1
|
Simon N, Rudjito R, Moll L, Sandor K, Vazquez-Mora JA, Kurtović Z, Kuliszkiewicz A, Urbina CEM, Arvidsson SD, Mendoza-Sánchez E, López-Delgado GE, Luo Q, Deng Q, Martínez AM, Gerwien JG, Karila P, Krishnan V, Jiménez-Andrade JM, Svensson CI. Characterisation of the antinociceptive effect of baricitinib in the collagen antibody-induced arthritis mouse model. Ann Rheum Dis 2025; 84:421-434. [PMID: 39924372 DOI: 10.1016/j.ard.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025]
Abstract
OBJECTIVES Many rheumatoid arthritis (RA) patients continue to experience persistent pain even after successful management of joint inflammation. Clinical data indicate that RA patients treated with the JAK inhibitor baricitinib consistently achieve pain relief that cannot be entirely attributed to its anti-inflammatory effects. In this study, we investigated the antinociceptive properties of baricitinib using the collagen antibody-induced arthritis (CAIA) model in which mechanical hypersensitivity persists long after resolution of joint inflammation. METHODS The effects of baricitinib, etanercept (tumour necrosis factor inhibitor), and LP-922761 (adaptor protein-2 (AP2) associated kinase 1 (AAK1) inhibitor) on pain-like behaviour in CAIA mice were examined. Tissue samples from the late, low-grade inflammatory phase were examined for the effect of the treatments. Additionally, in vitro experiments using dorsal root ganglion (DRG) cells were conducted to assess baricitinib's influence on neuronal excitability and cell morphology. RESULTS Baricitinib reduced CAIA-induced joint inflammation, but its antinociceptive effects were most pronounced during the late phase when etanercept was ineffective. Administering baricitinib both early and late significantly decreased CAIA-induced bone loss, synovial innervation, and baseline STAT3 phosphorylation in ankle joints and DRGs. Unlike etanercept, baricitinib effectively reduced pain-like behaviour and synovial hyperinnervation when administered exclusively in the late phase. Additionally, baricitinib modulated glial cell morphology and neuronal excitability in vitro. Notably, it inhibited AAK1 signalling in DRGs, with AAK1 kinase activity blockade providing an antinociceptive effect in the CAIA model. CONCLUSIONS Our data suggests that baricitinib has antinociceptive effects by targeting not only immune cells but also neurons and glia cells via inhibition of 2 signalling pathways linked to chronic pain.
Collapse
Affiliation(s)
- Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Lydia Moll
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden; Cellectricon AB, Mölndal, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Juan Antonio Vazquez-Mora
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden; Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Alexandra Kuliszkiewicz
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Carlos E Morado Urbina
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Sven David Arvidsson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo Mendoza-Sánchez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Giovanni E López-Delgado
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Qing Luo
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Arisai Martínez Martínez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | | | | | | | - Juan Miguel Jiménez-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
2
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Nascimento GC, Vivanco-Estela AN, Ferrié L, Figadere B, Raisman-Vozari R, Michel PP, Del Bel E. Anti-nociceptive effects of non-antibiotic derivatives of demeclocycline and doxycycline against formalin-induced pain stimulation. Eur J Pharmacol 2024; 984:177054. [PMID: 39393668 DOI: 10.1016/j.ejphar.2024.177054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
In previous studies, some tetracycline (TC) antibiotics showed potential as analgesic. We investigated here the analgesic activity of new non-antibiotic TC derivatives using the formalin-induced nociceptive pain model in adult C57BL/6 mice. Specifically, we tested the effects of i.p. injections of DDMC (5, 10, 20 mg kg-1) and DDOX (10, 20, 40 mg kg-1), which are non-antibiotic derivatives of demeclocycline and doxycycline, respectively. Repeated treatments with DDMC remarkably reduced nociceptive pain in both phases of the test, at 10 mg kg-1 its efficacy was comparable to that of 10 mg kg-1 of morphine. DDOX was also effective in this paradigm but intrinsically less potent than DDMC, exerting analgesic effects between 20 and 40 mg kg-1. Interestingly, a single injection of DDMC (10 mg kg-1) was sufficient to produce a robust anti-nociceptive effect similar to that of morphine. A single injection of DDOX (40 mg kg-1) also produced anti-nociceptive effects but only in the second phase of the test. Noticeably, male mice exhibited a better analgesic response to DDMC (10 mg kg-1) than females. A single injection of DDMC (10 mg kg-1) and morphine but not of DDOX (40 mg kg-1), powerfully inhibited formalin-induced spinal cord c-Fos expression whereas both TC derivatives restrained the activation of Iba-1-immunoreactive cells, indicating a potential indirect effect on inflamed microglial cells. In summary, the non-antibiotic TCs, DDMC and DDOX, demonstrated notable analgesic efficacy against formalin-induced pain, suggesting their potential as alternatives for analgesic treatment.
Collapse
Affiliation(s)
| | | | - Laurent Ferrié
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Bruno Figadere
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
He SQ, Zhang C, Wang XW, Huang Q, Liu J, Lin Q, He H, Yang DZ, Tseng SC, Guan Y. HC-HA/PTX3 from Human Amniotic Membrane Induced Differential Gene Expressions in DRG Neurons: Insights into the Modulation of Pain. Cells 2024; 13:1887. [PMID: 39594635 PMCID: PMC11592720 DOI: 10.3390/cells13221887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The biologics derived from human amniotic membranes (AMs) demonstrate potential pain-inhibitory effects in clinical settings. However, the molecular basis underlying this therapeutic effect remains elusive. HC-HA/PTX3 is a unique water-soluble regenerative matrix that is purified from human AMs. We examined whether HC-HA/PTX3 can modulate the gene networks and transcriptional signatures in the dorsal root ganglia (DRG) neurons transmitting peripheral sensory inputs to the spinal cord. Methods: We conducted bulk RNA-sequencing (RNA-seq) of mouse DRG neurons after treating them with HC-HA/PTX3 (15 µg/mL) for 10 min and 24 h in culture. Differential gene expression analysis was performed using the limma package, and Gene Ontology (GO) and protein-protein interaction (PPI) analyses were conducted to identify the networks of pain-related genes. Western blotting and in vitro calcium imaging were used to examine the protein levels and signaling of pro-opiomelanocortin (POMC) in DRG neurons. Results: Compared to the vehicle-treated group, 24 h treatment with HC-HA/PTX3 induced 2047 differentially expressed genes (DEGs), which were centered on the ATPase activity, receptor-ligand activity, and extracellular matrix pathways. Importantly, PPI analysis revealed that over 50 of these DEGs are closely related to pain and analgesia. Notably, HC-HA/PTX3 increased the expression and signaling pathway of POMC, which may affect opioid analgesia. Conclusions: HC-HA/PTX3 induced profound changes in the gene expression in DRG neurons, centered around various neurochemical mechanisms associated with pain modulation. Our findings suggest that HC-HA/PTX3 may be an important biological active component in human AMs that partly underlies its pain inhibitory effect, presenting a new strategy for pain treatment.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Xue-Wei Wang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Hua He
- BioTissue, Inc., Miami, FL 33126, USA; (H.H.); (S.C.T.)
