1
|
Wu H, Xie L, Chen Q, Xu F, Dai A, Ma X, Xie S, Li H, Zhu F, Jiao C, Sun L, Xu Q, Zhou Y, Shen Y, Chen X. Activation of GABAergic neurons in the dorsal raphe nucleus alleviates hyperalgesia induced by ovarian hormone withdrawal. Pain 2025; 166:759-772. [PMID: 39106454 PMCID: PMC11921449 DOI: 10.1097/j.pain.0000000000003362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Menopausal and postmenopausal women, characterized by a significant reduction in ovarian hormones, have a high prevalence of chronic pain with great pain intensity. However, the underlying mechanism of hyperalgesia induced by ovarian hormone withdrawal remains poorly understood. Here, we report that decreases in the activity and excitability of GABAergic neurons in the dorsal raphe nucleus (DRN) are associated with hyperalgesia induced by ovariectomy in mice. Supplementation with 17β-estradiol, but not progesterone, is sufficient to increase the mechanical pain threshold in ovariectomized (OVX) mice and the excitability of DRN GABAergic (DRN GABA ) neurons. Moreover, activation of the DRN GABA neurons projecting to the lateral parabrachial nucleus was critical for alleviating hyperalgesia in OVX mice. These findings show the essential role of DRN GABA neurons and their modulation by estrogen in regulating hyperalgesia induced by ovarian hormone withdrawal, providing therapeutic basis for the treatment of chronic pain in physiological or surgical menopausal women.
Collapse
Affiliation(s)
- Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ange Dai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Ma
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Shulan Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihong Sun
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Zhou
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yi Shen
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Machen B, Miller SN, Xin A, Lampert C, Assaf L, Tucker J, Pereira F, Loewinger G, Beas S. The encoding of interoceptive-based predictions by the paraventricular nucleus of the thalamus D2+ neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642469. [PMID: 40161660 PMCID: PMC11952474 DOI: 10.1101/2025.03.10.642469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding how the brain integrates internal physiological states with external sensory cues to guide behavior is a fundamental question in neuroscience. This process relies on interoceptive predictions-internal models that anticipate changes in the body's physiological state based on sensory inputs and prior experiences. Despite recent advances in identifying the neural substrates of interoceptive predictions, the precise neuronal circuits involved remain elusive. In our study, we demonstrate that Dopamine 2 Receptor (D2+) expressing neurons in the paraventricular nucleus of the thalamus (PVT) play key roles in interoception and interoceptive predictions. Specifically, these neurons are engaged in behaviors leading to physiologically relevant outcomes, with their activity highly dependent on the interoceptive state of the mice and the expected outcome. Furthermore, we show that chronic inhibition of PVT D2+ neurons impairs the long-term performance of interoceptive-guided motivated behavior. Collectively, our findings provide insights into the role of PVT D2+ neurons in learning and updating state-dependent predictions, by integrating past experiences with current physiological conditions to optimize goal-directed behavior.
Collapse
|
3
|
Ma L, Sun D, Wen S, Yuan J, Li J, Tan X, Cao S. PSD-95 Protein: A Promising Therapeutic Target in Chronic Pain. Mol Neurobiol 2025; 62:3361-3375. [PMID: 39285025 DOI: 10.1007/s12035-024-04485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 09/04/2024] [Indexed: 02/04/2025]
Abstract
Chronic pain, as a social public health problem, has a serious impact on the quality of patients' life. Currently, the main drugs used to treat chronic pain are opioids, antipyretic, and nonsteroidal anti-inflammatory drugs (NSAIDs). But the obvious side effects limit their use, so it is urgent to find new therapeutic targets. Postsynaptic density (PSD)-95 protein plays an important role in the occurrence and development of chronic pain. The over-expression of the PSD-95 protein and its interaction with other proteins are closely related to the chronic pain. Besides, the PSD-95-related drugs that inhibit the expression of PSD-95 as well as the interaction with other protein have been proved to treat chronic pain significantly. In conclusion, although more deep studies are needed in the future, these studies indicate that PSD-95 and the related proteins, such as NMDA receptor (NMDAR) subunit 2B (GluN2B), AMPA receptor (AMPAR), calmodulin-dependent protein kinase II (CaMKII), 5-hydroxytryptamine 2A receptor (5-HT2AR), and neuronal nitric oxide synthase (nNOS), are the promising therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dongdong Sun
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Song Wen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jing Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Song Cao
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
4
|
