0042). The proportion of 'gain of function' abnormalities was low in both pDSPN and nDSPN patients without significant differences. CONCLUSIONS There is a continuum in the sensory profiles of diabetic patients, with a more pronounced sensory loss in pDSPN group probably reflecting somatosensory nerve fibre degeneration. An analysis of 'gain of function' abnormalities (allodynia, hyperalgesia) did not offer a key to understanding the pathophysiology of spontaneous diabetic peripheral neuropathic pain. SIGNIFICANCE This article, using quantitative sensory testing profiles in large cohorts of diabetic patients with and without polyneuropathy and pain, presents a continuum in the sensory profiles of diabetic patients, with more pronounced 'loss of function' abnormalities in painful polyneuropathy patients. Painful diabetic polyneuropathy probably represents a 'more progressed' type of neuropathy with more pronounced somatosensory nerve fibre degeneration. The proportion of 'gain of function' sensory abnormalities was low, and these offer limited understanding of pathophysiological mechanisms of spontaneous neuropathic pain.
Collapse
Affiliation(s)
- Jana Raputova
- Department of Neurology, Centre for Neuromuscular Diseases (Associated National Centre in the European Reference Network ERN EURO‐NMD)University Hospital BrnoBrnoCzech Republic,Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Aneta Rajdova
- Department of Neurology, Centre for Neuromuscular Diseases (Associated National Centre in the European Reference Network ERN EURO‐NMD)University Hospital BrnoBrnoCzech Republic,Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jan Vollert
- Pain Research, Faculty of Medicine, Department of Surgery & Cancer, Chelsea and Westminster CampusImperial College LondonLondonUK,Medical Faculty Mannheim, Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM)Ruprecht‐Karls‐UniversityHeidelbergGermany
| | - Iva Srotova
- Department of Neurology, Centre for Neuromuscular Diseases (Associated National Centre in the European Reference Network ERN EURO‐NMD)University Hospital BrnoBrnoCzech Republic,Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Cora Rebhorn
- Department of NeurologyUniversity Medical CentreMainzGermany
| | | | - Frank Birklein
- Department of NeurologyUniversity Medical CentreMainzGermany
| | | | - Eva Vlckova
- Department of Neurology, Centre for Neuromuscular Diseases (Associated National Centre in the European Reference Network ERN EURO‐NMD)University Hospital BrnoBrnoCzech Republic,Faculty of MedicineMasaryk UniversityBrnoCzech Republic,Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Josef Bednarik
- Department of Neurology, Centre for Neuromuscular Diseases (Associated National Centre in the European Reference Network ERN EURO‐NMD)University Hospital BrnoBrnoCzech Republic,Faculty of MedicineMasaryk UniversityBrnoCzech Republic,Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
13
|
Proinflammatory profile in the skin of Parkinson's disease patients with and without pain. PLoS One 2022; 17:e0276564. [PMID: 36301901 PMCID: PMC9612575 DOI: 10.1371/journal.pone.0276564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
Background Pain is a common non-motor symptom of Parkinson`s disease (PD), however, its pathomechanism remains elusive. Objective We aimed to investigate the local gene expression of selected proinflammatory mediators in patients with PD and correlated our data with patients`pain phenotype. Methods We recruited 30 patients with PD and 30 healthy controls. Pain intensity of patients was assessed using the Numeric Rating Scale (NRS) and patients were stratified into PD pain (NRS≥4) and PD No Pain (NRS<4) subgroups. Skin punch biopsies were immunoassayed for protein-gene product 9.5 as a pan-neuronal marker and intraepidermal nerve fiber density (IEFND). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to assess the gene expression of inflammatory mediators in the skin compared to controls. Results Patients with PD had lower distal IENFD compared to healthy controls. In skin samples, IL-2 (p<0.001) and TNF-α (p<0.01) were expressed higher in PD patients compared to controls. IL-1β (p<0.05) was expressed higher in the PD pain group compared to healthy controls. PD patients with pain receiving analgesics had a lower expression of TNF-α (p<0.05) in the skin compared to those not receiving treatment. Conclusions Our data suggest the occurrence of a local, peripheral inflammatory response in the skin in PD, but do not support this being a relevant factor contributing to pain in PD.
Collapse
|
14
|
Mousselli RL, Gutiérrez Robles AE, Cohen J, Chang A. Successful utilization of high frequency spinal cord stimulation for HIV and chemotherapy induced polyneuropathy. Pain Manag 2022; 12:805-811. [DOI: 10.2217/pmt-2021-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present a case of a 53-year-old male who presented with functionally limiting bilateral lower extremity neuropathic pain secondary to multiple subtypes of small fiber neuropathy. He had failed management with multiple conservative measures including oral medications, physical therapy and desensitization techniques. He ultimately underwent placement of a spinal cord stimulator and continued to experience 80% improvement of his pain, as well as improved function and quality of life at 5 month follow-up. To our knowledge, this is the first reported case of successful treatment of multiple subtypes of small fiber neuropathy with spinal cord stimulator.
Collapse
Affiliation(s)
- Robert L Mousselli
- Department of Physical Medicine & Rehabilitation, Memorial Healthcare System, Hollywood, FL 33021, USA
| | - Andrés E Gutiérrez Robles
- Department of Physical Medicine & Rehabilitation, Memorial Healthcare System, Hollywood, FL 33021, USA
| | - Jackson Cohen
- Department of Physical Medicine & Rehabilitation, Memorial Healthcare System, Hollywood, FL 33021, USA
- Division of Pain Medicine, Memorial Healthcare System, Hollywood, FL 33021, USA
| | - Andrew Chang
- Department of Physical Medicine & Rehabilitation, Memorial Healthcare System, Hollywood, FL 33021, USA
- Division of Pain Medicine, Memorial Healthcare System, Hollywood, FL 33021, USA
| |
Collapse
|
15
|
Enax-Krumova EK, Dahlhaus I, Görlach J, Claeys KG, Montagnese F, Schneider L, Sturm D, Fangerau T, Schlierbach H, Roth A, Wanschitz JV, Löscher WN, Güttsches AK, Vielhaber S, Hasseli R, Zunk L, Krämer HH, Hahn A, Schoser B, Rosenbohm A, Schänzer A. Small fiber involvement is independent from clinical pain in late-onset Pompe disease. Orphanet J Rare Dis 2022; 17:177. [PMID: 35477515 PMCID: PMC9044713 DOI: 10.1186/s13023-022-02327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain occurs in the majority of patients with late onset Pompe disease (LOPD) and is associated with a reduced quality of life. The aim of this study was to analyse the pain characteristics and its relation to a small nerve fiber involvement in LOPD patients. METHODS In 35 patients with LOPD under enzyme replacement therapy without clinical signs of polyneuropathy (19 females; 51 ± 15 years), pain characteristics as well as depressive and anxiety symptoms were assessed using the PainDetect questionnaire (PDQ) and the hospital anxiety and depression scale (HADS), respectively. Distal skin biopsies were analysed for intraepidermal nerve fiber density (IENFD) and compared to age- and gender-matched reference data. Skin biopsies from 20 healthy subjects served as controls to assure validity of the morphometric analysis. RESULTS Pain was reported in 69% of the patients with an average intensity of 4.1 ± 1.1 on the numeric rating scale (NRS; anchors: 0-10). According to PDQ, neuropathic pain was likely in one patient, possible in 29%, and unlikely in 67%. Relevant depression and anxiety symptoms occurred in 31% and 23%, respectively, and correlated with pain intensity. Distal IENFD (3.98 ± 1.95 fibers/mm) was reduced in 57% of the patients. The degree of IENFD reduction did not correlate with the durations of symptoms to ERT or duration of ERT to biopsy. CONCLUSIONS Pain is a frequent symptom in treated LOPD on ERT, though a screening questionnaire seldom indicated neuropathic pain. The high frequency of small nerve fiber pathology in a treated LOPD cohort was found regardless of the presence of pain or comorbid risk factors for SFN and needs further exploration in terms of clinical context, exact mechanisms and when developing novel therapeutic options for LOPD.