| | - Da-Zhi Yang
- Acrogenic Technologies Inc., Rockville, MD 20847, USA;
| | | | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Schaible HG, König C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem 2024; 168:3644-3662. [PMID: 36520021 DOI: 10.1111/jnc.15742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis. Electrophysiological recordings in anesthetized rats from spinal cord neurons with knee input in a model of acute arthritis showed that acute spinal sensitization is dependent on spinal glutamate receptors (AMPA, NMDA, and metabotropic glutamate receptors) and supported by spinal actions of neuropeptides such as neurokinins and CGRP, by prostaglandins, and by proinflammatory cytokines. In several chronic arthritis models (including immune-mediated arthritis and osteoarthritis) spinal glia activation was observed to be coincident with behavioral mechanical hyperalgesia which was attenuated or prevented by intrathecal application of minocycline, fluorocitrate, and pentoxyfylline. Some studies identified specific pathways of micro- and astroglia activation such as the purinoceptor- (P2X7-) cathepsin S/CX3CR1 pathway, the mobility group box-1 protein (HMGB1), and toll-like receptor 4 (TLR4) activation, spinal NFκB/p65 activation and others. The spinal cytokines TNF, interleukin-6, interleukin-1β, and others form a functional spinal network characterized by an interaction between neurons and glia cells which is required for spinal sensitization. Neutralization of spinal cytokines by intrathecal interventions attenuates mechanical hyperalgesia. This effect may in part result from local suppression of spinal sensitization and in part from efferent effects which attenuate the inflammatory process in the joint. In summary, arthritis evokes significant spinal hyperexcitability which is likely to contribute to the phenotype of arthritis pain in patients.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
6
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
7
|
Donovan LJ, Bridges CM, Nippert AR, Wang M, Wu S, Forman TE, Haight ES, Huck NA, Bond SF, Jordan CE, Gardner AM, Nair RV, Tawfik VL. Repopulated spinal cord microglia exhibit a unique transcriptome and contribute to pain resolution. Cell Rep 2024; 43:113683. [PMID: 38261512 PMCID: PMC10947777 DOI: 10.1016/j.celrep.2024.113683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Microglia are implicated as primarily detrimental in pain models; however, they exist across a continuum of states that contribute to homeostasis or pathology depending on timing and context. To clarify the specific contribution of microglia to pain progression, we take advantage of a temporally controlled transgenic approach to transiently deplete microglia. Unexpectedly, we observe complete resolution of pain coinciding with microglial repopulation rather than depletion. We find that repopulated mouse spinal cord microglia are morphologically distinct from control microglia and exhibit a unique transcriptome. Repopulated microglia from males and females express overlapping networks of genes related to phagocytosis and response to stress. We intersect the identified mouse genes with a single-nuclei microglial dataset from human spinal cord to identify human-relevant genes that may ultimately promote pain resolution after injury. This work presents a comprehensive approach to gene discovery in pain and provides datasets for the development of future microglial-targeted therapeutics.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Caldwell M Bridges
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amy R Nippert
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Meng Wang
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Shaogen Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas E Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nolan A Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Wu M, Song W, Zhang M, Teng L, Tang Q, Zhu L. Potential mechanisms of exercise for relieving inflammatory pain: a literature review of animal studies. Front Aging Neurosci 2024; 16:1359455. [PMID: 38389561 PMCID: PMC10881774 DOI: 10.3389/fnagi.2024.1359455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory pain (IP) is one of the most prevalent and intractable human conditions, and it leads to progressive dysfunction and reduced quality of life. Additionally, IP is incredibly challenging to treat successfully with drugs or surgery. The development of IP is complex and multifactorial, and peripheral and central sensitization may influence chronicity and treatment resistance in IP. Understanding the mechanisms underlying IP is vital for developing novel therapies. Strong evidence suggests that exercise can be a first-line relief for patients with IP during rehabilitation. However, the mechanisms through which exercise improves IP remain unclear. Here, we reviewed the current animal experimental evidence for an exercise intervention in IP and proposed biological mechanisms for the effects of synaptic plasticity in the anterior cingulate cortex, endocannabinoids, spinal dorsal horn excitability balance, immune cell polarization balance, cytokines, and glial cells. This information will contribute to basic science and strengthen the scientific basis for exercise therapy prescriptions for IP in clinical practice.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenjing Song
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhang
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Teng
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Dietrich T, Aigner A, Hildebrandt A, Weber J, Meyer Günderoth M, Hohlbaum K, Keller J, Tsitsilonis S, Maleitzke T. Nesting behavior is associated with body weight and grip strength loss in mice suffering from experimental arthritis. Sci Rep 2023; 13:23087. [PMID: 38155203 PMCID: PMC10754866 DOI: 10.1038/s41598-023-49720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Objective animal health evaluation is essential to determine welfare and discomfort in preclinical in vivo research. Body condition scores, body weight, and grimace scales are commonly used to evaluate well-being in murine rheumatoid arthritis (RA) and osteoarthritis experiments. However, nest-building, a natural behavior in mice, has not yet been evaluated in wild type (WT) or genetically modified rodents suffering from collagen antibody-induced arthritis (CAIA). To address this, we analyzed nesting behavior in WT mice, calcitonin gene-related peptide alpha-deficient (αCGRP-/-) mice, and calcitonin receptor-deficient (Calcr-/-) mice suffering from experimental RA compared to healthy control (CTRL) groups of the same genotypes. CAIA was induced in 10-12-week-old male mice, and clinical parameters (body weight, grip strength, clinical arthritis score, ankle size) as well as nesting behavior were assessed over 10 or 48 days. A slight positive association between the nest score and body weight and grip strength was found for animals suffering from CAIA. For the clinical arthritis score and ankle size, no significant associations were observed. Mixed model analyses confirmed these associations. This study demonstrates that clinical effects of RA, such as loss of body weight and grip strength, might negatively affect nesting behavior in mice. Assessing nesting behavior in mice with arthritis could be an additional, non-invasive and thus valuable health parameter in future experiments to monitor welfare and discomfort in mice. During severe disease stages, pre-formed nest-building material may be provided to animals suffering from arthritis.
Collapse
Affiliation(s)
- Tamara Dietrich
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Aigner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Alexander Hildebrandt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jérôme Weber
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mara Meyer Günderoth
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Hore Z, Royds J, Abuukar Abdullahi R, Lampa J, Al-Kaisy A, Denk F. Cerebrospinal fluid immune cells appear similar across neuropathic and non-neuropathic pain conditions. Wellcome Open Res 2023; 8:493. [PMID: 38707493 PMCID: PMC11069048 DOI: 10.12688/wellcomeopenres.20153.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 05/07/2024] Open
Abstract
Background Microglia have been implicated in the pathophysiology of neuropathic pain. Here, we sought to investigate whether cerebrospinal fluid (CSF) might be used as a proxy-measure of microglial activation in human participants. Methods We preformed fluorescence-activated cell sorting (FACS) of CSF immune cell populations derived from individuals who experienced pain with neuropathic features. We sorted CD4+, CD8+ T cells and monocytes and analyzed their transcriptome using RNA sequencing. We also performed Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing to characterize the expression of all CSF immune cells in a patient with postherpetic neuralgia and in a patient with neuropathic pain after failed back surgery. Results Immune cell numbers and phenotypes were not obviously different between individuals regardless of the etiology of their pain. This was true when examining our own dataset, as well as when comparing it to previously published single-cell RNA sequencing data of human CSF. In all instances, CSF monocytes showed expression of myeloid cell markers commonly associated with microglia ( P2RY12, TMEM119 and OLFML3), which will make it difficult to ascertain the origin of CSF proteins: do they derive directly from circulating CSF monocytes or could some originate in spinal cord microglia in the parenchyma? Conclusions We conclude that it will not be straightforward to use CSF as a biomarker for microglial function in humans.
Collapse
Affiliation(s)
- Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, London, England, UK
| | - Jonathan Royds
- Guy’s and St Thomas’ Chronic Pain Department, St Thomas Hospital, London, UK
| | | | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adnan Al-Kaisy
- Guy’s and St Thomas’ Chronic Pain Department, St Thomas Hospital, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, London, England, UK
| |
Collapse
|
11
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Lee SE, Greenough EK, Oancea P, Scheinfeld AR, Douglas AM, Gaudet AD. Sex Differences in Pain: Spinal Cord Injury in Female and Male Mice Elicits Behaviors Related to Neuropathic Pain. J Neurotrauma 2023; 40:833-844. [PMID: 36719772 DOI: 10.1089/neu.2022.0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spinal cord injury (SCI) in humans frequently causes intractable chronic pain. Females are susceptible to worse pain than males, and females may show higher pain prevalence after SCI. Despite this difference in the clinical prevalence of SCI pain, few pre-clinical studies have systematically studied sex differences in SCI-elicited pain-related behaviors in rodents. Here, we leverage data from a large cohort of mice to test whether contusion SCI consistently causes pain symptoms in mice, and to establish whether female (vs. male) mice display heightened hypersensitivity after SCI. Mechanical and heat sensory thresholds were assessed using the von Frey and Hargreaves tests, respectively. In an initial experiment, female mice receiving moderate 60 kDyn SCI or moderate-to-severe 75 kDyn SCI at T9 both exhibited mechanical and heat pain symptoms compared with sham controls. A 75 kDyn SCI caused excess motor deficits that confounded defining pain sensitivity at acute times; therefore, the moderate SCI force was used for subsequent experiments. Next, adult female and male C57BL6/J mice received sham surgery or T9 moderate contusion SCI. Comparing female to male mice after SCI, we reveal that mice of both sexes displayed mechanical and heat hypersensitivity compared with sham controls, from acute-to-chronic post-injury times. Females had amplified SCI-elicited hypersensitivity compared with males. Our data suggest that thoracic contusion SCI elicits consistent and persistent pain-associated symptoms, which are more intense in female than in male mice. These results have important implications for uncovering sex-specific mechanisms and therapeutic targets to ameliorate neuropathic pain after SCI.