Liu X, Zhang X, Wang D, Cao Y, Zhang L, Li Z, Zhang Q, Shen Y, Lu X, Fan K, Liu M, Wei J, Hu S, Liu H. A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice. Brain Behav 2025; 15:e70218. [PMID: 39740781 DOI: 10.1002/brb3.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Pain is a prevalent comorbidity in numerous clinical conditions and causes suffering; however, the mechanism of pain is intricate, and the neural circuitry underlying pain in the brain remains incompletely elucidated. More research into the perception and modulation of pain within the central nervous system is essential. The nucleus accumbens (NAc) plays a pivotal role in the regulation of animal behavior, and extensive research has unequivocally demonstrated its significant involvement in the occurrence and development of pain. NAc receives projections from various other neural nuclei within the brain, including the paraventricular nucleus of the thalamus (PVT). In this experiment, we demonstrate that the specific glutamatergic neural circuit projection from PVT to NAc (PVTGlut→NAc) is implicated in the modulation of inflammatory pain in mice. METHODS We compared the difference in pain thresholds between complete Freund's adjuvant (CFA)-induced inflammatory pain models and controls. Then in a well-established mouse model of CFA-induced inflammatory pain, immunofluorescence staining was utilized to evaluate changes in c-Fos protein expression within PVT neurons. To investigate the role of PVTGlut→NAc in the modulation of pain, we used optogenetics to modulate this neural circuit, and nociceptive behavioral tests were employed to investigate the functional role of the PVTGlut→NAc circuit in the modulation of inflammatory pain. RESULTS In the mice with the inflammatory pain group, both the paw withdrawal latencies (PWLs) and paw withdrawal thresholds (PWTs) of the right hind paw were decreased compared to the control group. In addition, compared to the control group, CFA-induced inflammatory pain led to increased c-Fos protein expression in PVT, which means that some of the neurons in this area of the brain region have been activated. Following the injection of retrograde transport fluorescent-labeled virus into NAc, glutamatergic neurons projecting from the PVT to NAc were observed, confirming the projection relationship between PVT and NAc. In the experiments in optogenetic regulation, normal mice exhibited pain behavior when the PVTGlut→NAc circuit was stimulated by a 473 nm blue laser, resulting in decreased PWLs and PWTs compared to the control group, which means activating this neural circuit can lead to painful behaviors. In the CFA-induced pain group, inhibition of the PVTGlut→NAc circuit by a 589 nm yellow laser alleviated pain behavior, leading to increased PWLs and PWTs compared to the control group, representing the fact that inhibition of this neural circuit relieves pain behaviors. CONCLUSIONS The findings unveil a pivotal role of the PVTGlut→NAc circuit in modulating inflammatory pain induced by CFA in mice.
Collapse
Affiliation(s)
- Xi Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Anesthesiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xi Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongxu Wang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ya Cao
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ling Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Zhonghua Li
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Qin Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Yu Shen
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Xian Lu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Keyu Fan
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Mingxia Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Jingqiu Wei
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Education & Training, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siping Hu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - He Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
5
|
Cao Y, Wu Z, Zhang M, Ji R, Zhang H, Song L. Microglial adenosine A 2A receptor in the paraventricular thalamic nucleus regulates pain sensation and analgesic effects independent of opioid and cannabinoid receptors. Front Pharmacol 2024; 15:1467305. [PMID: 39749202 PMCID: PMC11693661 DOI: 10.3389/fphar.2024.1467305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A2A receptor (A2AR) in the PVT in regulating pain sensation and non-opioid analgesia. Method and results Specifically, A2AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA). Pharmacological activation of local PVT A2AR with its agonist CGS21680 induced significantly decreased 50% paw withdrawal threshold (50%PWTs) and paw withdrawal latency (PWLs), as measured by the Von Frey test and Hargreaves test in adult mice. Conversely, intra-PVT infusion of A2AR antagonist SCH58261 increased 50%PWTs and PWLs in mice; a robust analgesic effect was also observed in CFA mice with inflammatory pain. Importantly, these analgesic effects of A2AR antagonist SCH58261 were not affected by adjunctive intraperitoneal administration of naloxone or rimonabant, inhibitors of opioid receptor and cannabinoid CB1 receptor (CB1R), respectively. Discussion Overall, these pharmacological experiments underscore an essential role of microglia-expressed A2AR with in PVT in pain sensation while revealing a novel analgesic action independent of opioid and cannabinoids receptors. Thus, these findings highlight PVT microglial adenosine A2A receptor as a promising target for novel approaches to pain modulation and future analgesic development.