Collapse
Affiliation(s)
- Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Iris Dahlhaus
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Görlach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | - Llka Schneider
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, St Georg Hospital, Leipzig, Germany
| | - Dietrich Sturm
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Tanja Fangerau
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Hannah Schlierbach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Julia V Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang N Löscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Anne-Katrin Güttsches
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Rebecca Hasseli
- Department of Rheumtaology and Clinical Immunology, Campus Kerkhoff, Justus-Liebig University, Giessen, Germany
| | - Lea Zunk
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | | | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany.
| |
Collapse
|
16
|
Hansen LEM, Fjelsted CA, Olesen SS, Phillips AE, Faghih M, Wegeberg AM, Drewes AM, Brock C. Simple Quantitative Sensory Testing Reveals Paradoxical Co-existence of Hypoesthesia and Hyperalgesia in Diabetes. FRONTIERS IN PAIN RESEARCH 2022; 2:701172. [PMID: 35295514 PMCID: PMC8915693 DOI: 10.3389/fpain.2021.701172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Diabetic neuropathy is characterized by the paradoxical co-existence of hypo- and hyperalgesia to sensory stimuli. The literature shows consistently sensory differences between healthy and participants with diabetes. We hypothesized that due to differences in pathophysiology, advanced quantitative sensory testing (QST) might reveal sensory discrepancies between type 1 (T1D) and type 2 diabetes (T2D). Furthermore, we investigated whether vibration detection thresholds (VDT) were associated with sensory response. Method: Fifty-six adults with T1D [43 years (28–58)], 99 adults with T2D [65 years (57–71)], and 122 healthy individuals [51 years (34–64)] were included. VDT, pressure pain detection thresholds (pPDT) and tolerance (pPTT), tonic cold pain (hand-immersion in iced water), and central pain mechanisms (temporal summation and conditioned pain modulation) were tested and compared between T1D and T2D. VDT was categorized into normal (< 18 V), intermediary (18–25 V), or high (> 25 V). Results: In comparison to healthy, analysis adjusted for age, BMI, and gender revealed hypoalgesia to tibial (pPDT): p = 0.01, hyperalgesia to tonic cold pain: p < 0.01, and diminished temporal summation (arm: p < 0.01; abdomen: p < 0.01). In comparison to participants with T2D, participants with T1D were hypoalgesic to tibial pPDT: p < 0.01 and pPTT: p < 0.01, and lower VDT: p = 0.02. VDT was not associated with QST responses. Conclusion: Participants with T1D were more hypoalgesic to bone pPDT and pPTT independent of lower VDT, indicating neuronal health toward normalization. Improved understanding of differentiated sensory profiles in T1D and T2D may identify improved clinical endpoints in future trials.
Collapse
Affiliation(s)
- Line Elise Møller Hansen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark
| | - Camilla Ann Fjelsted
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Søren Schou Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Clinical Institute, Aalborg University, Aalborg, Denmark.,Centre of Pancreatic Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mahya Faghih
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Anne-Marie Wegeberg
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Clinical Institute, Aalborg University, Aalborg, Denmark.,Centre of Pancreatic Diseases, Aalborg University Hospital, Aalborg, Denmark.,Steno Diabetes Center Nordjylland, Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Clinical Institute, Aalborg University, Aalborg, Denmark.,Steno Diabetes Center Nordjylland, Aalborg, Denmark
| |
Collapse
|
17
|
Campolo M, Correa L, Gabarrón E, Albayrak M, Quintero-Diaz C, Castellote JM, Casanova-Molla J, Valls-Sole J. Adaptation to tonic heat in healthy subjects and patients with sensory polyneuropathy. Eur J Pain 2022; 26:1056-1068. [PMID: 35263818 DOI: 10.1002/ejp.1930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022]
Abstract
Adaptation to a constant sensory stimulus involves many sites along the path of sensory volleys towards perception. The evaluation of such phenomenon may be of clinical interest. We studied adaptation to a constant temperature stimulus in healthy subjects to set normative data, and in patients with sensory polyneuropathy (SPN), as proof of concept. Twenty-six healthy subjects and 26 patients with SPN in the context of chemotherapy treatment with oxaliplatin for colon cancer were instructed to express through an electronic VAS system (eVAS) the level of sensation felt when a thermode set at either 39º, 41º, 43º, 45º or 47º was applied to their ventral forearm. The eVAS recordings showed typically an abrupt onset that slowed to approach maximum sensation and continued with a slow decrease indicating adaptation. The time to respond (TR), the velocity of the initial response (VR), the maximum sensation (MA), the time to reach MA (MAt), the onset of adaptation (AO), and the decrease in the sensation level with respect to MA at 30 s after stimulus application (SL30), were dependent on the temperature level in all subjects. However, patients showed significantly delayed TR, slowed VR, decreased MA, delayed AO, and reduced SL30, with respect to healthy subjects. Differences were more pronounced at low temperature levels, with absent AO in 25 patients vs. 2 healthy subjects at temperatures of 39º and 41ºC. The study of adaptation to a constant temperature stimulus can furnish valuable data for the assessment of SPN patients.
Collapse
Affiliation(s)
- Michela Campolo
- EMG and Neuropathic Pain Unit, Department of Neurology. Hospital Clínic, Barcelona
| | - Lilia Correa
- Department of Neurology and Neurophysiology. Hospital del Mar, Barcelona
| | - Eva Gabarrón
- EMG and Neuropathic Pain Unit, Department of Neurology. Hospital Clínic, Barcelona
| | - Merve Albayrak
- EMG and Neuropathic Pain Unit, Department of Neurology. Hospital Clínic, Barcelona
| | | | - Juan M Castellote
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jordi Casanova-Molla
- EMG and Neuropathic Pain Unit, Department of Neurology. Hospital Clínic, Barcelona.,Institut d'Investigació Biomedica August Pi Sunyer, IDIBAPS. Barcelona.,Department of Medicine, School of Medicine and Health Sciences, University of Barcelona
| | - Josep Valls-Sole
- Institut d'Investigació Biomedica August Pi Sunyer, IDIBAPS. Barcelona.,Department of Medicine, School of Medicine and Health Sciences, University of Barcelona
| |
Collapse
|
18
|
George DS, Hackelberg S, Jayaraj ND, Ren D, Edassery SL, Rathwell CA, Miller RE, Malfait AM, Savas JN, Miller RJ, Menichella DM. Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics. Pain 2022; 163:560-578. [PMID: 34232927 PMCID: PMC8720329 DOI: 10.1097/j.pain.0000000000002391] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023]
Abstract
ABSTRACT Painful diabetic neuropathy (PDN) is an intractable complication affecting 25% of diabetic patients. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, resulting in calcium overload, axonal degeneration, and loss of cutaneous innervation. The molecular pathways underlying these effects are unknown. Using high-throughput and deep-proteome profiling, we found that mitochondrial fission proteins were elevated in DRG neurons from mice with PDN induced by a high-fat diet (HFD). In vivo calcium imaging revealed increased calcium signaling in DRG nociceptors from mice with PDN. Furthermore, using electron microscopy, we showed that mitochondria in DRG nociceptors had fragmented morphology as early as 2 weeks after starting HFD, preceding the onset of mechanical allodynia and small-fiber degeneration. Moreover, preventing calcium entry into the mitochondria, by selectively deleting the mitochondrial calcium uniporter from these neurons, restored normal mitochondrial morphology, prevented axonal degeneration, and reversed mechanical allodynia in the HFD mouse model of PDN. These studies suggest a molecular cascade linking neuropathic pain to axonal degeneration in PDN. In particular, nociceptor hyperexcitability and the associated increased intracellular calcium concentrations could lead to excessive calcium entry into mitochondria mediated by the mitochondrial calcium uniporter, resulting in increased calcium-dependent mitochondrial fission and ultimately contributing to small-fiber degeneration and neuropathic pain in PDN. Hence, we propose that targeting calcium entry into nociceptor mitochondria may represent a promising effective and disease-modifying therapeutic approach for this currently intractable and widespread affliction. Moreover, these results are likely to inform studies of other neurodegenerative disease involving similar underlying events.
