1
|
Luo L, Cheng Y, Wang H, Li L, Niu H, Yang Y, Zhou Q, He J, Xu J. Lidocaine-A Promising Candidate for the Treatment of Cancer-Induced Bone Pain: A Narrative Review. Adv Ther 2025:10.1007/s12325-025-03192-w. [PMID: 40232625 DOI: 10.1007/s12325-025-03192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
Pain is one of the most common symptoms in patients with cancer, with cancer-induced bone pain (CIBP) significantly affecting their quality of life. Opioids are commonly used as first-line treatments for cancer pain, but their use requires caution due to non-mechanistic analgesia and significant side effects. As a result, there is a need for new non-opioid drugs that target cancer pain through specific mechanisms. Recent studies on the anticancer effects of lidocaine have highlighted its potential benefits in both treating cancer and alleviating cancer-induced pain. This article discusses the mechanism of action and clinical applications of lidocaine in cancer pain management, and suggests new treatment approaches for patients with CIBP.
Collapse
Affiliation(s)
- Lihan Luo
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuqi Cheng
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hanxi Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hanyun Niu
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuzhu Yang
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qianqian Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiannan He
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Yin X, Zeng XL, Lin JJ, Xu WQ, Cui KY, Guo XT, Li W, Xu SF. Brain functional changes following electroacupuncture in a mouse model of comorbid pain and depression: A resting-state functional magnetic resonance imaging study. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:159-168. [PMID: 40024869 DOI: 10.1016/j.joim.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/20/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Comorbid pain and depression are common but remain difficult to treat. Electroacupuncture (EA) can effectively improve symptoms of depression and relieve pain, but its neural mechanism remains unclear. Therefore, we used resting-state functional magnetic resonance imaging (rs-fMRI) to detect cerebral changes after initiating a mouse pain model via constriction of the infraorbital nerve (CION) and then treating these animals with EA. METHODS Forty male C57BL/6J mice were divided into 4 groups: control, CION model, EA, and sham acupuncture (without needle insertion). EA was performed on the acupoints Baihui (GV20) and Zusanli (ST36) for 20 min, once a day for 10 consecutive days. The mechanical withdrawal threshold was tested 3 days after the surgery and every 3 days after the intervention. The depressive behavior was evaluated with the tail suspension test, open-field test, elevated plus maze (EPM), sucrose preference test, and marble burying test. The rs-fMRI was used to detect the cerebral changes of the functional connectivity (FC) in the mice following EA treatment. RESULTS Compared with the CION group, the mechanical withdrawal threshold increased in the EA group at the end of the intervention (P < 0.05); the immobility time in tail suspension test decreased (P < 0.05); and the times of the open arm entry and the open arm time in the EPM increased (both P < 0.001). There was no difference in the sucrose preference or marble burying tests (both P > 0.05). The fMRI results showed that EA treatment downregulated the amplitude of low-frequency fluctuations and regional homogeneity values, while these indicators were elevated in brain regions including the amygdala, hippocampus and cerebral cortex in the CION model for comorbid pain and depression. Selecting the amygdala as the seed region, we found that the FC was higher in the CION group than in the control group. Meanwhile, EA treatment was able to decrease the FC between the amygdala and other brain regions including the caudate putamen, thalamus, and parts of the cerebral cortex. CONCLUSION EA can downregulate the abnormal activation of neurons in the amygdala and improve its FC with other brain regions, thus exerting analgesic and antidepressant effects. Please cite this article as: Yin X, Zeng XL, Lin JJ, Xu WQ, Cui KY, Guo XT, Li W, Xu SF. Brain functional changes following electroacupuncture in a mouse model of comorbid pain and depression: a resting-state functional magnetic resonance imaging study. J Integr Med. 2025; 23(2): 159-168.
Collapse
Affiliation(s)
- Xuan Yin
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xiao-Ling Zeng
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jing-Jing Lin
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wen-Qing Xu
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Kai-Yu Cui
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xiu-Tian Guo
- Department of Anorectal Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wei Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Shi-Fen Xu
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
3
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
4
|
Haroun R, Gossage SJ, Iseppon F, Fudge A, Caxaria S, Arcangeletti M, Leese C, Davletov B, Cox JJ, Sikandar S, Welsh F, Chessell IP, Wood JN. Novel therapies for cancer-induced bone pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100167. [PMID: 39399223 PMCID: PMC11470602 DOI: 10.1016/j.ynpai.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024]
Abstract
Cancer pain is a growing problem, especially with the substantial increase in cancer survival. Reports indicate that bone metastasis, whose primary symptom is bone pain, occurs in 65-75% of patients with advanced breast or prostate cancer. We optimized a preclinical in vivo model of cancer-induced bone pain (CIBP) involving the injection of Lewis Lung Carcinoma cells into the intramedullary space of the femur of C57BL/6 mice or transgenic mice on a C57BL/6 background. Mice gradually reduce the use of the affected limb, leading to altered weight bearing. Symptoms of secondary cutaneous heat sensitivity also manifest themselves. Following optimization, three potential analgesic treatments were assessed; 1) single ion channel targets (targeting the voltage-gated sodium channels NaV1.7, NaV1.8, or acid-sensing ion channels), 2) silencing µ-opioid receptor-expressing neurons by modified botulinum compounds, and 3) targeting two inflammatory mediators simultaneously (nerve growth factor (NGF) and tumor necrosis factor (TNF)). Unlike global NaV1.8 knockout mice which do not show any reduction in CIBP-related behavior, embryonic conditional NaV1.7 knockout mice in sensory neurons exhibit a mild reduction in CIBP-linked behavior. Modified botulinum compounds also failed to cause a detectable analgesic effect. In contrast, inhibition of NGF and/or TNF resulted in a significant reduction in CIBP-driven weight-bearing alterations and prevented the development of secondary cutaneous heat hyperalgesia. Our results support the inhibition of these inflammatory mediators, and more strongly their dual inhibition to treat CIBP, given the superiority of combination therapies in extending the time needed to reach limb use score zero in our CIBP model.