Collapse
Affiliation(s)
- Sydney E Lee
- Department of Psychology, College of Liberal Arts, and Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Emily K Greenough
- Department of Psychology, College of Liberal Arts, and Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Paul Oancea
- Department of Psychology, College of Liberal Arts, and Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, and Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Apsaline M Douglas
- Department of Psychology, College of Liberal Arts, and Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, and Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
Li YZ, Zhu YB, Ge AN, Gao M, Wang KL, Zeng XR, Li J, Li Y, Xu JY, Bai HH, Wu SJ. Reduced expression of APLP2 in spinal GABAergic inhibitory neurons contributed to nerve injury-induced microglial activation and pain sensitization. Neuropharmacology 2023; 224:109334. [PMID: 36442651 DOI: 10.1016/j.neuropharm.2022.109334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
The amyloid precursor protein (APP) is critical for the pathogenesis of Alzheimer's disease (AD). The AD patients usually have lower pain sensitivity in addition to cognitive impairments. However, considerably less is known as yet about the role of APP and its two mammalian homologues, amyloid precursor-like protein 1 and 2 (APLP1, APLP2), in spinal processing of nociceptive information. Here we found that all APP family members were present in spinal cord dorsal horn of adult male C57BL/6J mice. Peripheral nerve injury specifically reduced the expression of spinal APLP2 that correlated with neuropathic mechanical allodynia. The loss of APLP2 was confined to inhibitory GABAergic interneurons. Targeted knockdown of APLP2 in GABAergic interneurons of GAD2-Cre mice evoked pain hypersensitivity by means of microglia activation. Our data showed that GABAergic terminals expressed APLP2, a putative cell adhesion protein that interacted with microglia-specific integrin molecule CD11b. Knocking down APLP2 in GAD2-positive neurons to disrupt the trans-cellular interaction led to microglia-dependent pain sensitization. Our data thus revealed an important role of APLP2 for GABAergic interneurons to control microglial activity and pain sensitivity.
Collapse
Affiliation(s)
- Yu-Zhe Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yue-Bin Zhu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - An-Na Ge
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Min Gao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Kang-Li Wang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiang-Ru Zeng
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jing Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yuan Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jia-Yu Xu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Hu-Hu Bai
- School of Life Science, Lanzhou University, Gansu, 730000, PR China.
| | - Shu-Jin Wu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| |
Collapse
|
14
|
Ghazisaeidi S, Muley MM, Salter MW. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023; 63:565-583. [PMID: 36662582 DOI: 10.1146/annurev-pharmtox-051421-112259] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Leclair V, Tsui H, Hudson M. Pain in autoimmune inflammatory myopathies: a scoping review. RMD Open 2023; 9:e002591. [PMID: 36635001 PMCID: PMC9843184 DOI: 10.1136/rmdopen-2022-002591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Pain is considered a priority for research by adult patients with autoimmune inflammatory myopathy (AIM) and their families. Our aim was to review the literature for studies reporting on pain in adult AIM and to summarise their findings. METHODS A scoping review was conducted searching for studies in PubMed and MEDLINE including more than five adult patients with AIM and assessing pain using a patient-reported outcome measure. Study population characteristics, pain measurement and clinical correlates of pain were extracted using a standardised protocol. RESULTS The search strategy identified 2831 studies with 33 meeting inclusion criteria. Most studies used visual analogue scales (n=14) and/or the Medical Outcomes Study 36-Item Short Form Bodily Pain Scale (n=17). Frequency of pain and/or myalgias ranged from 64% to 100%. Subjects with AIM had significantly more pain than the general population and comparable pain to other chronic rheumatic diseases. Insufficient results were available to identify significant clinical correlates of pain in AIM. CONCLUSION This review suggests that the burden of pain in AIM is considerable. Still, due to the heterogeneity and low quality of the evidence, significant knowledge gaps persist. Studies are needed to characterise pain trajectories of patients with AIM.
Collapse
Affiliation(s)
- Valérie Leclair
- Division of Rheumatology, Jewish General Hospital and Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Harmony Tsui
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marie Hudson
- Division of Rheumatology, Jewish General Hospital and Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
17
|
Huck NA, Donovan LJ, Shen H, Jordan CE, Muwanga GP, Bridges CM, Forman TE, Cordonnier SA, Haight ES, Dale-Huang F, Takemura Y, Tawfik VL. Sex-distinct microglial activation and myeloid cell infiltration in the spinal cord after painful peripheral injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100106. [PMID: 36531615 PMCID: PMC9755061 DOI: 10.1016/j.ynpai.2022.100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 05/26/2023]
Abstract
Chronic pain is a common and often debilitating problem that affects 100 million Americans. A better understanding of pain's molecular mechanisms is necessary for developing safe and effective therapeutics. Microglial activation has been implicated as a mediator of chronic pain in numerous preclinical studies; unfortunately, translational efforts using known glial modulators have largely failed, perhaps at least in part due to poor specificity of the compounds pursued, or an incomplete understanding of microglial reactivity. In order to achieve a more granular understanding of the role of microglia in chronic pain as a means of optimizing translational efforts, we utilized a clinically-informed mouse model of complex regional pain syndrome (CRPS), and monitored microglial activation throughout pain progression. We discovered that while both males and females exhibit spinal cord microglial activation as evidenced by increases in Iba1, activation is attenuated and delayed in females. We further evaluated the expression of the newly identified microglia-specific marker, TMEM119, and identified two distinct populations in the spinal cord parenchyma after peripheral injury: TMEM119+ microglia and TMEM119- infiltrating myeloid lineage cells, which are comprised of Ly6G + neutrophils and Ly6G- macrophages/monocytes. Neurons are sensitized by inflammatory mediators released in the CNS after injury; however, the cellular source of these cytokines remains somewhat unclear. Using multiplex in situ hybridization in combination with immunohistochemistry, we demonstrate that spinal cord TMEM119+ microglia are the cellular source of cytokines IL6 and IL1β after peripheral injury. Taken together, these data have important implications for translational studies: 1) microglia remain a viable analgesic target for males and females, so long as duration after injury is considered; 2) the analgesic properties of microglial modulators are likely at least in part related to their suppression of microglial-released cytokines, and 3) a limited number of neutrophils and macrophages/monocytes infiltrate the spinal cord after peripheral injury but have unknown impact on pain persistence or resolution. Further studies to uncover glial-targeted therapeutic interventions will need to consider sex, timing after injury, and the exact target population of interest to have the specificity necessary for translation.
Collapse
Affiliation(s)
- Nolan A. Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lauren J. Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Huaishuang Shen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Claire E. Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gabriella P.B. Muwanga
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caldwell M. Bridges
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas E. Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stephanie A. Cordonnier
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elena S. Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Fiona Dale-Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yoshinori Takemura
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Anesthesiology, University of Toyama, Toyama 930-0194, Japan
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Lin J, Ren J, Zhu B, Dai Y, Gao DS, Xia S, Cheng Z, Huang Y, Yu L. Dimethyl Itaconate Attenuates CFA-Induced Inflammatory Pain via the NLRP3/ IL-1β Signaling Pathway. Front Pharmacol 2022; 13:938979. [PMID: 35935847 PMCID: PMC9353300 DOI: 10.3389/fphar.2022.938979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Itaconate plays a prominent role in anti-inflammatory effects and has gradually been ushered as a promising drug candidate for treating inflammatory diseases. However, its significance and underlying mechanism for inflammatory pain remain unexplored. In the current study, we investigated the effects and mechanisms of Dimethyl Itaconate (DI, a derivative of itaconate) on Complete Freund’s adjuvant (CFA)-induced inflammatory pain in a rodent model. Here, we demonstrated that DI significantly reduced mechanical allodynia and thermal hyperalgesia. The DI-attenuated neuroinflammation was evident with the amelioration of infiltrative macrophages in peripheral sites of the hind paw and the dorsal root ganglion. Concurrently, DI hindered the central microglia activation in the spinal cord. Mechanistically, DI inhibited the expression of pro-inflammatory factors interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) and upregulated anti-inflammatory factor IL-10. The analgesic mechanism of DI was related to the downregulation of the nod-like receptor protein 3 (NLRP3) inflammasome complex and IL-1β secretion. This study suggested possible novel evidence for prospective itaconate utilization in the management of inflammatory pain.