Collapse
Affiliation(s)
| | | | | | - Dongjun Ren
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Craig A. Rathwell
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rachel E. Miller
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Richard J. Miller
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
19
|
Bönhof GJ, Herder C, Ziegler D. Diagnostic Tools, Biomarkers, and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diabetes Rev 2022; 18:e120421192781. [PMID: 33845748 DOI: 10.2174/1573399817666210412123740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The various manifestations of diabetic neuropathy, including distal symmetric sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN), are among the most prevalent chronic complications of diabetes. Major clinical complications of diabetic neuropathies, such as neuropathic pain, chronic foot ulcers, and orthostatic hypotension, are associated with considerable morbidity, increased mortality, and diminished quality of life. Despite the substantial individual and socioeconomic burden, the strategies to diagnose and treat diabetic neuropathies remain insufficient. This review provides an overview of the current clinical aspects and recent advances in exploring local and systemic biomarkers of both DSPN and CAN assessed in human studies (such as biomarkers of inflammation and oxidative stress) for better understanding of the underlying pathophysiology and for improving early detection. Current therapeutic options for DSPN are (I) causal treatment, including lifestyle modification, optimal glycemic control, and multifactorial risk intervention, (II) pharmacotherapy derived from pathogenetic concepts, and (III) analgesic treatment against neuropathic pain. Recent advances in each category are discussed, including non-pharmacological approaches, such as electrical stimulation. Finally, the current therapeutic options for cardiovascular autonomic complications are provided. These insights should contribute to a broader understanding of the various manifestations of diabetic neuropathies from both the research and clinical perspectives.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
20
|
Ponirakis G, Abdul‐Ghani MA, Jayyousi A, Zirie MA, Qazi M, Almuhannadi H, Petropoulos IN, Khan A, Gad H, Migahid O, Megahed A, Al‐Mohannadi S, AlMarri F, Al‐Khayat F, Mahfoud Z, Al Hamad H, Ramadan M, DeFronzo R, Malik RA. Painful diabetic neuropathy is associated with increased nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. J Diabetes Investig 2021; 12:1642-1650. [PMID: 33714226 PMCID: PMC8409832 DOI: 10.1111/jdi.13544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS/INTRODUCTION Painful diabetic peripheral neuropathy (pDPN) is associated with small nerve fiber degeneration and regeneration. This study investigated whether the presence of pDPN might influence nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. MATERIALS AND METHODS This exploratory substudy of an open-label randomized controlled trial undertook the Douleur Neuropathique en 4 questionnaire and assessment of electrochemical skin conductance, vibration perception threshold and corneal nerve morphology using corneal confocal microscopy in participants with and without pDPN treated with exenatide and pioglitazone or basal-bolus insulin at baseline and 1-year follow up, and 18 controls at baseline only. RESULTS Participants with type 2 diabetes, with (n = 13) and without (n = 28) pDPN had comparable corneal nerve fiber measures, electrochemical skin conductance and vibration perception threshold at baseline, and pDPN was not associated with the severity of DPN. There was a significant glycated hemoglobin reduction (P < 0.0001) and weight gain (P < 0.005), irrespective of therapy. Participants with pDPN showed a significant increase in corneal nerve fiber density (P < 0.05), length (P < 0.0001) and branch density (P < 0.005), and a decrease in the Douleur Neuropathique en 4 score (P < 0.01), but no change in electrochemical skin conductance or vibration perception threshold. Participants without pDPN showed a significant increase in corneal nerve branch density (P < 0.01) and no change in any other neuropathy measures. A change in the severity of painful symptoms was not associated with corneal nerve regeneration and medication for pain. CONCLUSIONS This study showed that intensive glycemic control is associated with greater corneal nerve regeneration and an improvement in the severity of pain in patients with painful diabetic neuropathy.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Muhammad A Abdul‐Ghani
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Amin Jayyousi
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | - Mahmoud A Zirie
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | - Murtaza Qazi
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | | | | | - Adnan Khan
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Hoda Gad
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Osama Migahid
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Ayman Megahed
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | | | - Fatema AlMarri
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Fatima Al‐Khayat
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Ziyad Mahfoud
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | | | | | - Ralph DeFronzo
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Rayaz A Malik
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Institute of Cardiovascular ScienceUniversity of ManchesterManchesterUK
| |
Collapse
|
21
|
Yavuz Saricay L, Bayraktutar BN, Kenyon BM, Hamrah P. Concurrent ocular pain in patients with neurotrophic keratopathy. Ocul Surf 2021; 22:143-151. [PMID: 34411735 DOI: 10.1016/j.jtos.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To illustrate that ocular pain may occur in patients with neurotrophic keratopathy (NK) that typically are thought to lack symptoms of discomfort, and that aa subset of these patients may also present with neuropathic corneal pain (NCP). METHOD Retrospective Case series of 7 stage 1 NK patients who presented with concurrent ocular pain, as confirmed by clinical examination, proparacaine challenge test, and in vivo corneal confocal microscopy (IVCM). Records were assessed for results of ocular surface disease index (OSDI), pain on visual analog scale (VAS), ocular pain assessment survey (OPAS), best-corrected visual acuity (BCVA), corneal fluorescein staining (CFS) score, and IVCM findings. IVCM findings were compared to that of 20 healthy reference controls. RESULTS Mean age of patients was 63.7 ± 11.6 (range 44-76) years and 56.9 ± 8.6 (range 42-74) years in reference controls (p = 0.11). At presentation, ocular discomfort was 8.0 ± 1.3 (range 7-10) on VAS and mean OSDI scores were 72.26 ± 6.81 (range 62.50-79.54). Mean BCVA was 20/40, and mean CFS scores were 3.43 ± 0.79 (range 2-4) on the Oxford scale. IVCM analysis showed significant decrease in mean total, main and branch nerve densities in ranges consistent with NK as compared to normal controls (p < 0.001 for all), increased dendritiform cell density in three patients (p < 0.001), and the presence of microneuromas in six of the patients. CONCLUSION Patients with NK are thought to present with hypoesthesia. However, nerve damage and inflammation, which play a role in the development of NK may result in the development of chronic ocular pain, such as NCP, resulting in potential underdiagnosis of either disease.