Collapse
Affiliation(s)
- Rayan Haroun
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Samuel J. Gossage
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Alexander Fudge
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Manuel Arcangeletti
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, South Yorkshire S10 2TN, United Kingdom
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, South Yorkshire S10 2TN, United Kingdom
| | - James J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Fraser Welsh
- AstraZeneca BioPharmaceuticals R&D, Neuroscience, Discovery Centre, Biomedical campus, 1 Francis Crick Ave, Cambridge CB2 0AA, United Kingdom
| | - Iain P. Chessell
- AstraZeneca BioPharmaceuticals R&D, Neuroscience, Discovery Centre, Biomedical campus, 1 Francis Crick Ave, Cambridge CB2 0AA, United Kingdom
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Wei X, Lai Y, Lan X, Tan Y, Zhang J, Liu J, Chen J, Wang C, Zhou X, Tang Y, Liu D, Zhang J. Uncovering brain functional connectivity disruption patterns of lung cancer-related pain. Brain Imaging Behav 2024; 18:576-587. [PMID: 38316730 DOI: 10.1007/s11682-023-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/07/2024]
Abstract
Pain is a pervasive symptom in lung cancer patients during the onset of the disease. This study aims to investigate the connectivity disruption patterns of the whole-brain functional network in lung cancer patients with cancer pain (CP+). We constructed individual whole-brain, region of interest (ROI)-level functional connectivity (FC) networks for 50 CP+ patients, 34 lung cancer patients without pain-related complaints (CP-), and 31 matched healthy controls (HC). Then, a ROI-based FC analysis was used to determine the disruptions of FC among the three groups. The relationships between aberrant FCs and clinical parameters were also characterized. The ROI-based FC analysis demonstrated that hypo-connectivity was present both in CP+ and CP- patients compared to HC, which were particularly clustered in the somatomotor and ventral attention, frontoparietal control, and default mode modules. Notably, compared to CP- patients, CP+ patients had hyper-connectivity in several brain regions mainly distributed in the somatomotor and visual modules, suggesting these abnormal FC patterns may be significant for cancer pain. Moreover, CP+ patients also showed increased intramodular and intermodular connectivity strength of the functional network, which could be replicated in cancer stage IV and lung adenocarcinoma. Finally, abnormal FCs within the prefrontal cortex and somatomotor cortex were positively correlated with pain intensity and pain duration, respectively. These findings suggested that lung cancer patients with cancer pain had disrupted connectivity in the intrinsic brain functional network, which may be the underlying neuroimaging mechanisms.
Collapse
Affiliation(s)
- Xiaotong Wei
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yong Lai
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
6
|
Yang Y, Yang W, Zhang R, Wang Y. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull 2024; 40:815-830. [PMID: 37798428 PMCID: PMC11178734 DOI: 10.1007/s12264-023-01126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a type of ongoing or breakthrough pain caused by a primary bone tumor or bone metastasis. CIBP constitutes a specific pain state with distinct characteristics; however, it shares similarities with inflammatory and neuropathic pain. At present, although various therapies have been developed for this condition, complete relief from CIBP in patients with cancer is yet to be achieved. Hence, it is urgent to study the mechanism underlying CIBP to develop efficient analgesic drugs. Herein, we focused on the peripheral mechanism associated with the initiation of CIBP, which involves tissue injury in the bone and changes in the tumor microenvironment (TME) and dorsal root ganglion. The nerve-cancer and cancer-immunocyte cross-talk in the TME creates circumstances that promote tumor growth and metastasis, ultimately leading to CIBP. The peripheral mechanism of CIBP and current treatments as well as potential therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Zhongshan-Fudan Joint Innovation Center, Zhongshan, 528437, China.