Collapse
|
19
|
Liu Y, Caterina MJ, Qu L. Sensory Neuron Expressed FcγRI Mediates Postinflammatory Arthritis Pain in Female Mice. Front Immunol 2022; 13:889286. [PMID: 35833115 PMCID: PMC9271677 DOI: 10.3389/fimmu.2022.889286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent arthritis pain after resolution of joint inflammation represents a huge health burden in patients with rheumatoid arthritis (RA). However, the underling mechanisms are poorly understood. We and other groups recently revealed that FcγRI, a key immune receptor, is functionally expressed in joint nociceptors. Thus, we investigated a potential role of sensory neuron expressed FcγRI in postinflammatory arthritis pain in a mouse model of collagen antibody-induced arthritis (CAIA). Here, we show that global deletion of Fcgr1 significantly attenuated mechanical hyperalgesia in the ankle and hind paw of female mice in both inflammatory and postinflammatory phases of CAIA. No obvious differences in cartilage destruction were observed after resolution of joint inflammation between genotypes. In situ hybridization (ISH) revealed that a larger proportion of dorsal root ganglion (DRG) neurons expressed Fcgr1 mRNA signal in the late phase of CAIA. Conditional deletion of Fcgr1 in primary sensory neurons produced similar analgesic effects without affecting joint swelling. Knockdown of Fcgr1 expression within DRG in the postinflammatory phase of CAIA alleviated persistent pain. Inflammation within DRG after resolution of joint inflammation in the CAIA model was evidenced by T cell and neutrophil infiltration and upregulated mRNA expression of numerous inflammatory mediators. Yet, such changes were not altered by genetic deletion of Fcgr1. We suggest that neuroinflammation within the DRG after resolution of joint inflammation might upregulate FcγRI signaling in DRG neurons. Sensory neuron expressed FcγRI thus merits exploration as a potential target for the treatment of arthritis pain that persists in RA patients in remission.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Michael J. Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- *Correspondence: Lintao Qu,
| |
Collapse
|
20
|
Gao W, Shen L, Long DD, Pan TT, Wang D, Chai XQ, Hu SS. Angiotensin II type 2 receptor pharmacological agonist, C21, reduces the inflammation and pain hypersensitivity in mice with joint inflammatory pain. Int Immunopharmacol 2022; 110:108921. [PMID: 35724606 DOI: 10.1016/j.intimp.2022.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022]
Abstract
Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liang Shen
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Dan-Dan Long
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Ting-Ting Pan
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Xiao-Qing Chai
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Shan-Shan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
21
|
Bereiter DA, Rahman M, Ahmed F, Thompson R, Luong N, Olson JK. Title: P2x7 Receptor Activation and Estrogen Status Drive Neuroinflammatory Mechanisms in a Rat Model for Dry Eye. Front Pharmacol 2022; 13:827244. [PMID: 35479310 PMCID: PMC9037241 DOI: 10.3389/fphar.2022.827244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Dry eye disease (DED) is recognized as a chronic inflammatory condition with an increase in tear osmolarity and loss of tear film integrity. DED is often accompanied by adverse ocular symptoms which are more prevalent in females than males. The basis for ocular hyperalgesia in DED remains uncertain; however, both peripheral and central neural mechanisms are implicated. A model for aqueous deficient DED, exorbital gland excision, was used to determine if activation of the purinergic receptor subtype 7, P2X7R, expressed by non-neural cells in peripheral and central trigeminal nerve pathways, contributed to persistent ocular hyperalgesia. Densitometry of trigeminal brainstem sections revealed increases in P2X7R, the myeloid cell marker Iba1, and the inflammasome, NLRP3, of estradiol-treated DED females compared to estradiol-treated sham females, while expression in DED males and DED females not given estradiol displayed minor changes. No evidence of immune cell infiltration into the trigeminal brainstem was seen in DED rats; however, markers for microglia activation (Iba1) were increased in all groups. Isolated microglia expressed increased levels of P2X7R and P2X4R, IL-1β (Ιnterleukin-1β), NLRP3, and iNOS (nitric oxide synthase). Further, estradiol-treated DED females displayed greater increases in P2X7R, IL-1β and NLRP3 expression compared to untreated DED females. Orbicularis oculi muscle activity (OOemg) evoked by ocular instillation of hypertonic saline (HS) was recorded as a surrogate measure of ocular hyperalgesia and was markedly enhanced in all DED groups compared to sham rats. Systemic minocycline reduced HS-evoked OOemg in all DED groups compared to sham rats. Local microinjection in the caudal trigeminal brainstem of an antagonist for P2X7R (A804598) greatly reduced HS-evoked OOemg activity in all DE groups, while responses in sham groups were not affected. Intra-trigeminal ganglion injection of siRNA for P2X7R significantly reduced HS-evoked OOemg activity in all DED groups, while evoked responses in sham animals were not affected. These results indicated that activation of P2X7R at central and peripheral sites in trigeminal pain pathways contributed to an increase in ocular hyperalgesia and microglia activation in DED males and females. Estrogen treatment in females further amplified ocular hyperalgesia and neuroimmune responses in this model for aqueous deficient DED.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Mostafeezur Rahman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Fabeeha Ahmed
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Randall Thompson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Nhungoc Luong
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Julie K Olson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Su J, Krock E, Barde S, Delaney A, Ribeiro J, Kato J, Agalave N, Wigerblad G, Matteo R, Sabbadini R, Josephson A, Chun J, Kultima K, Peyruchaud O, Hökfelt T, Svensson CI. Pain-like behavior in the collagen antibody-induced arthritis model is regulated by lysophosphatidic acid and activation of satellite glia cells. Brain Behav Immun 2022; 101:214-230. [PMID: 35026421 DOI: 10.1016/j.bbi.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.
Collapse
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ada Delaney
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nilesh Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Roger Sabbadini
- LPath Inc, San Diego, United States; Department of Biology, San Diego State University, 92182, United States
| | - Anna Josephson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Kim Kultima
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
23
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
24
|
Pan TT, Gao W, Song ZH, Long DD, Cao P, Hu R, Chen DY, Zhou WJ, Jin Y, Hu SS, Wei W, Chai XQ, Zhang Z, Wang D. Glutamatergic neurons and myeloid cells in the anterior cingulate cortex mediate secondary hyperalgesia in chronic joint inflammatory pain. Brain Behav Immun 2022; 101:62-77. [PMID: 34973395 DOI: 10.1016/j.bbi.2021.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ting-Ting Pan
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wei Gao
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zi-Hua Song
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China; Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Dan-Dan Long
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peng Cao
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Rui Hu
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Dan-Yang Chen
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Wen-Jie Zhou
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Yan Jin
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Qing Chai
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhi Zhang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Di Wang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
25
|
A New Gal in Town: A Systematic Review of the Role of Galanin and Its Receptors in Experimental Pain. Cells 2022; 11:cells11050839. [PMID: 35269462 PMCID: PMC8909084 DOI: 10.3390/cells11050839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Galanin is a neuropeptide expressed in a small percentage of sensory neurons of the dorsal root ganglia and the superficial lamina of the dorsal horn of the spinal cord. In this work, we systematically reviewed the literature regarding the role of galanin and its receptors in nociception at the spinal and supraspinal levels, as well as in chronic pain conditions. The literature search was performed in PubMed, Web of Science, Scopus, ScienceDirect, OVID, TRIP, and EMBASE using "Galanin" AND "pain" as keywords. Of the 1379 papers that were retrieved in the initial search, we included a total of 141 papers in this review. Using the ARRIVE guidelines, we verified that 89.1% of the works were of good or moderate quality. Galanin shows a differential role in pain, depending on the pain state, site of action, and concentration. Under normal settings, galanin can modulate nociceptive processing through both a pro- and anti-nociceptive action, in a dose-dependent manner. This peptide also plays a key role in chronic pain conditions and its antinociceptive action at both a spinal and supraspinal level is enhanced, reducing animals' hypersensitivity to both mechanical and thermal stimulation. Our results highlight galanin and its receptors as potential therapeutic targets in pain conditions.
Collapse
|
26
|
Sideris-Lampretsas G, Malcangio M. Microglial heterogeneity in chronic pain. Brain Behav Immun 2021; 96:279-289. [PMID: 34139287 DOI: 10.1016/j.bbi.2021.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
In this review, we report existing preclinical evidence on how the CNS compartment as well as sex affect microglia functions in health. We highlight that recent advances in transcriptomics analyses have led to thorough characterization of disease-associated microglial states in mice and humans. We then consider the specific scenario of peripheral nerve or tissue injury which induce expression of a specific subset of genes in microglia in the dorsal horn of the spinal cord. We suggest the intriguing possibility that future studies may disclose the existence of a unique microglia transcriptional profile that is associated with chronic pain conditions. We also collect evidence that microglial activation in pain-related areas of the brain can be observed in models of neuropathic pain in agreement with recent neuroimaging studies in chronic pain patients. Based on the evidence discussed here, we predict that future studies on the neuroimmune interactions in chronic pain should complement our current understanding of microglia functions, but also adventure in using novel approaches such as scRNA-seq, spatial transcriptomics, CYTOF and transmission electron microscopy to provide a more complete characterization of the function, transcriptome and structure of microglia in chronic pain.