Collapse
Affiliation(s)
- Yiping Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Moruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Mindaye SA, Chen WH, Lin SC, Chen YC, Abdelaziz MA, Tzeng YS, Shih ACC, Chen SY, Yang SB, Chen CC. Separate anterior paraventricular thalamus projections differentially regulate sensory and affective aspects of pain. Cell Rep 2024; 43:114946. [PMID: 39499617 DOI: 10.1016/j.celrep.2024.114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The experience of pain is complex, involving both sensory and affective components, yet the underlying neural mechanisms remain elusive. Here, we show that formalin-induced pain behaviors coincide with increased responses in glutamatergic neurons within the anterior paraventricular nucleus of the thalamus (PVA). Furthermore, we describe non-overlapping subpopulations of PVAVgluT2 neurons involved in sensory and affective pain processing, whose activity varies across different pain states. Activating PVA glutamatergic neurons is sufficient to induce mechanical hypersensitivity and aversion behaviors, whereas suppression ameliorates formalin-induced pain. Furthermore, we identify the segregation of PVAVgluT2 projections to the bed nucleus of the stria terminalis (BNST) and nucleus accumbens (NAc), each influencing specific aspects of pain-like behavior. This finding provides an important insight into the mechanism of distinct components of pain, highlighting the pivotal role of PVA in mediating different aspects of pain-like behavior with distinct circuits.
Collapse
Affiliation(s)
- Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Shih-Che Lin
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yong-Cyuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Shiuan Tzeng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Gao JH, Liu YY, Xu HX, Wu K, Zhang LL, Cheng P, Peng XH, Cao JL, Hua R, Zhang YM. Divergent input patterns to the central lateral amygdala play a duet in fear memory formation. iScience 2024; 27:110886. [PMID: 39319272 PMCID: PMC11421289 DOI: 10.1016/j.isci.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Somatostatin (SOM)-expressing neurons in the central lateral amygdala (CeL) are responsible for fear memory learning, but the circuit and molecular mechanisms underlying this biology remain elusive. Here, we found that glutamatergic neurons in the lateral parabrachial nucleus (LPB) directly dominated the activity of CeLSOM neurons, and that selectively inhibiting the LPBGlu→CeLSOM pathway suppressed fear memory acquisition. By contrast, inhibiting CeL-projecting glutamatergic neurons in the paraventricular thalamic nucleus (PVT) interfered with consolidation-related processes. Notably, CeLSOM-innervating neurons in the LPB were modulated by presynaptic cannabinoid receptor 1 (CB1R), and knock down of CB1Rs in LPB glutamatergic neurons enhanced excitatory transmission to the CeL and partially rescued the impairment in fear memory induced by CB1R activation in the CeL. Overall, our study reveals the mechanisms by which CeLSOM neurons mediate the formation of fear memories during fear conditioning in mice, which may provide a new direction for the clinical research of fear-related disorders.
Collapse
Affiliation(s)
- Jing-Hua Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Department of Anesthesiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng 224008, Jiangsu, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Hui-Xiang Xu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Le-le Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
8
|
Zeng P, Zhao B, Li M, Wang Y, Cai G, Chen R, Chen L, Liu J. The volumes of amygdala subregions and peripheral programmed cell death protein-1 levels are associated with cognitive decline in individuals with knee osteoarthritis. Brain Behav 2024; 14:e70042. [PMID: 39344268 PMCID: PMC11633366 DOI: 10.1002/brb3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Persistent pain is a prominent symptom of knee osteoarthritis (KOA) and has been associated with cognitive decline in individuals with KOA. The amygdala, a complex structure consisting of nine subnuclei, and programmed cell death protein-1 (PD-1) levels play crucial roles in pain regulation and cognitive processing. This study aims to investigate the relationships among amygdala subregion volumes, cognitive function, and PD-1 levels to elucidate the underlying mechanism of cognitive decline in KOA. METHODS In this cross-sectional study, we recruited 36 patients with KOA and 25 age/gender-matched healthy controls for neuropsychological tests, structural magnetic resonance imaging scanning, and measurement of serum PD-1 levels. We used the atlas provided by FreeSurfer software to automatically segment the amygdala subnuclei. Subsequently, we compared the volumes of amygdala subregions between groups and explored their correlation with clinical scores and PD-1 levels. RESULTS Compared to healthy controls, individuals with KOA exhibited significantly lower scores on global cognition tasks, such as long-delay free recall, short-delay free recall, and immediate recall tasks. Moreover, they displayed decreased volumes in lateral nucleus basal nucleus paralaminar nucleus while showing increased volumes in accessory basal nucleus, central nucleus, medial nucleus, and cortical nucleus. Within the KOA group specifically, paralaminar volume was negatively correlated with immediate recall scores; pain scores were negatively correlated with global cognition; basal volume was negatively correlated with PD-1 levels. CONCLUSION Our findings highlight those alterations in amygdala subregion volumes along with changes in serum PD-1 levels may contribute to observe cognitive decline among individuals suffering from KOA.