| |
Collapse
|
7
|
Vande Vyvere T, De Groote A, De Groef A, Haenen V, Tjalma W, Van Dyck P, Meeus M. Morphological and functional brain changes in chronic cancer-related pain: A systematic review. Anat Rec (Hoboken) 2024; 307:285-297. [PMID: 36342941 DOI: 10.1002/ar.25113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to perform a systematic review of the available literature on morphological and functional brain changes measured by modern neuroimaging techniques in patients suffering from chronic cancer-related pain. A systematic search was conducted in PubMed, Embase, and Web of Science using different keyword combinations. In addition, a hand search was performed on the reference lists and several databases to retrieve supplementary primary studies. Eligible articles were assessed for methodological quality and risk of bias and reviewed by two independent researchers. The search yielded only four studies, three of which used MRI and one PET-CT. None of the studies measured longitudinal morphological (i.e., gray or white matter) changes. All studies investigated functional brain changes and found differences in specific brain regions and networks between patients with chronic cancer-related pain and pain-free cancer patients or healthy volunteers. Some of these alterations were found in brain networks that also show changes in non-cancer populations with chronic pain (e.g., the default mode network and salience network). However, specific findings were inconsistent, and there was substantial variation in imaging methodology, analysis, sample size, and study quality. There is a striking lack of research on morphological brain changes in patients with chronic cancer-related pain. Moreover, only a few studies investigated functional brain changes. In the retrieved studies, there is some evidence that alterations occur in brain networks also involved in other chronic non-cancer pain syndromes. However, the low sample sizes of the studies, finding inconsistencies, and methodological heterogeneity do not allow for robust conclusions.
Collapse
Affiliation(s)
- Thijs Vande Vyvere
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - Amber De Groote
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - An De Groef
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Vincent Haenen
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Wiebren Tjalma
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
- Multidisciplinary Breast Clinic, Antwerp University Hospital, Antwerp, Belgium
| | - Pieter Van Dyck
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- mVISION, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mira Meeus
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Tang Y, Shi Y, Xu Z, Hu J, Zhou X, Tan Y, Lan X, Zhou X, Yang J, Zhang J, Deng B, Liu D. Altered gray matter volume and functional connectivity in lung cancer patients with bone metastasis pain. J Neurosci Res 2024; 102. [PMID: 38284835 DOI: 10.1002/jnr.25256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 01/30/2024]
Abstract
Bone metastasis pain (BMP) is a severe chronic pain condition. Our previous studies on BMP revealed functional brain abnormalities. However, the potential effect of BMP on brain structure and function, especially gray matter volume (GMV) and related functional networks, have not yet been clearly illustrated. Voxel-based morphometry and functional connectivity (FC) analysis methods were used to investigate GMV and intrinsic FC differences in 45 right-handed lung cancer patients with BMP(+), 37 lung cancer patients without BMP(-), and 45 healthy controls (HCs). Correlation analysis was performed thereafter with all clinical variables by Pearson correlation. Compared to HCs, BMP(+) group exhibited decreased GMV in medial frontal gyrus (MFG) and right middle temporal gyrus (MTG). Compared with BMP(-) group, BMP(+) group exhibited reduced GMV in cerebelum_6_L and left lingual gyrus. However, no regions with significant GMV differences were found between BMP(-) and HCs groups. Receiver operating characteristic analysis indicated the potential classification power of these aberrant regions. Correlation analysis revealed that GMV in the right MTG was positively associated with anxiety in BMP(+) group. Further FC analysis demonstrated enhanced interactions between MFG/right MTG and cerebellum in BMP(+) patients compared with HCs. These results showed that BMP was closely associated with cerebral alterations, which may induce the impairment of pain moderation circuit, deficits in cognitive function, dysfunction of emotional control, and sensorimotor processing. These findings may provide a fresh perspective and further neuroimaging evidence for the possible mechanisms of BMP. Furthermore, the role of the cerebellum in pain processing needs to be further investigated.
Collapse
Affiliation(s)
- Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yumei Shi
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Zhen Xu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Junlin Hu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Xueying Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jing Yang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Benmin Deng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Fallon M, Sopata M, Dragon E, Brown MT, Viktrup L, West CR, Bao W, Agyemang A. A Randomized Placebo-Controlled Trial of the Anti-Nerve Growth Factor Antibody Tanezumab in Subjects With Cancer Pain Due to Bone Metastasis. Oncologist 2023; 28:e1268-e1278. [PMID: 37343145 PMCID: PMC10712717 DOI: 10.1093/oncolo/oyad188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND This phase III, randomized, double-blind, placebo-controlled, parallel-group study assessed the efficacy and safety of tanezumab in subjects with cancer pain predominantly due to bone metastasis receiving background opioid therapy. METHODS Subjects were randomized (stratified by (1) tumor aggressiveness and (2) presence/absence of concomitant anticancer treatment) to placebo or tanezumab 20 mg. Treatment was administered by subcutaneous injection every 8 weeks for 24 weeks (3 doses) followed by a 24-week safety follow-up period. The primary outcome was change in daily average pain in the index bone metastasis cancer pain site (from 0 = no pain to 10 = worst possible pain) from baseline to week 8. RESULTS LS mean (SE) change in pain at week 8 was -1.25 (0.35) for placebo (n = 73) and -2.03 (0.35) for tanezumab 20 mg (n = 72). LS mean (SE) [95% CI] difference from placebo was -0.78 (0.37) [-1.52, -0.04]; P = .0381 with α = 0.0478. The number of subjects with a treatment-emergent adverse event during the treatment period was 50 (68.5%) for placebo and 53 (73.6%) for tanezumab 20 mg. The number of subjects with a prespecified joint safety event was 0 for placebo and 2 (2.8%) for tanezumab 20 mg (pathologic fracture; n = 2). CONCLUSION Tanezumab 20 mg met the primary efficacy endpoint at week 8. Conclusions on longer-term efficacy are limited since the study was not designed to evaluate the durability of the effect beyond 8 weeks. Safety findings were consistent with adverse events expected in subjects with cancer pain due to bone metastasis and the known safety profile of tanezumab. Clinicaltrials.gov identifier: NCT02609828.