Collapse
Affiliation(s)
- George Sideris-Lampretsas
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guys' Campus, London Bridge, London SE1 1UL, UK.
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guys' Campus, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
27
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
28
|
Williams B, Lees F, Tsangari H, Hutchinson MR, Perilli E, Crotti TN. Effects of Mild and Moderate Monoclonal Antibody Dose on Inflammation, Bone Loss, and Activation of the Central Nervous System in a Female Collagen Antibody-induced Arthritis Mouse Model. J Histochem Cytochem 2021; 69:511-522. [PMID: 34291686 DOI: 10.1369/00221554211033562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of severe inflammatory arthritis in the collagen antibody-induced arthritis (CAIA) murine model causes extensive joint damage and pain-like behavior compromising analysis. While mild models are less severe, their reduced, variable penetrance makes assessment of treatment efficacy difficult. This study aimed to compare macroscopic and microscopic changes in the paws, along with central nervous system activation between a mild and moderate CAIA model. Balb/c mice (n=18) were allocated to control, mild, and moderate CAIA groups. Paw inflammation, bone volume (BV), and paw volume (PV) were assessed. Histologically, the front paws were assessed for joint inflammation, cartilage damage, and pre/osteoclast-like cells and the lumbar spinal cord and the periaqueductal gray (PAG) region of the brain for glial reactivity. A moderate CAIA dose induced (1) significantly greater local paw inflammation, inflammatory cell infiltration, and PV; (2) significantly more osteoclast-like cells on the bone surface and within the surrounding soft tissue; and (3) significantly greater glial reactivity within the PAG compared with the mild CAIA model. These findings support the use of a moderate CAIA model (higher dose of monoclonal antibodies with low-dose lipopolysaccharide) to induce more consistent histopathological features, without excessive joint destruction.
Collapse
Affiliation(s)
| | - Florence Lees
- Adelaide Medical School.,ARC Centre for Excellence for Nanoscale Biophotonics
| | | | - Mark R Hutchinson
- Adelaide Medical School.,ARC Centre for Excellence for Nanoscale Biophotonics
| | - Egon Perilli
- The University of Adelaide, Adelaide, SA, Australia, and Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
29
|
Abstract
It is consistently reported that in inflammatory arthritis (IA), pain may continue despite well-controlled inflammation, most likely due to interactions between joint pathology and pain pathway alterations. Nervous system alterations have been described, but much remains to be understood about neuronal and central non-neuronal changes in IA. Using a rat model of IA induced by intra-articular complete Freund's adjuvant injection, this study includes a thorough characterization of joint pathology and objectives to identify peripheral innervation changes and alterations in the spinal dorsal horn (DH) that could alter DH excitatory balancing. Male and female rats displayed long-lasting pain-related behavior, but, in agreement with our previous studies, other pathological alterations emerged only at later times. Cartilage vascularization, thinning, and decreased proteoglycan content were not detectable in the ipsilateral cartilage until 4 weeks after complete Freund's adjuvant. Sympathetic and peptidergic nociceptive fibers invaded the ipsilateral cartilage alongside blood vessels, complex innervation changes were observed in the surrounding skin, and ipsilateral nerve growth factor protein expression was increased. In the DH, we examined innervation by peptidergic and nonpeptidergic nociceptors, inhibitory terminal density, the KCl cotransporter KCC2, microgliosis, and astrocytosis. Here, we detected the presence of microgliosis and, interestingly, an apparent loss of inhibitory terminals and decreased expression of KCC2. In conclusion, we found evidence of anatomical, inflammatory, and neuronal alterations in the peripheral and central nervous systems in a model of IA. Together, these suggest that there may be a shift in the balance between incoming and outgoing excitation, and modulatory inhibitory tone in the DH.
Collapse
|
30
|
Reckziegel D, Abdullah T, Wu B, Wu B, Huang L, Schnitzer TJ, Apkarian AV. Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 2021; 162:1457-1467. [PMID: 33181581 PMCID: PMC8049947 DOI: 10.1097/j.pain.0000000000002143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Sex differences in the quality and prevalence of chronic pain are manifold, with women generally presenting higher incidence and severity. Uncovering chronic pain-related sex differences inform neural mechanisms and may lead to novel treatment routes. In a multicenter morphological study (total n = 374), we investigated whether the shape of subcortical regions would reflect sex differences in back pain. Given the hormone-dependent functions of the hippocampus, and its role in the transition to chronic pain, this region constituted our primary candidate. We found that the anterior part of the left hippocampus (alHP) presented outer deformation in women with chronic back pain (CBP), identified in CBP in the United States (n = 77 women vs n = 78 men) and validated in a Chinese data set (n = 29 women vs n = 58 men with CBP, in contrast to n = 53 female and n = 43 male healthy controls). Next, we examined this region in subacute back pain who persisted with back pain a year later (SBPp; n = 18 women vs n = 18 men) and in a subgroup with persistent back pain for 3 years. Weeks after onset of back pain, there was no deformation within alHP, but at 1 and 3 years women exhibited a trend for outer deformation. The alHP partly overlapped with the subiculum and entorhinal cortex, whose functional connectivity, in healthy subjects, was associated with emotional and episodic memory related terms (Neurosynth, reverse inference). These findings suggest that in women the alHP undergoes anatomical changes with pain persistence, highlighting sexually dimorphic involvement of emotional and episodic memory-related circuitry with chronic pain.
Collapse
Affiliation(s)
- Diane Reckziegel
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Taha Abdullah
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Touro College of Osteopathic Medicine, New York, USA
| | - Binbin Wu
- Department of Pain Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo Wu
- Department of Information, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lejian Huang
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas J Schnitzer
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - A Vania Apkarian
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
31
|
Zhou WJ, Wang DD, Tao J, Tai Y, Zhou ZW, Wang Z, Guo PP, Sun WY, Chen JY, Wu HX, Yan SX, Zhang LL, Wang QT, Wei W. Deficiency of β-arrestin2 exacerbates inflammatory arthritis by facilitating plasma cell formation. Acta Pharmacol Sin 2021; 42:755-766. [PMID: 32855529 PMCID: PMC8115230 DOI: 10.1038/s41401-020-00507-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
β-arrestin2 (β-arr2) is, a key protein that mediates desensitization and internalization of G protein-coupled receptors and participates in inflammatory and immune responses. Deficiency of β-arr2 has been found to exacerbate collagen antibody-induced arthritis (CAIA) through unclear mechanisms. In this study we tried to elucidate the molecular mechanisms underlying β-arr2 depletion-induced exacerbation of CAIA. CAIA was induced in β-arr2-/- and wild-type (WT) mice by injection of collagen antibodies and LPS. The mice were sacrificed on d 13 after the injection, spleen, thymus and left ankle joints were collected for analysis. Arthritis index (AI) was evaluated every day or every 2 days. We showed that β-arr2-/- mice with CAIA had a further increase in the percentage of plasma cells in spleen as compared with WT mice with CAIA, which was in accordance with elevated serum IgG1 and IgG2A expression and aggravating clinical performances, pathologic changes in joints and spleen, joint effusion, and joint blood flow. Both LPS stimulation of isolated B lymphocytes in vitro and TNP-LPS challenge in vivo led to significantly higher plasma cell formation and antibodies production in β-arr2-/- mice as compared with WT mice. LPS treatment induced membrane distribution of toll-like receptor 4 (TLR4) on B lymphocytes, accordingly promoted the nuclear translocation of NF-κB and the transcription of Blimp1. Immunofluorescence analysis confirmed that more TLR4 colocalized with β-arr2 in B lymphocytes in response to LPS stimulation. Depletion of β-arr2 restrained TLR4 on B lymphocyte membrane after LPS treatment and further enhanced downstream NF-κB signaling leading to additional increment in plasma cell formation. In summary, β-arr2 depletion exacerbates CAIA and further increases plasma cell differentiation and antibody production through inhibiting TLR4 endocytosis and aggravating NF-κB signaling.