Collapse
Affiliation(s)
- Leyla Yavuz Saricay
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical School, Tufts Medical Center School of Medicine, Boston, USA
| | - Betul N Bayraktutar
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical School, Tufts Medical Center School of Medicine, Boston, USA
| | - Brendan M Kenyon
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Program in Neuroscience, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical School, Tufts Medical Center School of Medicine, Boston, USA; Program in Neuroscience, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
22
|
No pain, still gain (of function): the relation between sensory profiles and the presence or absence of self-reported pain in a large multicenter cohort of patients with neuropathy. Pain 2021; 162:718-727. [PMID: 32868752 DOI: 10.1097/j.pain.0000000000002058] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT The pathophysiology of pain in neuropathy is complex and may be linked to sensory phenotypes. Quantitative sensory testing, a standardized method to evaluate sensory profiles in response to defined stimuli, assesses functional integrity of small and large nerve fiber afferents and central somatosensory pathways. It has revealed detailed insights into mechanisms of neuropathy, yet it remains unclear if pain directly affects sensory profiles. The main objective of this study was to investigate sensory profiles in patients with various neuropathic conditions, including polyneuropathy, mononeuropathy, and lesions to the central nervous system, in relation to self-reported presence or absence of pain and pain sensitivity using the Pain Sensitivity Questionnaire. A total of 443 patients (332 painful and 111 painless) and 112 healthy participants were investigated. Overall, loss of sensation was equally prevalent in patients with and without spontaneous pain. Pain thresholds were equally lowered in both patient groups, demonstrating that hyperalgesia and allodynia are just as present in patients not reporting any pain. Remarkably, this was similar for dynamic mechanical allodynia. Hypoalgesia was more pronounced in painful polyneuropathy, whereas hyperalgesia was more frequent in painful mononeuropathy (compared with painless conditions). Self-reported pain sensitivity was significantly higher in painful than in painless neuropathic conditions. Our results reveal the presence of hyperalgesia and allodynia in patients with central and peripheral lesions of the somatosensory system not reporting spontaneous pain. This shows that symptoms and signs of hypersensitivity may not necessarily coincide and that painful and painless neuropathic conditions may mechanistically blend into one another.
Collapse
|
23
|
Unal-Cevik I, Orhan D, Acar-Ozen NP, Mamak-Ekinci EB. Small Fiber Functionality in Patients with Diabetic Neuropathic Pain. PAIN MEDICINE 2021; 22:2068-2078. [PMID: 33892490 DOI: 10.1093/pm/pnab150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Diabetic neuropathic pain is associated with small fiber neuropathy. We aimed to assess the functionality of small fibers in patients with diabetes by using a practical method. DESIGN Patients with impaired glucose tolerance (IGT), diabetic neuropathic pain (DNP), type II diabetes mellitus without neuropathic pain, and healthy control were included. Axon-reflex flare responses were induced by the intradermal application of capsaicin and histamine at the distal leg. The associated flare characteristics (flare areas and flare intensities) were recorded by using Laser Speckle Contrast Analysis (LASCA). The pain and itch responses were rated while performing LASCA. To verify the structural properties of the small fibers, proximal and distal skin biopsies were performed. RESULTS DN4, MNSI, NRS, evoked-burning pain scores, and HbA1c levels were the highest in the DNP group. Compatible with length-dependent neuropathy, the distal skin PGP9.5-positive intraepidermal nerve fiber densities (IENFDs) were the lowest, whereas TRPV1-positive IENFDs were the highest in patients with DNP. The distal leg LASCA data showed hypo-functionality in both patients with IGT and DNP and association with disease severity. CONCLUSION There is an unmet need to practically assess the functionality of small fibers in patients with pain. In this study, a practical and objective method that does not need special expertise for the measurement of the functional properties of small fibers by using axon-flare responses is presented. The LASCA method could potentially facilitate a practical, quick (within 5 minutes), and very early diagnosis of small fiber hypo-functionality in both patients with IGT and DNP.
Collapse
Affiliation(s)
- Isin Unal-Cevik
- Hacettepe University Faculty of Medicine, Department of Neurology, Pain Unit
| | - Diclehan Orhan
- Hacettepe University Faculty of Medicine, Department of Pathology
| | - Nazire Pinar Acar-Ozen
- Hacettepe University Faculty of Medicine, Department of Neurology, Pain Unit.,Ataturk Education and Research Hospital, Department of Neurology
| | | |
Collapse
|
24
|
Biagioni F, Vivacqua G, Lazzeri G, Ferese R, Iannacone S, Onori P, Morini S, D’Este L, Fornai F. Chronic MPTP in Mice Damage-specific Neuronal Phenotypes within Dorsal Laminae of the Spinal Cord. Neurotox Res 2021; 39:156-169. [PMID: 33206341 PMCID: PMC7936970 DOI: 10.1007/s12640-020-00313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The neurotoxin 1-methyl, 4-phenyl, 1, 2, 3, 6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism. Such a disease is characterized by neuronal damage in multiple regions beyond the nigrostriatal pathway including the spinal cord. The neurotoxin MPTP damages spinal motor neurons. So far, in Parkinson's disease (PD) patients alpha-synuclein aggregates are described in the dorsal horn of the spinal cord. Nonetheless, no experimental investigation was carried out to document whether MPTP affects the sensory compartment of the spinal cord. Thus, in the present study, we investigated whether chronic exposure to small doses of MPTP (5 mg/kg/X2, daily, for 21 days) produces any pathological effect within dorsal spinal cord. This mild neurotoxic protocol produces a damage only to nigrostriatal dopamine (DA) axon terminals with no decrease in DA nigral neurons assessed by quantitative stereology. In these experimental conditions we documented a decrease in enkephalin-, calretinin-, calbindin D28K-, and parvalbumin-positive neurons within lamina I and II and the outer lamina III. Met-Enkephalin and substance P positive fibers are reduced in laminae I and II of chronically MPTP-treated mice. In contrast, as reported in PD patients, alpha-synuclein is markedly increased within spared neurons and fibers of lamina I and II after MPTP exposure. This is the first evidence that experimental parkinsonism produces the loss of specific neurons of the dorsal spinal cord, which are likely to be involved in sensory transmission and in pain modulation providing an experimental correlate for sensory and pain alterations in PD.
Collapse
Affiliation(s)
| | - Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Via Alvaro del Portillo 21, 00125 Roma, Italy
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, Via Alfonso Borelli 50, 00161 Roma, Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | - Simone Iannacone
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, Via Alfonso Borelli 50, 00161 Roma, Italy
| | - Paolo Onori
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, Via Alfonso Borelli 50, 00161 Roma, Italy
| | - Sergio Morini
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Via Alvaro del Portillo 21, 00125 Roma, Italy
| | - Loredana D’Este
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, Via Alfonso Borelli 50, 00161 Roma, Italy
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, via dell’Elettronica, Pozzilli, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
25
|
Egenolf N, Zu Altenschildesche CM, Kreß L, Eggermann K, Namer B, Gross F, Klitsch A, Malzacher T, Kampik D, Malik RA, Kurth I, Sommer C, Üçeyler N. Diagnosing small fiber neuropathy in clinical practice: a deep phenotyping study. Ther Adv Neurol Disord 2021; 14:17562864211004318. [PMID: 34335876 PMCID: PMC8283814 DOI: 10.1177/17562864211004318] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background and aims Small fiber neuropathy (SFN) is increasingly suspected in patients with pain of uncertain origin, and making the diagnosis remains a challenge lacking a diagnostic gold standard. Methods In this case-control study, we prospectively recruited 86 patients with a medical history and clinical phenotype suggestive of SFN. Patients underwent neurological examination, quantitative sensory testing (QST), and distal and proximal skin punch biopsy, and were tested for pain-associated gene loci. Fifty-five of these patients additionally underwent pain-related evoked potentials (PREP), corneal confocal microscopy (CCM), and a quantitative sudomotor axon reflex test (QSART). Results Abnormal distal intraepidermal nerve fiber density (IENFD) (60/86, 70%) and neurological examination (53/86, 62%) most frequently reflected small fiber disease. Adding CCM and/or PREP further increased the number of patients with small fiber impairment to 47/55 (85%). Genetic testing revealed potentially pathogenic gene variants in 14/86 (16%) index patients. QST, QSART, and proximal IENFD were of lower impact. Conclusion We propose to diagnose SFN primarily based on the results of neurological examination and distal IENFD, with more detailed phenotyping in specialized centers.