Collapse
Affiliation(s)
- Marie Fallon
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Maciej Sopata
- Department of Palliative Medicine, Hospice Palium, University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
10
|
Jing D, Zhao Q, Zhao Y, Lu X, Feng Y, Zhao B, Zhao X. Management of pain in patients with bone metastases. Front Oncol 2023; 13:1156618. [PMID: 37007073 PMCID: PMC10063159 DOI: 10.3389/fonc.2023.1156618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer-induced bone pain (CIBP) has a considerable impact on patients’ quality of life as well as physical and mental health. At present, patients with CIBP are managed according to the three-step analgesic therapy algorithm proposed by the World Health Organization. Opioids are commonly used as the first-line treatment for moderate-to-severe cancer pain but are limited due to addiction, nausea, vomiting and other gastrointestinal side effects. Moreover, opioids have a limited analgesic effect in some patients. In order to optimize the management of CIBP, we must first identify the underlying mechanisms. In some patients, surgery, or surgery combined with radiotherapy or radiofrequency ablation is the first step in the management of CIBP. Various clinical studies have shown that anti-nerve growth factor (NGF) antibodies, bisphosphonates, or RANKL inhibitors can reduce the incidence and improve the management of cancer pain. Herein, we review the mechanisms of cancer pain and potential therapeutic strategies to provide insights for optimizing the management of CIBP.
Collapse
Affiliation(s)
- Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Zhao
- Department of Endocrine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yibo Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiangdong Lu
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Feng
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Bin Zhao, ; Xiaofeng Zhao,
| | - Xiaofeng Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Bin Zhao, ; Xiaofeng Zhao,
| |
Collapse
|
11
|
Wang A, Guo D, Cheng H, Jiang H, Liu X, Tie M. Regulatory mechanism of Scutellaria baicalensis Georgi on bone cancer pain based on network pharmacology and experimental verification. PeerJ 2022; 10:e14394. [PMID: 36415861 PMCID: PMC9676018 DOI: 10.7717/peerj.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Context Scutellaria baicalensis Georgi (SBG) may relieve bone cancer pain (BCP) by regulating cell proliferation, angiogenesis, and apoptosis. Objective The mechanism of SBG in the treatment of BCP remains to be further explored. Methods The active compounds and targets of SBG were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction databases. BCP-related targets were screened from NCBI and GeneCards databases. Additionally, Cytoscape software was applied to construct network diagrams, and OmicShare platform was used to enrich Gene Ontology (GO) and pathways. Finally, the verification of active compounds and core targets was performed based on quantitative real-time PCR (qRT-PCR). Results Interestingly, we identified baicalein and wogonin as the main active components of SBG. A total of 41 SBG targets, including VEGFA, IL6, MAPK3, JUN and TNF, were obtained in the treatment of BCP. In addition, pathways in cancer may be an essential way of SBG in the treatment of BCP. Experimental verification had shown that baicalein and wogonin were significantly related to BCP core targets. Conclusions The active components of SBG have been clarified, and the mechanism of the active components in treating BCP has been predicted and verified, which provides an experimental and theoretical basis for the in-depth elucidation of the pharmacodynamics material basis and mechanism of SBG.
Collapse
Affiliation(s)
- Aitao Wang
- Inner Mongolia People’s Hospital, Hohhot, China
| | - Dongmei Guo
- Inner Mongolia People’s Hospital, Hohhot, China
| | - Hongyu Cheng
- Inner Mongolia Medical University, Hohhot, China
| | - Hui Jiang
- Baotou Medical College, Baotou, China
| | | | - Muer Tie
- Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
12
|
Smith AE, Muralidharan A, Smith MT. Prostate cancer induced bone pain: pathobiology, current treatments and pain responses from recent clinical trials. Discov Oncol 2022; 13:108. [PMID: 36258057 PMCID: PMC9579264 DOI: 10.1007/s12672-022-00569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Metastatic spread of prostate cancer to the skeleton may result in debilitating bone pain. In this review, we address mechanisms underpinning the pathobiology of metastatic prostate cancer induced bone pain (PCIBP) that include sensitization and sprouting of primary afferent sensory nerve fibres in bone. We also review current treatments and pain responses evoked by various treatment modalities in clinical trials in this patient population. METHODS We reviewed the literature using PubMed to identify research on the pathobiology of PCIBP. Additionally, we reviewed clinical trials of various treatment modalities in patients with PCIBP with pain response outcomes published in the past 7 years. RESULTS Recent clinical trials show that radionuclides, given either alone or in combination with chemotherapy, evoked favourable pain responses in many patients and a single fraction of local external beam radiation therapy was as effective as multiple fractions. However, treatment with chemotherapy, small molecule inhibitors and/or immunotherapy agents, produced variable pain responses but pain response was the primary endpoint in only one of these trials. Additionally, there were no published trials of potentially novel analgesic agents in patients with PCIBP. CONCLUSION There is a knowledge gap for clinical trials of chemotherapy, small molecule inhibitors and/or immunotherapy in patients with PCIBP where pain response is the primary endpoint. Also, there are no novel analgesic agents on the horizon for the relief of PCIBP and this is an area of large unmet medical need that warrants concerted research attention.