Collapse
Affiliation(s)
- Wei-Jie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Dan-Dan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Juan Tao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Zheng-Wei Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Zhen Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Pai-Pai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing-Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hua-Xun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shang-Xue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Qing-Tong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
32
|
Pan TT, Pan F, Gao W, Hu SS, Wang D. Involvement of Macrophages and Spinal Microglia in Osteoarthritis Pain. Curr Rheumatol Rep 2021; 23:29. [PMID: 33893883 DOI: 10.1007/s11926-021-00997-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Chronic pain in osteoarthritis (OA) is characterized by pain sensitization, which involves both peripheral and central mechanisms. Studies suggest synovial macrophage and spinal microglia are implicated in pain sensitization in OA. We, therefore, reviewed the evidence of whether synovial macrophage and spinal microglia facilitated pain sensitization at diverse levels and how this event occurred in OA. RECENT FINDINGS Peripherally, joint inflammation is now believed to be a source of OA-related pain. Synovial macrophages accumulate in OA inflamed synovium and display a pro-inflammatory phenotype. Abundant macrophage-derived pro-inflammatory cytokines and other pain-causing substance facilitate hyperexcitation of primary sensory neuron in OA-related pain. Thus, activated synovial macrophage was considered a predictor for phenotyping of OA pain clinically. In response to affected joint-derived strong nociception, aberrant neuronal excitability is often associated with the hyperactivity of microglia in the spinal dorsal horn, thereby leading to central sensitization. Hyperactivity of synovial macrophage and spinal microglia underlies the mechanisms of pain sensitization at the peripheral and central level in OA. This concept provides not only a clinically relevant strategy for identifying the phenotype of OA-related pain but also has the potential to develop individualized interventions for OA, particularly in those patients with hyperactivity of macrophage and microglia.
Collapse
Affiliation(s)
- Ting-Ting Pan
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Wei Gao
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Di Wang
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
33
|
Temporal Contribution of Myeloid-Lineage TLR4 to the Transition to Chronic Pain: A Focus on Sex Differences. J Neurosci 2021; 41:4349-4365. [PMID: 33846230 DOI: 10.1523/jneurosci.1940-20.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/23/2021] [Accepted: 04/02/2021] [Indexed: 01/09/2023] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain disorder with a clear acute-to-chronic transition. Preclinical studies demonstrate that toll-like receptor 4 (TLR4), expressed by myeloid-lineage cells, astrocytes, and neurons, mediates a sex-dependent transition to chronic pain; however, evidence is lacking on which exact TLR4-expressing cells are responsible. We used complementary pharmacologic and transgenic approaches in mice to more specifically manipulate myeloid-lineage TLR4 and outline its contribution to the transition from acute-to-chronic CRPS based on three key variables: location (peripheral vs central), timing (prevention vs treatment), and sex (male vs female). We demonstrate that systemic TLR4 antagonism is more effective at improving chronic allodynia trajectory when administered at the time of injury (early) in the tibial fracture model of CRPS in both sexes. In order to clarify the contribution of myeloid-lineage cells peripherally (macrophages) or centrally (microglia), we rigorously characterize a novel spatiotemporal transgenic mouse line, Cx3CR1-CreERT2-eYFP;TLR4fl/fl (TLR4 cKO) to specifically knock out TLR4 only in microglia and no other myeloid-lineage cells. Using this transgenic mouse, we find that early TLR4 cKO results in profound improvement in chronic, but not acute, allodynia in males, with a significant but less robust effect in females. In contrast, late TLR4 cKO results in partial improvement in allodynia in both sexes, suggesting that downstream cellular or molecular TLR4-independent events may have already been triggered. Overall, we find that the contribution of TLR4 is time- and microglia-dependent in both sexes; however, females also rely on peripheral myeloid-lineage (or other TLR4 expressing) cells to trigger chronic pain.SIGNIFICANCE STATEMENT The contribution of myeloid cell TLR4 to sex-specific pain progression remains controversial. We used complementary pharmacologic and transgenic approaches to specifically manipulate TLR4 based on three key variables: location (peripheral vs central), timing (prevention vs treatment), and sex (male vs female). We discovered that microglial TLR4 contributes to early pain progression in males, and to a lesser extent in females. We further found that maintenance of chronic pain likely occurs through myeloid TLR4-independent mechanisms in both sexes. Together, we define a more nuanced contribution of this receptor to the acute-to-chronic pain transition in a mouse model of complex regional pain syndrome.
Collapse
|
34
|
Delay L, Gonçalves Dos Santos G, Dias EV, Yaksh TL, Corr M. Sexual Dimorphism in the Expression of Pain Phenotype in Preclinical Models of Rheumatoid Arthritis. Rheum Dis Clin North Am 2021; 47:245-264. [PMID: 33781493 DOI: 10.1016/j.rdc.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis is one of most frequent rheumatic diseases, affecting around 1% of the population worldwide. Pain impacting the quality of life for the patient with rheumatoid arthritis, is often the primary factor leading them to seek medical care. Although sex-related differences in humans and animal models of rheumatoid arthritis are described, the correlation between pain and sex in rheumatoid arthritis has only recently been directly examined. Here we review the literature and explore the mechanisms underlying the expression of the pain phenotype in females and males in preclinical models of rheumatoid arthritis.
Collapse
Affiliation(s)
- Lauriane Delay
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | | | - Elayne Vieira Dias
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Smith WJ, Cedeño DL, Thomas SM, Kelley CA, Vetri F, Vallejo R. Modulation of microglial activation states by spinal cord stimulation in an animal model of neuropathic pain: Comparing high rate, low rate, and differential target multiplexed programming. Mol Pain 2021; 17:1744806921999013. [PMID: 33626981 PMCID: PMC7925954 DOI: 10.1177/1744806921999013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While numerous studies and patient experiences have demonstrated the efficacy of spinal cord stimulation as a treatment for chronic neuropathic pain, the exact mechanism underlying this therapy is still uncertain. Recent studies highlighting the importance of microglial cells in chronic pain and characterizing microglial activation transcriptomes have created a focus on microglia in pain research. Our group has investigated the modulation of gene expression in neurons and glial cells after spinal cord stimulation (SCS), specifically focusing on transcriptomic changes induced by varying SCS stimulation parameters. Previous work showed that, in rodents subjected to the spared nerve injury (SNI) model of neuropathic pain, a differential target multiplexed programming (DTMP) approach provided significantly better relief of pain-like behavior compared to high rate (HRP) and low rate programming (LRP). While these studies demonstrated the importance of transcriptomic changes in SCS mechanism of action, they did not specifically address the role of SCS in microglial activation. The data presented herein utilizes microglia-specific activation transcriptomes to further understand how an SNI model of chronic pain and subsequent continuous SCS treatment with either DTMP, HRP, or LRP affects microglial activation. Genes for each activation transcriptome were identified within our dataset and gene expression levels were compared with that of healthy animals, naïve to injury and interventional procedures. Pearson correlations indicated that DTMP yields the highest significant correlations to expression levels found in the healthy animals across all microglial activation transcriptomes. In contrast, HRP or LRP yielded weak or very weak correlations for these transcriptomes. This work demonstrates that chronic pain and subsequent SCS treatments can modulate microglial activation transcriptomes, supporting previous research on microglia in chronic pain. Furthermore, this study provides evidence that DTMP is more effective than HRP and LRP at modulating microglial transcriptomes, offering potential insight into the therapeutic efficacy of DTMP.
Collapse
Affiliation(s)
- William J Smith
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - David L Cedeño
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Samuel M Thomas
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, USA
| | - Courtney A Kelley
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | | | - Ricardo Vallejo
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.,National Spine and Pain Centers, Bloomington, IL, USA
| |
Collapse
|
36
|
Agalave NM, Rudjito R, Farinotti AB, Khoonsari PE, Sandor K, Nomura Y, Szabo-Pardi TA, Urbina CM, Palada V, Price TJ, Erlandsson Harris H, Burton MD, Kultima K, Svensson CI. Sex-dependent role of microglia in disulfide high mobility group box 1 protein-mediated mechanical hypersensitivity. Pain 2021; 162:446-458. [PMID: 32773600 PMCID: PMC7808363 DOI: 10.1097/j.pain.0000000000002033] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT High mobility group box 1 protein (HMGB1) is increasingly regarded as an important player in the spinal regulation of chronic pain. Although it has been reported that HMGB1 induces spinal glial activation in a Toll-like receptor (TLR)4-dependent fashion, the aspect of sexual dimorphisms has not been thoroughly addressed. Here, we examined whether the action of TLR4-activating, partially reduced disulfide HMGB1 on microglia induces nociceptive behaviors in a sex-dependent manner. We found disulfide HMGB1 to equally increase microglial Iba1 immunoreactivity in lumbar spinal dorsal horn in male and female mice, but evoke higher cytokine and chemokine expression in primary microglial culture derived from males compared to females. Interestingly, TLR4 ablation in myeloid-derived cells, which include microglia, only protected male mice from developing HMGB1-induced mechanical hypersensitivity. Spinal administration of the glial inhibitor, minocycline, with disulfide HMGB1 also prevented pain-like behavior in male mice. To further explore sex difference, we examined the global spinal protein expression using liquid chromatography-mass spectrometry and found several antinociceptive and anti-inflammatory proteins to be upregulated in only male mice subjected to minocycline. One of the proteins elevated, alpha-1-antitrypsin, partially protected males but not females from developing HMGB1-induced pain. Targeting downstream proteins of alpha-1-antitrypsin failed to produce robust sex differences in pain-like behavior, suggesting that several proteins identified by liquid chromatography-mass spectrometry are required to modulate the effects. Taken together, the current study highlights the importance of mapping sex dimorphisms in pain mechanisms and point to processes potentially involved in the spinal antinociceptive effect of microglial inhibition in male mice.