Collapse
Affiliation(s)
- Nadine Egenolf
- Department of Neurology, University of Würzburg, Germany
| | | | - Luisa Kreß
- Department of Neurology, University of Würzburg, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Barbara Namer
- Institute of Physiology, University of Erlangen, Bayern, Germany
| | | | | | | | - Daniel Kampik
- Department of Ophthalmology, University of Würzburg, Bayern, Germany
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, Würzburg, 97080, Germany
| |
Collapse
|
26
|
Prolonged time of after-sensation after experimental pain stimuli despite efficient conditioned pain modulation in patients with chronic neuropathic pain after traumatic nerve injuries in upper extremity. Pain Rep 2021; 6:e908. [PMID: 33688603 PMCID: PMC7935643 DOI: 10.1097/pr9.0000000000000908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 11/26/2022] Open
Abstract
Prolonged time of after-sensation after experimental pain stimuli despite efficient conditioned pain modulation was observed in patients with neuropathic pain after traumatic nerve injuries As yet, there is limited research that can identify factors that differentiate between painful and nonpainful neuropathies after traumatic nerve injury. The aim of this study was to compare subjects with pain and without pain, all after operative nerve repair in the upper extremities.
Collapse
|
27
|
Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel) 2021; 11:diagnostics11020165. [PMID: 33498918 PMCID: PMC7911433 DOI: 10.3390/diagnostics11020165] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.
Collapse
|
28
|
Srotova I, Kocica J, Vollert J, Kolcava J, Hulova M, Jarkovsky J, Dusek L, Bednarik J, Vlckova E. Sensory and pain modulation profiles of ongoing central neuropathic extremity pain in multiple sclerosis. Eur J Pain 2020; 25:573-594. [PMID: 33170994 DOI: 10.1002/ejp.1695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/24/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Central neuropathic extremity pain (CNEP) is the most frequent type of pain in multiple sclerosis (MS). The aim of the present study was to evaluate sensory and pain modulation profiles in MS patients with CNEP. METHODS In a single-centre observational study, a group of 56 CNEP MS patients was compared with 63 pain-free MS patients and with a sex- and age-adjusted control group. Standardized quantitative sensory testing (QST) and dynamic QST (dQST) protocols comprising temporal summation and conditioned pain modulation tests were used to compare sensory profiles. RESULTS Loss-type QST abnormalities in both thermal and mechanical QST modalities prevailed in both MS subgroups and correlated significantly with higher degree of disability expressed as Expanded Disability Status Scale (EDSS). Comparison of sensory phenotypes disclosed a higher frequency of the 'sensory loss' prototypic sensory phenotype in the CNEP subgroup (30%) compared with pain-free MS patients (6%; p = .003). CONCLUSION The role of aging process and higher lesion load in the spinothalamocortical pathway might be possible explanation for pain development in this particular 'deafferentation' subtype of central neuropathic pain in MS. We were unable to support the role of central sensitization or endogenous facilitatory and inhibitory mechanisms in the development of CNEP in MS. SIGNIFICANCE This article presents higher prevalence of the 'sensory loss' prototypic sensory phenotype in multiple sclerosis patients with central extremity neuropathic pain compared to pain-free patients. Higher degree of disability underlines the possible role of higher lesion load in the somatosensory pathways in this particular 'deafferentation' type of central neuropathic pain.
Collapse
Affiliation(s)
- Iva Srotova
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Jan Kocica
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Vollert
- Pain Research, Faculty of Medicine, Department of Surgery & Cancer, Chelsea and Westminster Campus, Imperial College London, London, UK.,Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht-Karls-University, Heidelberg, Germany
| | - Jan Kolcava
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Monika Hulova
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Jarkovsky
- Institute for Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Ladislav Dusek
- Institute for Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Eva Vlckova
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Electrodiagnostic Testing of Small Fiber Neuropathies: A Review of Existing Guidelines. J Clin Neurophysiol 2020; 37:288-293. [PMID: 33151659 DOI: 10.1097/wnp.0000000000000681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This article reviews the literature on neurophysiological techniques for the diagnosis of small fiber neuropathy. The review is focused on clinical approach to suspected small fiber neuropathy, letting aside techniques whose clinical applicability is doubtful. We include, however, the special techniques required to examine C and Aδ fibers, which cannot be evaluated directly with conventional neurophysiological methods. The most relevant publications are summarized and recommendations for the clinical assessment of small fiber neuropathy are provided.
Collapse
|
30
|
Sensory profiles and immune-related expression patterns of patients with and without neuropathic pain after peripheral nerve lesion. Pain 2020; 160:2316-2327. [PMID: 31145221 DOI: 10.1097/j.pain.0000000000001623] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this multicenter cross-sectional study, we determined sensory profiles of patients with (NL-1) and without neuropathic pain (NL-0) after nerve lesion and assessed immune-related systemic gene expression. Patients and matched healthy controls filled in questionnaires and underwent neurological examination, neurophysiological studies, quantitative sensory testing, and blood withdrawal. Neuropathic pain was present in 67/95 (71%) patients (NL-1). Tactile hyperalgesia was the most prominent clinical sign in NL-1 patients (P < 0.05). Questionnaires showed an association between neuropathic pain and the presence of depression, anxiety, and catastrophizing (P < 0.05 to P < 0.01). Neuropathic pain was frequently accompanied by other chronic pain (P < 0.05). Quantitative sensory testing showed ipsilateral signs of small and large fiber impairment compared to the respective contralateral side, with elevated thermal and mechanical detection thresholds (P < 0.001 to P < 0.05) and lowered pressure pain threshold (P < 0.05). Also, more loss of function was found in patients with NL-1 compared to NL-0. Pain intensity was associated with mechanical hyperalgesia (P < 0.05 to P < 0.01). However, quantitative sensory testing did not detect or predict neuropathic pain. Gene expression of peptidylglycine α-amidating monooxygenase was higher in NL patients compared with healthy controls (NL-1, P < 0.01; NL-0, P < 0.001). Also, gene expression of tumor necrosis factor-α was higher in NL-1 patients compared with NL-0 (P < 0.05), and interleukin-1ß was higher, but IL-10 was lower in NL-1 patients compared with healthy controls (P < 0.05 each). Our study reveals that nerve lesion presents with small and large nerve fiber dysfunction, which may contribute to the presence and intensity of neuropathic pain and which is associated with a systemic proinflammatory pattern.