Collapse
Affiliation(s)
- A. E. Smith
- St Vincent’s Hospital, Darlinghurst, Sydney, NSW Australia
| | - A. Muralidharan
- Neurobiology of Chronic Pain, The Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - M. T. Smith
- Centre for Integrated Preclinical Drug Development, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
13
|
Liu D, Zhou X, Tan Y, Yu H, Cao Y, Tian L, Yang L, Wang S, Liu S, Chen J, Liu J, Wang C, Yu H, Zhang J. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary resting-state fMRI study. Front Neurol 2022; 13:936012. [PMID: 36212659 PMCID: PMC9532555 DOI: 10.3389/fneur.2022.936012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis pain (BMP) is one of the most prevalent symptoms among cancer survivors. The present study aims to explore the brain functional activity and connectivity patterns in BMP of lung cancer patients preliminarily. Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex were recruited from inpatients and communities, respectively. All participants underwent fMRI data acquisition and pain assessment. Low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate brain functional activity. Then, functional connectivity (FC) was calculated for the ALFF- and ReHo-identified seed brain regions. A two-sample t-test or Manny–Whitney U-test was applied to compare demographic and neuropsychological data as well as the neuroimaging indices according to the data distribution. A correlation analysis was conducted to explore the potential relationships between neuroimaging indices and pain intensity. Receiver operating characteristic curve analysis was applied to assess the classification performance of neuroimaging indices in discriminating individual subjects between the BMP patients and HCs. No significant intergroup differences in demographic and neuropsychological data were noted. BMP patients showed reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in the bilateral thalamus and left fusiform gyrus. The lower FC was found within the prefrontal cortex. No significant correlation between the neuroimaging indices and pain intensity was observed. The neuroimaging indices showed satisfactory classification performance between the BMP patients and HCs, and the combined ALFF and ReHo showed a better accuracy rate (93.7%) than individual indices. In conclusion, altered brain functional activity and connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be associated with the neuropathology of BMP and may represent a potential biomarker for classifying BMP patients and healthy controls.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ling Tian
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Liejun Yang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sixiong Wang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shihong Liu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huiqing Yu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Huiqing Yu
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Jiuquan Zhang
| |
Collapse
|
14
|
Unveil the pain of endometriosis: from the perspective of the nervous system. Expert Rev Mol Med 2022; 24:e36. [PMID: 36059111 DOI: 10.1017/erm.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis is a chronic inflammatory disease with pelvic pain and uncharacteristic accompanying symptoms. Endometriosis-associated pain often persists despite treatment of the disease, thus it brings a deleterious impact on their personal lives as well as imposing a substantial economic burden on them. At present, mechanisms underlie endometriosis-associated pain including inflammatory reaction, injury, aberrant blood vessels and the morphological and functional anomaly of the peripheral and central nervous systems. The nerve endings are influenced by the physical and chemical factors surrounding the lesion, via afferent nerve to the posterior root of the spinal nerve, then to the specific cerebral cortex involved in nociception. However, our understanding of the aetiology and mechanism of this complex pain process caused by endometriosis remains incomplete. Identifying the pathogenesis of endometriosis is crucial to disease management, offering proper treatment, and helping patients to seek novel targets for the maintenance and contributors of chronic pain. The main aim of this review is to focus on every possible mechanism of pain related to endometriosis in both peripheral and central nervous systems, and to present related mechanisms of action from the interaction between peripheral lesions and nerves to the changes in transmission of pain, resulting in hyperalgesia and the corresponding alterations in cerebral cortex and brain metabolism.
Collapse
|
15
|
Zhou X, Tan Y, Chen J, Wang C, Tang Y, Liu J, Lan X, Yu H, Lai Y, Hu Y, Zhang J, Cao Y, Liu D, Zhang J. Altered Functional Connectivity in Pain-Related Brain Regions and Its Correlation with Pain Duration in Bone Metastasis with Cancer Pain. DISEASE MARKERS 2022; 2022:3044186. [PMID: 36072897 PMCID: PMC9441405 DOI: 10.1155/2022/3044186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022]
Abstract