Collapse
Affiliation(s)
- Nilesh M. Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience, Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuki Nomura
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas A. Szabo-Pardi
- Department of Neuroscience, Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vinko Palada
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Theodore J. Price
- Department of Neuroscience, Pain Neurobiology Research Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | | | - Michael D. Burton
- Department of Neuroscience, Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Kim Kultima
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Rudjito R, Agalave NM, Farinotti AB, Lundbäck P, Szabo-Pardi TA, Price TJ, Harris HE, Burton MD, Svensson CI. Sex- and cell-dependent contribution of peripheral high mobility group box 1 and TLR4 in arthritis-induced pain. Pain 2021; 162:459-470. [PMID: 32796317 PMCID: PMC7808351 DOI: 10.1097/j.pain.0000000000002034] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Spinal high mobility group box 1 protein (HMGB1) plays crucial roles in arthritis-induced pain; however, the involvement of peripheral HMGB1 has not been examined previously. In this study, we addressed the role of peripheral HMGB1 and explored if sex contributes differentially to nociception in arthritis. We found Hmgb1 expression to be elevated in the ankle joints of male and female mice subjected to collagen antibody-induced arthritis. Blocking the action of peripheral HMGB1, however, only reversed collagen antibody-induced arthritis-mediated hypersensitivity in males. Intra-articular injection of the toll-like receptor (TLR)4-activating, partially reduced disulfide, but not the fully reduced all-thiol, HMGB1 evoked mechanical hypersensitivity in both sexes. A sex-dependent temporal profile in expression of inflammatory factors in the ankle joint was observed in response to intra-articular injection of disulfide HMGB1, with male mice showing a delayed, yet longer-lasting increase in mRNA levels for several of the investigated factors. Intra-articular HMGB1 did not induce cellular infiltration in the ankle joint suggesting its action on tissue resident cells. To further explore possible sex differences in cellular involvement, we used the macrophage inhibitor, minocycline, and mice with specific TLR4 depletion in myeloid cells or nociceptors. We found that inhibition of resident macrophages attenuated HMGB1-induced pain-like behavior only in male mice. Interestingly, although the contribution of TLR4 on myeloid cells to nociception was minimal in females compared to males, TLR4 on nociceptors are important for HMGB1-induced pain in both sexes. Collectively, our work highlights sex- and cellular location-dependent roles of HMGB1 and TLR4 in peripheral pain mechanisms.
Collapse
Affiliation(s)
- Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nilesh M. Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience,Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Lundbäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas A. Szabo-Pardi
- Department of Neuroscience,Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Theodore J. Price
- Department of Neuroscience, Pain Neurobiology Research Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | | | - Michael D. Burton
- Department of Neuroscience,Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Molecular Mechanisms of Sex-Related Differences in Arthritis and Associated Pain. Int J Mol Sci 2020; 21:ijms21217938. [PMID: 33114670 PMCID: PMC7663489 DOI: 10.3390/ijms21217938] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical conditions leading to chronic pain show important sex-related differences in the prevalence, severity, and degree of functional disability. Decades of epidemiological and clinical studies have demonstrated that women are more sensitive to pain than men. Arthritis, including rheumatoid arthritis (RA) and osteoarthritis (OA), is much more prevalent in females and accounts for the majority of pain arising from musculoskeletal conditions. It is therefore important to understand the mechanisms governing sex-dependent differences in chronic pain, including arthritis pain. However, research into the mechanisms underlying the sex-related differences in arthritis-induced pain is still in its infancy due to the bias in biomedical research performed largely in male subjects and animals. In this review, we discuss current advances in both clinical and preclinical research regarding sex-related differences in the development or severity of arthritis and associated pain. In addition, sex-related differences in biological and molecular mechanisms underlying the pathogenesis of arthritis pain, elucidated based on clinical and preclinical findings, are reviewed.
Collapse
|
39
|
Ewald AC, Kiernan EA, Roopra AS, Radcliff AB, Timko RR, Baker TL, Watters JJ. Sex- and Region-Specific Differences in the Transcriptomes of Rat Microglia from the Brainstem and Cervical Spinal Cord. J Pharmacol Exp Ther 2020; 375:210-222. [PMID: 32661056 PMCID: PMC7569313 DOI: 10.1124/jpet.120.266171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The neural control system underlying breathing is sexually dimorphic with males being more vulnerable to dysfunction. Microglia also display sex differences, and their role in the architecture of brainstem respiratory rhythm circuitry and modulation of cervical spinal cord respiratory plasticity is becoming better appreciated. To further understand the molecular underpinnings of these sex differences, we performed RNA sequencing of immunomagnetically isolated microglia from brainstem and cervical spinal cord of adult male and female rats. We used various bioinformatics tools (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, STRING, MAGICTRICKS) to functionally categorize identified gene sets, as well as to pinpoint common transcriptional gene drivers that may be responsible for the observed transcriptomic differences. We found few sex differences in the microglial transcriptomes derived from the brainstem, but several hundred genes were differentially expressed by sex in cervical spinal microglia. Comparing brainstem and spinal microglia within and between sexes, we found that the major factor guiding transcriptomic differences was central nervous system (CNS) location rather than sex. We further identified key transcriptional drivers that may be responsible for the transcriptomic differences observed between sexes and CNS regions; enhancer of zeste homolog 2 emerged as the predominant driver of the differentially downregulated genes. We suggest that functional gene alterations identified in metabolism, transcription, and intercellular communication underlie critical microglial heterogeneity and sex differences in CNS regions that contribute to respiratory disorders categorized by dysfunction in neural control. These data will also serve as an important resource data base to advance our understanding of innate immune cell contributions to sex differences and the field of respiratory neural control. SIGNIFICANCE STATEMENT: The contributions of central nervous system (CNS) innate immune cells to sexually dimorphic differences in the neural circuitry controlling breathing are poorly understood. We identify key transcriptomic differences, and their transcriptional drivers, in microglia derived from the brainstem and the C3-C6 cervical spinal cord of healthy adult male and female rats. Gene alterations identified in metabolism, gene transcription, and intercellular communication likely underlie critical microglial heterogeneity and sex differences in these key CNS regions that contribute to the neural control of breathing.
Collapse
Affiliation(s)
- Andrea C Ewald
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth A Kiernan
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar S Roopra
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Abigail B Radcliff
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Rebecca R Timko
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Tracy L Baker
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyoti J Watters
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
40
|
Dunn JS, Nagi SS, Mahns DA. Minocycline reduces experimental muscle hyperalgesia induced by repeated nerve growth factor injections in humans: A placebo‐controlled double‐blind drug‐crossover study. Eur J Pain 2020; 24:1138-1150. [DOI: 10.1002/ejp.1558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/28/2020] [Accepted: 03/11/2020] [Indexed: 11/09/2022]
Affiliation(s)
- James S. Dunn
- School of Medicine Western Sydney University Penrith NSW Australia
| | - Saad S. Nagi
- School of Medicine Western Sydney University Penrith NSW Australia
- Department of Biomedical and Clinical Sciences Center for Social and Affective Neuroscience Linköping University Linköping Sweden
| | - David A. Mahns
- School of Medicine Western Sydney University Penrith NSW Australia
| |
Collapse
|
41
|
Granulocyte-Macrophage Colony Stimulating Factor As an Indirect Mediator of Nociceptor Activation and Pain. J Neurosci 2020; 40:2189-2199. [PMID: 32019828 DOI: 10.1523/jneurosci.2268-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction between the immune system and the nervous system has been at the center of multiple research studies in recent years. Whereas the role played by cytokines as neuronal mediators is no longer contested, the mechanisms by which cytokines modulate pain processing remain to be elucidated. In this study, we have analyzed the involvement of granulocyte-macrophage colony stimulating factor (GM-CSF) in nociceptor activation in male and female mice. Previous studies have suggested GM-CSF might directly activate neurons. However, here we established the absence of a functional GM-CSF receptor in murine nociceptors, and suggest an indirect mechanism of action, via immune cells. We report that GM-CSF applied directly to magnetically purified nociceptors does not induce any transcriptional changes in nociceptive genes. In contrast, conditioned medium from GM-CSF-treated murine macrophages was able to drive nociceptor transcription. We also found that conditioned medium from nociceptors treated with the well established pain mediator, nerve growth factor, could also modify macrophage gene transcription, providing further evidence for a bidirectional crosstalk.SIGNIFICANCE STATEMENT The interaction of the immune system and the nervous system is known to play an important role in the development and maintenance of chronic pain disorders. Elucidating the mechanisms of these interactions is an important step toward understanding, and therefore treating, chronic pain disorders. This study provides evidence for a two-way crosstalk between macrophages and nociceptors in the peripheral nervous system, which may contribute to the sensitization of nociceptors by cytokines in pain development.