Collapse
|
31
|
Van der Cruyssen F, Peeters F, Gill T, De Laat A, Jacobs R, Politis C, Renton T. Signs and symptoms, quality of life and psychosocial data in 1331 post-traumatic trigeminal neuropathy patients seen in two tertiary referral centres in two countries. J Oral Rehabil 2020; 47:1212-1221. [PMID: 32687637 PMCID: PMC7540026 DOI: 10.1111/joor.13058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/07/2020] [Accepted: 07/10/2020] [Indexed: 01/25/2023]
Abstract
Background Post‐traumatic trigeminal neuropathy (PTN) is a disturbance of function or pathological change of the trigeminal nerve branches following trauma and has an important impact on patient's quality of life (QoL). Objectives To provide diagnostic data on PTN and illustrate differences in aetiology, injured nerve, pain distribution, sensory profile and QoL between PTN subgroups. Methods 1331 patients with painful or non‐painful PTN were retrospectively reviewed in two centres, extracting demographic data, time and cause of trauma, clinical findings including signs and symptoms, basic neurosensory testing, imaging modalities, treatments, and QoL or psychosocial assessment. Results More females were represented (70%) than males. The inferior alveolar nerve was most frequently damaged (60%) followed by the lingual nerve (28%). Wisdom teeth removal was considered the main cause (48%). Pain was reported in 63% of patients and pain frequency increased with age without clinically significant gender differences. Numbness was reported in 50% of PTN patients. Neurosensory testing showed larger affected dermatome involvement in persistent injuries, with no differences between the non‐painful and painful PTN groups. Patient clustering indicated different sensory profile distributions when stratified according to aetiology or affected nerve branch. High interference with lifestyle was reported (78%), and patients suffering from painful PTN had worse QoL and psychosocial outcomes. Conclusion Patients with painful PTN had different clinical profiles and lower QoL scores than those with non‐painful PTN. Sensory profiles may provide important prognostic and therapeutic information; however, more research is needed to assess the clustering procedure and link these clusters to therapeutic guidelines.
Collapse
Affiliation(s)
- Fréderic Van der Cruyssen
- Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium
| | - Frederik Peeters
- Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium
| | - Thomas Gill
- Department of Oral Surgery, King's College London Dental Institute, London, UK
| | - Antoon De Laat
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium.,Department of Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Constantinus Politis
- Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium
| | - Tara Renton
- Department of Oral Surgery, King's College London Dental Institute, London, UK
| |
Collapse
|
32
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
33
|
Meyer-Frießem CH, Attal N, Baron R, Bouhassira D, Finnerup NB, Freynhagen R, Gierthmühlen J, Haanpää M, Hansson P, Jensen TS, Kemp H, Kennedy D, Leffler AS, Rice ASC, Segerdahl M, Serra J, Sindrup S, Solà R, Tölle T, Schuh-Hofer S, Treede RD, Pogatzki-Zahn E, Maier C, Vollert J. Pain thresholds and intensities of CRPS type I and neuropathic pain in respect to sex. Eur J Pain 2020; 24:1058-1071. [PMID: 32096888 DOI: 10.1002/ejp.1550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/19/2020] [Accepted: 02/18/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND AIMS Healthy women have generally been found to have increased experimental pain perception and chronic pain has a higher prevalence in female as compared to male patients. However, no study has investigated whether pain intensity and pain perception thresholds are distinct or similar between sexes within various chronic pain entities. We investigated whether average pain intensities and pain thresholds assessed using quantitative sensory testing (QST) differed between women and men suffering from three distinct chronic pain conditions: Complex Regional Pain Syndrome (CRPS type I), peripheral nerve injury (PNI) or polyneuropathy (PNP), as compared to paired healthy volunteers. METHODS QST data of 1,252 patients (669 female, 583 male) with PNI (n = 342), PNP (n = 571) or CRPS (n = 339), and average pain intensity reports from previously published studies were included. Absolute and z-values (adjusted for age and body region) of cold, heat, pressure (PPT) and pinprick pain thresholds were compared in generalized linear models with aetiology, duration of underlying pain disease and average pain intensity as fixed effects. RESULTS Average pain intensity during the past four weeks did not differ between women and men, in both mean and range. In women absolute pain thresholds for cold, heat and pinprick were lower than in males across all diagnoses (p < .05). However, after z-transformation these differences disappeared except for PPT in CRPS (p = .001). DISCUSSION Pain thresholds in patients show only minor sex differences. However, these differences mimic those observed in healthy subjects and do not seem to be linked to specific pathophysiological processes. SIGNIFICANCE Female healthy participants and female patients with neuropathic pain conditions or CRPS I report lower pain thresholds compared to males, but pain intensity is similar and there is no sex difference in the extent to which the thresholds are altered in neuropathic pain or CRPS. Thus, the sex differences observed in various chronic pain conditions mimic those obtained in healthy participants, indicating that these differences are not linked to specific pathophysiological processes and are of minor clinical relevance.
Collapse
Affiliation(s)
- Christine H Meyer-Frießem
- Department of Anesthesiology, Intensive Care, Palliative and Pain Medicine, University Hospital Bergmannsheil Bochum, Bochum, Germany.,Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr-University Bochum, Bochum, Germany
| | - Nadine Attal
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France.,Université Versailles-Saint-Quentin, Versailles, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Didier Bouhassira
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France.,Université Versailles-Saint-Quentin, Versailles, France
| | - Nanna B Finnerup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rainer Freynhagen
- Department of Anaesthesiology, Critical Care Medicine, Pain Therapy & Palliative Care, Pain Center Lake Starnberg, Benedictus Hospital Tutzing, Tutzing, Germany.,Anaesthesiological Clinic, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maija Haanpää
- Department of Helsinki University Central Hospital, Helsinki, Finland.,Etera Mutual Pension Insurance Company Helsinki, Helsinki, Finland
| | - Per Hansson
- Division of Emergencies and Critical Care, Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Troels S Jensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Harriet Kemp
- Pain Research, Department of Surgery and Cancer, Imperial College, London, UK
| | - Donna Kennedy
- Pain Research, Department of Surgery and Cancer, Imperial College, London, UK
| | - Anne-Sofie Leffler
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College, London, UK
| | - Märta Segerdahl
- H. Lundbeck A/S, Copenhagen, Denmark.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jordi Serra
- Neuroscience Technologies, Ltd., Barcelona, Spain
| | - Soeren Sindrup
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Roma Solà
- Neuroscience Technologies, Ltd., Barcelona, Spain
| | - Thomas Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sigrid Schuh-Hofer
- Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Rolf-Detlef Treede
- Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Christoph Maier
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr-University Bochum, Bochum, Germany
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College, London, UK.,Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
34
|
Hartmannsberger B, Doppler K, Stauber J, Schlotter-Weigel B, Young P, Sereda MW, Sommer C. Intraepidermal nerve fibre density as biomarker in Charcot-Marie-Tooth disease type 1A. Brain Commun 2020; 2:fcaa012. [PMID: 32954280 PMCID: PMC7425304 DOI: 10.1093/braincomms/fcaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 01/03/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1A, caused by a duplication of the gene peripheral myelin protein 22 kDa, is the most frequent subtype of hereditary peripheral neuropathy with an estimated prevalence of 1:5000. Patients suffer from sensory deficits, muscle weakness and foot deformities. There is no treatment approved for this disease. Outcome measures in clinical trials were based mainly on clinical features but did not evaluate the actual nerve damage. In our case-control study, we aimed to provide objective and reproducible outcome measures for future clinical trials. We collected skin samples from 48 patients with Charcot-Marie-Tooth type 1A, 7 patients with chronic inflammatory demyelinating polyneuropathy, 16 patients with small fibre neuropathy and 45 healthy controls. To analyse skin innervation, 40-µm cryosections of glabrous skin taken from the lateral index finger were double-labelled by immunofluorescence. The disease severity of patients with Charcot-Marie-Tooth type 1A was assessed by the Charcot-Marie-Tooth neuropathy version 2 score, which ranged from 3 (mild) to 27 (severe) and correlated with age (P < 0.01, R = 0.4). Intraepidermal nerve fibre density was reduced in patients with Charcot-Marie-Tooth type 1A compared with the healthy control group (P < 0.01) and negatively correlated with disease severity (P < 0.05, R = -0.293). Meissner corpuscle (MC) density correlated negatively with age in patients with Charcot-Marie-Tooth type 1A (P < 0.01, R = -0.45) but not in healthy controls (P = 0.07, R = 0.28). The density of Merkel cells was reduced in patients with Charcot-Marie-Tooth type 1A compared with healthy controls (P < 0.05). Furthermore, in patients with Charcot-Marie-Tooth type 1A, the fraction of denervated Merkel cells was highly increased and correlated with age (P < 0.05, R = 0.37). Analysis of nodes of Ranvier revealed shortened paranodes and a reduced fraction of long nodes in patients compared with healthy controls (both P < 0.001). Langerhans cell density was increased in chronic inflammatory demyelinating polyneuropathy, but not different in Charcot-Marie-Tooth type 1A compared with healthy controls. Our data suggest that intraepidermal nerve fibre density might be used as an outcome measure in Charcot-Marie-Tooth type 1A disease, as it correlates with disease severity. The densities of Meissner corpuscles and Merkel cells might be an additional tool for the evaluation of the disease progression. Analysis of follow-up biopsies will clarify the effects of Charcot-Marie-Tooth type 1A disease progression on cutaneous innervation.