Bone metastatic pain is thought to be a severe type of cancer pain that has refractory characteristics and a long duration. This study is aimed at exploring the brain functional connectivity (FC) pattern in lung cancer patients with bone metastatic pain. In this study, 27 lung cancer patients with bone metastatic pain (CP+), 27 matched lung cancer patients without pain-related complaints (CP-), and 27 matched healthy controls (HC) were recruited. All participants underwent fMRI data acquisition and clinical assessments. One-way ANOVA or a Mann-Whitney U test was applied to compare clinical data according to data distribution. Seventeen hypothesis-driven pain-related brain regions were selected as regions of interest (ROIs). FC values among pain-related brain regions across the three groups were computed by using ROI-ROI functional connectivity analysis. ANCOVA with a post hoc test was applied to compare FC differences among the three groups. p < 0.05 indicated statistical significance. Correlation analysis was conducted to explore the potential relationship between the FC values and clinical characteristics. Except for years of education, no significant differences were revealed among the three groups in age, gender, or neuropsychological assessment. In the CP+ group, FC alterations were mainly concentrated in the dorsal lateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), secondary somatosensory cortex (SII), and amygdala compared to the CP- group. Among these brain regions with statistical differences, FC between the right DLPFC and the right ACC showed a positive correlation with the duration of cancer pain in the CP+ group. In addition, in the CP- group, altered FC was found in the bilateral SII, ACC, and thalamus compared to the HC group. Altered FC in pain-related brain regions may be a brain pattern of bone metastatic pain and may be associated with the long duration of cancer pain.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yong Lai
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yixin Hu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| |
Collapse
|
16
|
Xu L, Wang S, Zhang L, Liu B, Zheng S, Yao M. Cobratoxin Alleviates Cancer-Induced Bone Pain in Rats via Inhibiting CaMKII Signaling Pathway after Acting on M4 Muscarinic Cholinergic Receptors. ACS Chem Neurosci 2022; 13:1422-1432. [PMID: 35420768 DOI: 10.1021/acschemneuro.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cancer-induced bone pain (CIBP) is a common pain in clinics, which can reduce the quality of life and increase the mortality of patients, but the treatment of CIBP is limited. This study was designed to investigate the analgesic effect of α-cobratoxin on CIBP and further to explore the molecular target and potential signal pathway. As shown by the mechanical allodynia test in a CIBP rat model, administration of α-cobratoxin produced significant analgesia in a dose-dependent manner, and the analgesic effects were blocked by pretreatment with an intrathecal injection of M4 mAChR-siRNA or intraperitoneal injection of tropicamide, an antagonist of M4 muscarinic cholinergic receptor. Whole-cell patch-clamp recording showed that α-cobratoxin can decrease the spontaneous firing and spontaneous excitatory postsynaptic currents of SDH neurons in CIBP rats. In primary lumber SDH neurons, intracellular calcium measurement revealed that α-cobratoxin decreased intracellular calcium concentration, and immunofluorescence demonstrated that M4 muscarinic cholinergic receptor and CaMKII/CREB were co-expressed. In the CIBP model and primary SDH neurons, Western blot showed that the levels of p-CaMKII and p-CREB were increased by α-cobratoxin and the effect of α-cobratoxin was antagonized by M4 mAChR-siRNA. The quantitative polymerase chain reaction (qPCR) results showed that α-cobratoxin downregulated the expression of proinflammatory cytokines through M4 muscarinic cholinergic receptor in SDH. These results suggest that α-cobratoxin may activate M4 muscarinic cholinergic receptor, triggering the inhibition of SDH neuronal excitability via CaMKII signaling pathway, thereby resulting in antagonistic effects in the CIBP rat model.
Collapse
Affiliation(s)
- Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shizhen Wang
- Department of Basic Medicine, Jiangsu Vocational College of Nursing, Huaian 223001, China
| | - Ling Zhang
- Department of central laboratory, Affiliated Zhangjiagang Hospital of Suzhou University, Zhangjiagang 215600, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
17
|
Multi-Region Local Field Potential Signatures in Response to the Formalin-induced Inflammatory Stimulus in Male Rats. Brain Res 2022; 1778:147779. [PMID: 35007546 DOI: 10.1016/j.brainres.2022.147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Pain can be ignited by noxious chemical (e.g., acid), mechanical (e.g., pressure), and thermal (e.g., heat) stimuli and generated by the activation of sensory neurons and their axonal terminals called nociceptors in the periphery. Nociceptive information transmitted from the periphery is projected to the central nervous system (thalamus, somatosensory cortex, insular, anterior cingulate cortex, amygdala, periaqueductal grey, prefrontal cortex, etc.) to generate a unified experience of pain. Local field potential (LFP) recording is one of the neurophysiological tools to investigate the combined neuronal activity, ranging from several hundred micrometers to a few millimeters (radius), located around the embedded electrode. The advantage of recording LFP is that it provides stable simultaneous activities in various brain regions in response to external stimuli. In this study, differential LFP activities from the contralateral anterior cingulate cortex (ACC), ventral tegmental area (VTA), and bilateral amygdala in response to peripheral noxious formalin injection were recorded in anesthetized male rats. The results indicated increased power of delta, theta, alpha, beta, and gamma bands in the ACC and amygdala but no change of gamma-band in the right amygdala. Within the VTA, intensities of the delta, theta, and beta bands were only enhanced significantly after formalin injection. It was found that the connectivity (i.t. the coherence) among these brain regions reduced significantly under the formalin-induced nociception, which suggests a significant interruption within the brain. With further study, it will sort out the key combination of structures that will serve as the signature for pain state.