Collapse
Affiliation(s)
- Peiling Zeng
- College of Rehabilitation MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Baoru Zhao
- College of Rehabilitation MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Ming Li
- Affiliated Rehabilitation HospitalFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Yajun Wang
- College of Rehabilitation MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Guiyan Cai
- College of Rehabilitation MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Ruilin Chen
- College of Rehabilitation MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Lidian Chen
- College of Rehabilitation MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- National‐Local Joint Engineering Research Center of Rehabilitation Medicine TechnologyFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine)Ministry of EducationFuzhouFujianChina
| | - Jiao Liu
- College of Rehabilitation MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Deng J, Chen L, Liu CC, Liu M, Guo GQ, Wei JY, Zhang JB, Fan HT, Zheng ZK, Yan P, Zhang XZ, Zhou F, Huang SX, Zhang JF, Xu T, Xie JD, Xin WJ. Distinct Thalamo-Subcortical Circuits Underlie Painful Behavior and Depression-Like Behavior Following Nerve Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401855. [PMID: 38973158 PMCID: PMC11425852 DOI: 10.1002/advs.202401855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.
Collapse
Affiliation(s)
- Jie Deng
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li Chen
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, 510000, China
| | - Guo-Qing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jia-You Wei
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Bo Zhang
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510630, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Kun Zheng
- Department of Electronic Engineering, Shantou University, Shantou, 515063, China
| | - Pu Yan
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhou
- Department of Neurology, First people's hospital of Foshan, Foshan, Guangdong, 510168, China
| | - Sui-Xiang Huang
- Department of Pain Medicine, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, 510630, China
| | - Ji-Feng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Ting Xu
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing-Dun Xie
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
10
|
Palmiter RD. Parabrachial neurons promote nociplastic pain. Trends Neurosci 2024; 47:722-735. [PMID: 39147688 DOI: 10.1016/j.tins.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The parabrachial nucleus (PBN) in the dorsal pons responds to bodily threats and transmits alarm signals to the forebrain. Parabrachial neuron activity is enhanced during chronic pain, and inactivation of PBN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic activation of all glutamatergic neurons in the PBN, or just the subpopulation that expresses the Calca gene, is sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain, defined as diffuse pain without tissue inflammation or nerve injury. This review focuses on the role(s) of molecularly defined PBN neurons and the downstream nodes in the brain that contribute to establishing nociplastic pain.
Collapse
Affiliation(s)
- Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, Investigator of the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. Cell Rep 2024; 43:114057. [PMID: 38583149 PMCID: PMC11210282 DOI: 10.1016/j.celrep.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury, collectively referred to as nociplastic pain, are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitters, we demonstrate that activation of Calca neurons is necessary for the manifestation and maintenance of chronic pain. Additionally, by directly stimulating Calca neurons, we demonstrate that Calca neuron activity is sufficient to drive nociplasticity. Aversive stimuli of multiple sensory modalities, such as exposure to nitroglycerin, cisplatin, or lithium chloride, can drive nociplasticity in a Calca-neuron-dependent manner. Aversive events drive nociplasticity in Calca neurons in the form of increased activity and excitability; however, neuroplasticity also appears to occur in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
13
|
Tang QQ, Wu Y, Tao Q, Shen Y, An X, Liu D, Xu Z. Direct paraventricular thalamus-basolateral amygdala circuit modulates neuropathic pain and emotional anxiety. Neuropsychopharmacology 2024; 49:455-466. [PMID: 37848732 PMCID: PMC10724280 DOI: 10.1038/s41386-023-01748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
The comorbidity of chronic pain and mental dysfunctions such as anxiety disorders has long been recognized, but the underlying mechanisms remained poorly understood. Here, using a mouse model of neuropathic pain, we demonstrated that the thalamic paraventricular nucleus (PVT) played a critical role in chronic pain-induced anxiety-like behavioral abnormalities. Fiber photometry and electrophysiology demonstrated that chronic pain increased the activities in PVT glutamatergic neurons. Chemogenetic manipulation revealed that suppression of PVT glutamatergic neurons relieved pain-like behavior and anxiety-like behaviors. Conversely, selective activation of PVT glutamatergic neurons showed algesic and anxiogenic effects. Furthermore, the elevated excitability of PVT glutamatergic neurons resulted in increased excitatory inputs to the basolateral complex (BLA) neurons. Optogenetic manipulation of the PVT-BLA pathway bilaterally modulates both the pain-like behavior and anxiety-like phenotypes. These findings shed light on how the PVT-BLA pathway contributed to the processing of pain-like behavior and maladaptive anxiety, and targeting this pathway might be a straightforward therapeutic strategy to both alleviate nociceptive hypersensitivity and rescue anxiety behaviors in chronic pain conditions.