Collapse
|
42
|
Yang H, Liu Z, Song Y, Hu C. Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis. Drug Deliv 2020; 26:820-830. [PMID: 31389248 PMCID: PMC6713218 DOI: 10.1080/10717544.2019.1636423] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Arthritis treatment has been challenging because of low drug exposure to the articular cavity. This study was intended to develop hyaluronic acid (HA)-functionalized bilosomes for targeted delivery of tripterine (Tri), an antiphlogistic phytomedicine, to the inflamed joint via ligand-receptor interaction. Tri-loaded bilosomes (Tri-BLs) with cationic lipid (DOTAP) were prepared by a thin film hydration method followed by HA coating to form HA@Tri-BLs. HA@Tri-BLs were then characterized by particle size (PS), entrapment efficiency (EE), and structural morphology. The in vitro drug release, hemocompatibility test and cellular uptake were performed to examine the formulation performances of HA@Tri-BLs. The in vivo pharmacokinetics and antiarthritic efficacy were evaluated in arthritic models, respectively. The obtained HA@Tri-BLs possessed a PS of 118.5 nm around with an EE of 99.56%. HA@Tri-BLs exhibited excellent cellular uptake and targeted delivery efficiency for Tri, which resulted in elongation of circulatory residence time and enhancement of intra-arthritic bioavailability (799.9% relative to Tri solution). The in vivo antiarthritic efficacy of HA@Tri-BLs was also significantly superior to uncoated Tri-BLs that gave rise to obvious inflammation resolution. Our findings suggest that HA-functionalized bilosomes are a promising vehicle for articular delivery of antiphlogistic drugs to potentiate their efficacy.
Collapse
Affiliation(s)
- Hailing Yang
- a School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu , China.,b School of Pharmacy, Guangxi University of Chinese Medicine , Nanning , China
| | - Zhenjie Liu
- b School of Pharmacy, Guangxi University of Chinese Medicine , Nanning , China
| | - Yonglong Song
- c Department of Pharmacy, Anhui Medical College , Hefei , China
| | - Changjiang Hu
- a School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu , China
| |
Collapse
|
43
|
Gonçalves WA, Rezende BM, de Oliveira MPE, Ribeiro LS, Fattori V, da Silva WN, Prazeres PHDM, Queiroz-Junior CM, Santana KTDO, Costa WC, Beltrami VA, Costa VV, Birbrair A, Verri WA, Lopes F, Cunha TM, Teixeira MM, Amaral FA, Pinho V. Sensory Ganglia-Specific TNF Expression Is Associated With Persistent Nociception After Resolution of Inflammation. Front Immunol 2020; 10:3120. [PMID: 32038637 PMCID: PMC6984351 DOI: 10.3389/fimmu.2019.03120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Joint pain is a distressing symptom of arthritis, and it is frequently persistent even after treatments which reduce local inflammation. Continuous production of algogenic factors activate/sensitize nociceptors in the joint structures and contribute to persistent pain, a challenging and difficult condition to treat. TNF is a crucial cytokine for the pathogenesis of several rheumatic diseases, and its inhibition is a mainstay of treatment to control joint symptoms, including pain. Here, we sought to investigate the inflammatory changes and the role of TNF in dorsal root ganglia (DRG) during persistent hypernociception after the resolution of acute joint inflammation. Using a model of antigen-induced arthritis, the peak of joint inflammation occurred 12–24 h after local antigen injection and was characterized by an intense influx of neutrophils, pro-inflammatory cytokine production, and joint damage. We found that inflammatory parameters in the joint returned to basal levels between 6 and 8 days after antigen-challenge, characterizing the resolving phase of joint inflammation. Mechanical hyperalgesia was persistent up to 14 days after joint insult. The persistent nociception was associated with the inflammatory status of DRG after cessation of acute joint inflammation. The late state of neuroinflammation in the ipsilateral side was evidenced by gene expression of TNF, TNFR2, IL-6, IL-1β, CXCL2, COX2, and iNOS in lumbar DRG (L3-L5) and leukocyte adhesion in the lumbar intumescent vessels between days 6 and 8. Moreover, there were signs of resident macrophage activation in DRG, as evidenced by an increase in Iba1-positive cells. Intrathecal or systemic injection of etanercept, an agent clinically utilized for TNF neutralization, at day 7 post arthritis induction, alleviated the persistent joint hyperalgesia by specific action in DRG. Our data suggest that neuroinflammation in DRG after the resolution of acute joint inflammation drives continuous neural sensitization resulting in persistent joint nociception in a TNF-dependent mechanism.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Departamento de Enfermagem Básica, Escola de Enfermagem da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marcos Paulo Esteves de Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Secchim Ribeiro
- Biomediziniches Zentrum (BMZ), Institut für Angeborene Immunität, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg, Germany
| | - Victor Fattori
- Departamento de Patologia, Center of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Walison Nunes da Silva
- Departamento de Patologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Karina Talita de Oliveira Santana
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Walyson Coelho Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alexander Birbrair
- Departamento de Patologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Center of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Fernando Lopes
- Institute of Parasitology and Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Thiago Mattar Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
44
|
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci 2020; 21:ijms21020533. [PMID: 31947680 PMCID: PMC7013391 DOI: 10.3390/ijms21020533] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used.
Collapse
|
45
|
β-Caryophyllene, a CB2-Receptor-Selective Phytocannabinoid, Suppresses Mechanical Allodynia in a Mouse Model of Antiretroviral-Induced Neuropathic Pain. Molecules 2019; 25:molecules25010106. [PMID: 31892132 PMCID: PMC6983198 DOI: 10.3390/molecules25010106] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathic pain associated with nucleoside reverse transcriptase inhibitors (NRTIs), therapeutic agents for human immunodeficiency virus (HIV), responds poorly to available drugs. Smoked cannabis was reported to relieve HIV-associated neuropathic pain in clinical trials. Some constituents of cannabis (Cannabis sativa) activate cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors. However, activation of the CB1 receptor is associated with side effects such as psychosis and physical dependence. Therefore, we investigated the effect of β-caryophyllene (BCP), a CB2-selective phytocannabinoid, in a model of NRTI-induced neuropathic pain. Female BALB/c mice treated with 2′-3′-dideoxycytidine (ddC, zalcitabine), a NRTI, for 5 days developed mechanical allodynia, which was prevented by cotreatment with BCP, minocycline or pentoxifylline. A CB2 receptor antagonist (AM 630), but not a CB1 receptor antagonist (AM 251), antagonized BCP attenuation of established ddC-induced mechanical allodynia. β-Caryophyllene prevented the ddC-induced increase in cytokine (interleukin 1 beta, tumor necrosis factor alpha and interferon gamma) transcripts in the paw skin and brain, as well as the phosphorylation level of Erk1/2 in the brain. In conclusion, BCP prevents NRTI-induced mechanical allodynia, possibly via reducing the inflammatory response, and attenuates mechanical allodynia through CB2 receptor activation. Therefore, BCP could be useful for prevention and treatment of antiretroviral-induced neuropathic pain.
Collapse
|
46
|
Affiliation(s)
- Megan Crow
- Cold Spring Harbor Laboratory, NY, United States
| | - Franziska Denk
- King's College London, Wolfson Centre for Age-Related Diseases, London, SE1 1UL, United Kingdom
| |
Collapse
|