Collapse
|
18
|
Zheng XQ, Wu YH, Huang JF, Wu AM. Neurophysiological mechanisms of cancer-induced bone pain. J Adv Res 2022; 35:117-127. [PMID: 35003797 PMCID: PMC8721251 DOI: 10.1016/j.jare.2021.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Cancer-induced Bone Pain (CIBP) is an important factor affecting their quality of life of cancer survivors. In addition, current clinical practice and scientific research suggest that neuropathic pain is a representative component of CIBP. However, given the variability of cancer conditions and the complexity of neuropathic pain, related mechanisms have been continuously supplemented but have not been perfected. Aim of Review Therefore, the current review highlights the latest progress in basic research on the field and proposes potential therapeutic targets, representative drugs and upcoming therapies. Key Scientific Concepts of Review Notably, factors such as central sensitization, neuroinflammation, glial cell activation and an acidic environment are considered to be related to neuropathic pain in CIBP. Nonetheless, further research is needed to ascertain the mechanism of CIBP in order to develop highly effective drugs. Moreover, more attention needs to be paid to the care of patients with advanced cancer.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yu-hao Wu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jin-feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
19
|
Sánchez-Robles EM, Girón R, Paniagua N, Rodríguez-Rivera C, Pascual D, Goicoechea C. Monoclonal Antibodies for Chronic Pain Treatment: Present and Future. Int J Mol Sci 2021; 22:ijms221910325. [PMID: 34638667 PMCID: PMC8508878 DOI: 10.3390/ijms221910325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic pain remains a major problem worldwide, despite the availability of various non-pharmacological and pharmacological treatment options. Therefore, new analgesics with novel mechanisms of action are needed. Monoclonal antibodies (mAbs) are directed against specific, targeted molecules involved in pain signaling and processing pathways that look to be very effective and promising as a novel therapy in pain management. Thus, there are mAbs against tumor necrosis factor (TNF), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), or interleukin-6 (IL-6), among others, which are already recommended in the treatment of chronic pain conditions such as osteoarthritis, chronic lower back pain, migraine, or rheumatoid arthritis that are under preclinical research. This narrative review summarizes the preclinical and clinical evidence supporting the use of these agents in the treatment of chronic pain.
Collapse
|
20
|
Bimonte S, Cascella M, Forte CA, Esposito G, Cuomo A. The Role of Anti-Nerve Growth Factor Monoclonal Antibodies in the Control of Chronic Cancer and Non-Cancer Pain. J Pain Res 2021; 14:1959-1967. [PMID: 34234542 PMCID: PMC8253925 DOI: 10.2147/jpr.s302004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) belongs to the neurotrophin family and plays a fundamental role in the endurance of sensory and sympathetic neurons during embryogenesis. NGF, by interacting with tropomyosin receptor kinase A receptor (TrkA), modulates the pain pathway through the enhancement of the neurotrophic and nociceptor functions. Moreover, it has been demonstrated that NGF is upregulated in patients with chronic pain syndromes, which are difficult to treat. Thus, new non-pharmacological approaches, based on the use of different species-specific monoclonal antibodies (mAbs) targeting the NGF pathway, have been tested for the treatment of chronic pain in preclinical and clinical studies. With regard to preclinical investigations, anti-NGF mAbs have been used for the management of osteoarthritis (OA) and chronic low back pain animal models, with encouraging results. Moreover, anti-NGF mAb therapy is effective in animal models of neuropathic cancer pain. As regards patients with OA, although phase II and phase III clinical trials with tanezumab led to pain reduction, the safety was not observed in all these patients. Here, we review the preclinical and clinical studies on anti-NGF mAb therapy in chronic syndromes, dissect the role of NGF in pain transduction, and highlight the use of anti-NGF mAbs in humans.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Gennaro Esposito
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
21
|
Pineda-Farias JB, Saloman JL, Scheff NN. Animal Models of Cancer-Related Pain: Current Perspectives in Translation. Front Pharmacol 2021; 11:610894. [PMID: 33381048 PMCID: PMC7768910 DOI: 10.3389/fphar.2020.610894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The incidence of pain in cancer patients during diagnosis and treatment is exceedingly high. Although advances in cancer detection and therapy have improved patient prognosis, cancer and its treatment-associated pain have gained clinical prominence. The biological mechanisms involved in cancer-related pain are multifactorial; different processes for pain may be responsible depending on the type and anatomic location of cancer. Animal models of cancer-related pain have provided mechanistic insights into the development and process of pain under a dynamic molecular environment. However, while cancer-evoked nociceptive responses in animals reflect some of the patients’ symptoms, the current models have failed to address the complexity of interactions within the natural disease state. Although there has been a recent convergence of the investigation of carcinogenesis and pain neurobiology, identification of new targets for novel therapies to treat cancer-related pain requires standardization of methodologies within the cancer pain field as well as across disciplines. Limited success of translation from preclinical studies to the clinic may be due to our poor understanding of the crosstalk between cancer cells and their microenvironment (e.g., sensory neurons, infiltrating immune cells, stromal cells etc.). This relatively new line of inquiry also highlights the broader limitations in translatability and interpretation of basic cancer pain research. The goal of this review is to summarize recent findings in cancer pain based on preclinical animal models, discuss the translational benefit of these discoveries, and propose considerations for future translational models of cancer pain.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Hillman Cancer Center, University of Pittsburgh Medicine Center, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Peng C, Chen XT, Xu H, Chen LP, Shen W. Role of the CXCR4/ALK5/Smad3 Signaling Pathway in Cancer-Induced Bone Pain. J Pain Res 2020; 13:2567-2576. [PMID: 33116799 PMCID: PMC7569080 DOI: 10.2147/jpr.s260508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The chemokine receptor, CXCR4, and the transforming growth factor-beta receptor, ALK5, both contribute to various processes associated with the sensation of pain. However, the relationship between CXCR4 and ALK5 and the possible mechanisms promoted by ALK5 in the development of pain have not been evaluated. Materials and Methods Tumor cell implantation (TCI) technology was used to generate a model of cancer-induced bone pain (CIBP) in rats; intrathecal (i.t.) injections of small interfering (si) RNAs targeting CXCR4 and the ALK5-specific inhibitor, RepSox, were performed. Behavioral outcomes, Western blotting, and immunofluorescence techniques were used to evaluate the expression of the aforementioned specific target proteins in the CIBP model. Results The results revealed that i.t. administration of siRNAs targeting CXCR4 resulted in significant reductions in both mechanical and thermal hyperalgesia in rats with CIBP and likewise significantly reduced the expression of ALK5 in the spinal cord. Similarly, i.t. administration of RepSox also resulted in significant reductions in mechanical and thermal hyperalgesia in rats with CIBP together with diminished levels of spinal p-Smad3. Conclusion Taken together, our results suggest that CXCR4 expression in the spinal cord may be a critical mediator of CIBP via its capacity to activate ALK5 and downstream signaling pathways.