Collapse
Affiliation(s)
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Julia Stauber
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Beate Schlotter-Weigel
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Peter Young
- Medical Park Bad Feilnbach Reithofpark, Department of Neurology, 83075 Bad Feilnbach, Germany
| | - Michael W Sereda
- Department of Clinical Neurophysiology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
35
|
Görlach J, Amsel D, Kölbel H, Grzybowsky M, Rutsch F, Schlierbach H, Vanlander A, Pogatzki‐Zahn E, Habig K, Garkisch S, Müller V, Fritz T, Ziegler A, Hahn A, Krämer HH, Van Coster R, Schänzer A. Diagnostic utility of small fiber analysis in skin biopsies from children with chronic pain. Muscle Nerve 2019; 61:173-181. [DOI: 10.1002/mus.26766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jonas Görlach
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Daniel Amsel
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Heike Kölbel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Children's HospitalUniversity Duisburg‐Essen Essen Germany
| | - Michelle Grzybowsky
- Department of Child NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Frank Rutsch
- Department of General Pediatrics, Children's HospitalUniversity of Muenster Muenster Germany
| | - Hannah Schlierbach
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Arnaud Vanlander
- Division of Child Neurology, Department of PediatricsUniversity Hospital Gent Gent Belgium
| | - Esther Pogatzki‐Zahn
- Department of Anesthesiology, Intensive Care and Pain MedicineUniversity Hospital Muenster Muenster Germany
| | - Kathrin Habig
- Department of NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Stefanie Garkisch
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Children's HospitalUniversity Duisburg‐Essen Essen Germany
| | | | - Thorsten Fritz
- Centre for Pain Therapy and Anaesthesiology at Schloss Butzbach Butzbach Germany
| | - Andreas Ziegler
- Department of General Pediatrics and Neuropediatrics, HeidelbergUniversity Hospital Heidelberg Germany
| | - Andreas Hahn
- Department of Child NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Heidrun H. Krämer
- Department of NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Rudy Van Coster
- Division of Child Neurology, Department of PediatricsUniversity Hospital Gent Gent Belgium
| | - Anne Schänzer
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| |
Collapse
|
36
|
Devigili G, Rinaldo S, Lombardi R, Cazzato D, Marchi M, Salvi E, Eleopra R, Lauria G. Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain 2019; 142:3728-3736. [PMID: 31665231 PMCID: PMC6906595 DOI: 10.1093/brain/awz333] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/06/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
The diagnostic criteria for small fibre neuropathy are not established, influencing the approach to patients in clinical practice, their access to disease-modifying and symptomatic treatments, the use of healthcare resources, and the design of clinical trials. To address these issues, we performed a reappraisal study of 150 patients with sensory neuropathy and a prospective and follow-up validation study of 352 new subjects with suspected sensory neuropathy. Small fibre neuropathy diagnostic criteria were based on deep clinical phenotyping, quantitative sensory testing (QST) and intraepidermal nerve fibre density (IENFD). Small fibre neuropathy was ruled out in 5 of 150 patients (3.3%) of the reappraisal study. Small fibre neuropathy was diagnosed at baseline of the validation study in 149 of 352 patients (42.4%) based on the combination between two clinical signs and abnormal QST and IENFD (69.1%), abnormal QST alone (5.4%), or abnormal IENFD alone (20.1%). Eight patients (5.4%) had abnormal QST and IENFD but no clinical signs. Further, 38 patients complained of sensory symptoms but showed no clinical signs. Of those, 34 (89.4%) had normal QST and IENFD, 4 (10.5%) had abnormal QST and normal IENFD, and none had abnormal IENFD alone. At 18-month follow-up, 19 of them (56%) reported the complete recovery of symptoms and showed normal clinical, QST and IENFD findings. None of those with one single abnormal test (QST or IENFD) developed clinical signs or showed abnormal findings on the other test. Conversely, all eight patients with abnormal QST and IENFD at baseline developed clinical signs at follow-up. The combination of clinical signs and abnormal QST and/or IENFD findings can more reliably lead to the diagnosis of small fibre neuropathy than the combination of abnormal QST and IENFD findings in the absence of clinical signs. Sensory symptoms alone should not be considered a reliable screening feature. Our findings demonstrate that the combined clinical, functional and structural approach to the diagnosis of small fibre neuropathy is reliable and relevant both for clinical practice and clinical trial design.