Collapse
Affiliation(s)
- Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.,Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| |
Collapse
|
23
|
March B, Faulkner S, Jobling P, Steigler A, Blatt A, Denham J, Hondermarck H. Tumour innervation and neurosignalling in prostate cancer. Nat Rev Urol 2020; 17:119-130. [PMID: 31937919 DOI: 10.1038/s41585-019-0274-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer progression has been shown to be dependent on the development of autonomic nerves into the tumour microenvironment. Sympathetic nerves activate adrenergic neurosignalling that is necessary in early stages of tumour progression and for initiating an angiogenic switch, whereas parasympathetic nerves activate cholinergic neurosignalling resulting in tumour dissemination and metastasis. The innervation of prostate cancer seems to be initiated by neurotrophic growth factors, such as the precursor to nerve growth factor secreted by tumour cells, and the contribution of brain-derived neural progenitor cells has also been reported. Current experimental, epidemiological and clinical evidence shows the stimulatory effect of tumour innervation and neurosignalling in prostate cancer. Using nerves and neurosignalling could have value in the management of prostate cancer by predicting aggressive disease, treating localized disease through denervation and relieving cancer-associated pain in bone metastases.
Collapse
Affiliation(s)
- Brayden March
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Department of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Sam Faulkner
- Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Phillip Jobling
- Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Allison Steigler
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Newcastle Calvary Mater Hospital, Waratah, NSW, Australia
| | - Alison Blatt
- Department of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Jim Denham
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Newcastle Calvary Mater Hospital, Waratah, NSW, Australia
| | - Hubert Hondermarck
- Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia. .,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
24
|
Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H. Tumor Neurobiology and the War of Nerves in Cancer. Cancer Discov 2019; 9:702-710. [PMID: 30944117 DOI: 10.1158/2159-8290.cd-18-1398] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022]
Abstract
Nerves are emerging regulators of cancer progression. Cancer cells induce the outgrowth of nerves in the tumor microenvironment through the release of neurotrophic factors, and in return nerves liberate neurotransmitters that activate cancer growth and dissemination. Although sympathetic nerves drive tumor angiogenesis via the liberation of noradrenaline, sensory and parasympathetic nerves stimulate cancer stem cells. Interestingly, recent evidence indicates that parasympathetic nerves can eventually inhibit tumor progression, suggesting a yin-yang type of regulation of cancer by nerves. From a broader perspective, the question of a higher level of control of cancer development by the central nervous system should be raised. SIGNIFICANCE: Nerves are emerging regulators of cancer initiation, progression, and metastasis. Here, we review the evidence to date and explore the basic and clinical ramifications of these findings.
Collapse
Affiliation(s)
- Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Brayden March
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Chen Chen Jiang
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia. .,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| |
Collapse
|
25
|
Aielli F, Ponzetti M, Rucci N. Bone Metastasis Pain, from the Bench to the Bedside. Int J Mol Sci 2019; 20:E280. [PMID: 30641973 PMCID: PMC6359191 DOI: 10.3390/ijms20020280] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Bone is the most frequent site of metastasis of the most common cancers in men and women. Bone metastasis incidence has been steadily increasing over the years, mainly because of higher life expectancy in oncologic patients. Although bone metastases are sometimes asymptomatic, their consequences are most often devastating, impairing both life quality and expectancy, due to the occurrence of the skeletal-related events, including bone fractures, hypercalcemia and spinal cord compression. Up to 75% of patients endure crippling cancer-induced bone pain (CIBP), against which we have very few weapons. This review's purpose is to discuss the molecular and cellular mechanisms that lead to CIBP, including how cancer cells convert the bone "virtuous cycle" into a cancer-fuelling "vicious cycle", and how this leads to the release of molecular mediators of pain, including protons, neurotrophins, interleukins, chemokines and ATP. Preclinical tests and assays to evaluate CIBP, including the incapacitance tester (in vivo), and neuron/glial activation in the dorsal root ganglia/spinal cord (ex vivo) will also be presented. Furthermore, current therapeutic options for CIBP are quite limited and nonspecific and they will also be discussed, along with up-and-coming options that may render CIBP easier to treat and let patients forget they are patients.
Collapse
Affiliation(s)
- Federica Aielli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|