Collapse
Affiliation(s)
- Grazia Devigili
- Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Sara Rinaldo
- Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Daniele Cazzato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Roberto Eleopra
- Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Pfau DB, Greffrath W, Schilder A, Magerl W, Ohler C, Westermann A, Maier C, Doppler K, Sommer C, Orth M, Hammes HP, Kurz J, Götz M, Treede RD, Schuh-Hofer S. Technical and clinical performance of the thermo-test device "Q-Sense" to assess small fibre function: A head-to-head comparison with the "Thermal Sensory Analyzer" TSA in diabetic patients and healthy volunteers. Eur J Pain 2019; 23:1863-1878. [PMID: 31359547 DOI: 10.1002/ejp.1461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Thermo-test devices are rarely used outside specialized pain centres because of high acquisition costs. Recently, a new, portable device ("Q-Sense") was introduced, which is less expensive but has reduced cooling capacity (20°C). We assessed the reliability/validity of the "Q-Sense" by comparing it with the Thermal Sensory Analyzer (TSA). METHODS Using a phantom-skin model, the physical characteristics of both devices were compared. The clinical performance was assessed in a multicentre study by performing Quantitative Sensory Testing (QST) in 121 healthy volunteers and 83 diabetic patients (Eudra-Med-No. CIV-12-05-006501). RESULTS Both device types showed ~40% slower temperature ramps for heating/cooling than nominal data. Cold/warm detection thresholds (CDT, WDT) and heat pain thresholds (HPT) of healthy subjects did not differ between device types. Cold pain thresholds (CPT) were biased for Q-Sense by a floor effect (p < .001). According to intraclass correlation coefficients (ICC), agreement between TSA and Q-Sense was good/excellent for CDT (ICC = 0.894) and WDT (ICC = 0.898), moderate for HPT (ICC = 0.525) and poor for CPT (ICC = 0.305). In diabetic patients, the sensitivity of Q-Sense to detect cold hypoesthesia was reduced in males >60 years. Moderate correlations between thermal detection thresholds and morphological data from skin biopsies (n = 51) were similar for both devices. CONCLUSIONS Physical characteristics of both thermo-test devices are similarly limited by the poor temperature conduction of the skin. The Q-Sense is useful for thermal detection thresholds but of limited use for pain thresholds. For full clinical use, the lower cut-off temperature should be set to ≤18°C. SIGNIFICANCE High purchase costs prevent a widespread use of thermo-test devices for diagnosing small fibre neuropathy. The air-cooled "Q-Sense" could be a lower cost alternative, but its technical/clinical performance needs to be assessed because of its restricted cut-off for cooling (20°C). This study provides critical information on the physical characteristics and the clinical validity/reliability of the Q-Sense compared to the "Thermal Sensory Analyzer" (TSA). We recommend lowering the cut-off value of the Q-Sense to ≤18°C for its full clinical use.
Collapse
Affiliation(s)
- Doreen B Pfau
- Department of Neurophysiology, Medical Faculty Mannheim, Center of Biomedicine and Medical Technology, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Medical Faculty Mannheim, Center of Biomedicine and Medical Technology, University of Heidelberg, Mannheim, Germany
| | - Andreas Schilder
- Department of Neurophysiology, Medical Faculty Mannheim, Center of Biomedicine and Medical Technology, University of Heidelberg, Mannheim, Germany
| | - Walter Magerl
- Department of Neurophysiology, Medical Faculty Mannheim, Center of Biomedicine and Medical Technology, University of Heidelberg, Mannheim, Germany
| | - Carolin Ohler
- Department of Neurophysiology, Medical Faculty Mannheim, Center of Biomedicine and Medical Technology, University of Heidelberg, Mannheim, Germany
| | - Andrea Westermann
- Center for Pain Medicine, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- Center for Pain Medicine, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany
| | - Hans-Peter Hammes
- Department of Endocrinology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | - Rolf-Detlef Treede
- Department of Neurophysiology, Medical Faculty Mannheim, Center of Biomedicine and Medical Technology, University of Heidelberg, Mannheim, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, Medical Faculty Mannheim, Center of Biomedicine and Medical Technology, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
38
|
Valek L, Auburger G, Tegeder I. Sensory neuropathy and nociception in rodent models of Parkinson's disease. Dis Model Mech 2019; 12:12/6/dmm039396. [PMID: 31248900 PMCID: PMC6602317 DOI: 10.1242/dmm.039396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) often manifests with prodromal pain and sensory losses whose etiologies are not well understood. Multiple genetic and toxicity-based rodent models of PD partly recapitulate the histopathology and motor function deficits. Although far less studied, there is some evidence that rodents, similar to humans, develop sensory manifestations of the disease, which may precede motor disturbances and help to elucidate the underlying mechanisms of PD-associated pain at the molecular and neuron circuit levels. The present Review summarizes nociception and other sensory functions in frequently used rodent PD models within the context of the complex phenotypes. In terms of mechanisms, it appears that the acute loss of dopaminergic neurons in systemic toxicity models (MPTP, rotenone) primarily causes nociceptive hyperexcitability, presumably owing to a loss of inhibitory control, whereas genetic models primarily result in a progressive loss of heat perception, reflecting sensory fiber neuropathies. At the molecular level, neither α-synuclein deposits alone nor failure of mitophagy alone appear to be strong enough to result in axonal or synaptic pathology of nociceptive neurons that manifest at the behavioral level, and peripheral sensory loss may mask central ‘pain’ in behavioral tests. Hence, allostatic combinations or additional challenges and novel behavioral assessments are needed to better evaluate PD-associated sensory neuropathies and pain in rodents. Summary: Rodent models of Parkinson's disease partially develop prodromal somatosensory and olfactory dysfunctions reminiscent of sensory neuropathies in patients and reveal mechanistic insight, but data are incomplete and fragmented.
Collapse
Affiliation(s)
- Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| |
Collapse
|
39
|
Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott J, Gandhi R, Wilkinson ID, Tesfaye S. Painful and Painless Diabetic Neuropathies: What Is the Difference? Curr Diab Rep 2019; 19:32. [PMID: 31065863 PMCID: PMC6505492 DOI: 10.1007/s11892-019-1150-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The prevalence of diabetes mellitus and its chronic complications are increasing to epidemic proportions. This will unfortunately result in massive increases in diabetic distal symmetrical polyneuropathy (DPN) and its troublesome sequelae, including disabling neuropathic pain (painful-DPN), which affects around 25% of patients with diabetes. Why these patients develop neuropathic pain, while others with a similar degree of neuropathy do not, is not clearly understood. This review will look at recent advances that may shed some light on the differences between painful and painless-DPN. RECENT FINDINGS Gender, clinical pain phenotyping, serum biomarkers, brain imaging, genetics, and skin biopsy findings have been reported to differentiate painful- from painless-DPN. Painful-DPN seems to be associated with female gender and small fiber dysfunction. Moreover, recent brain imaging studies have found neuropathic pain signatures within the central nervous system; however, whether this is the cause or effect of the pain is yet to be determined. Further research is urgently required to develop our understanding of the pathogenesis of pain in DPN in order to develop new and effective mechanistic treatments for painful-DPN.
Collapse
Affiliation(s)
- Pallai Shillo
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Marni Greig
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Leanne Hunt
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Dinesh Selvarajah
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Jackie Elliott
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Rajiv Gandhi
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | | | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Sensitized vasoactive C-nociceptors: key fibers in peripheral neuropathic pain. Pain Rep 2019; 4:e709. [PMID: 30801047 PMCID: PMC6370139 DOI: 10.1097/pr9.0000000000000709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction Multiple mechanisms are involved in the development and persistence of neuropathic pain. Some patients with nerve damage will remain painless and develop a "loss of function" phenotype, whereas others develop painful neuropathies. Objectives The aim of this study is to investigate the role of a peripheral nervous system sensitization by analyzing patients with and without pain. Methods The topical application of capsaicin was investigated in peripheral nociceptors. Two groups of patients (painful vs painless) with length-dependent neuropathies and small-fiber impairment were tested. Quantitative sensory testing was assessed before and after topical application of 0.6% capsaicin in the affected skin. In addition, blood perfusion measurements and an axon reflex flare assessment were performed. Results Quantitative testing revealed that heat hyperalgesia was induced in all patients and volunteers (P < 0.01) without observing any significant differences between patient groups. By contrast, the extent of the axon reflex flare reaction (P < 0.01) as well as the blood perfusion (P < 0.05) was significantly greater in patients with pain than in neuropathy patients not experiencing pain. Conclusion Hyperexcitable vasoactive nociceptive C fibers might contribute to pain in peripheral neuropathies and therefore may serve as a key player in separating into a painless or painful condition.
Collapse
|