Collapse
Affiliation(s)
- Qian-Qian Tang
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yuanyuan Wu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Qiang Tao
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yanan Shen
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Xiaohu An
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Di Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zifeng Xu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China.
| |
Collapse
|
14
|
Cui LL, Wang XX, Liu H, Luo F, Li CH. Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats. Mol Pain 2024; 20:17448069241226960. [PMID: 38172075 PMCID: PMC10851759 DOI: 10.1177/17448069241226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2013] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.
Collapse
Affiliation(s)
- Ling-Ling Cui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Xi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Liu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Hong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
15
|
Su N, Cai P, Dou Z, Yin X, Xu H, He J, Li Z, Li C. Brain nuclei and neural circuits in neuropathic pain and brain modulation mechanisms of acupuncture: a review on animal-based experimental research. Front Neurosci 2023; 17:1243231. [PMID: 37712096 PMCID: PMC10498311 DOI: 10.3389/fnins.2023.1243231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Neuropathic pain (NP) is known to be associated with abnormal changes in specific brain regions, but the complex neural network behind it is vast and complex and lacks a systematic summary. With the help of various animal models of NP, a literature search on NP brain regions and circuits revealed that the related brain nuclei included the periaqueductal gray (PAG), lateral habenula (LHb), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC); the related brain circuits included the PAG-LHb and mPFC-ACC. Moreover, acupuncture and injurious information can affect different brain regions and influence brain functions via multiple aspects to play an analgesic role and improve synaptic plasticity by regulating the morphology and structure of brain synapses and the expression of synapse-related proteins; maintain the balance of excitatory and inhibitory neurons by regulating the secretion of glutamate, γ-aminobutyric acid, 5-hydroxytryptamine, and other neurotransmitters and receptors in the brain tissues; inhibit the overactivation of glial cells and reduce the release of pro-inflammatory mediators such as interleukins to reduce neuroinflammation in brain regions; maintain homeostasis of glucose metabolism and regulate the metabolic connections in the brain; and play a role in analgesia through the mediation of signaling pathways and signal transduction molecules. These factors help to deepen the understanding of NP brain circuits and the brain mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxue Yin
- Department of Science and Education, Shandong Academy of Chinese Medicine, Jinan, China
| | - Hongmin Xu
- Department of Gynecology, Laiwu Hospital of Traditional Chinese, Jinan, China
| | - Jing He
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
16
|
Zhang G, Cui M, Ji R, Zou S, Song L, Fan B, Yang L, Wang D, Hu S, Zhang X, Fang T, Yu X, Yang JX, Chaudhury D, Liu H, Hu A, Ding HL, Cao JL, Zhang H. Neural and Molecular Investigation into the Paraventricular Thalamic-Nucleus Accumbens Circuit for Pain Sensation and Non-opioid Analgesia. Pharmacol Res 2023; 191:106776. [PMID: 37084858 DOI: 10.1016/j.phrs.2023.106776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
The paucity of medications with novel mechanisms for pain treatment combined with the severe adverse effects of opioid analgesics has led to an imperative pursuit of non-opioid analgesia and a better understanding of pain mechanisms. Here, we identify the putative glutamatergic inputs from the paraventricular thalamic nucleus to the nucleus accumbens (PVTGlut→NAc) as a novel neural circuit for pain sensation and non-opioid analgesia. Our in vivo fiber photometry and in vitro electrophysiology experiments found that PVTGlut→NAc neuronal activity increased in response to acute thermal/mechanical stimuli and persistent inflammatory pain. Direct optogenetic activation of these neurons in the PVT or their terminals in the NAc induced pain-like behaviors. Conversely, inhibition of PVTGlut→NAc neurons or their NAc terminals exhibited a potent analgesic effect in both naïve and pathological pain mice, which could not be prevented by pretreatment of naloxone, an opioid receptor antagonist. Anterograde trans-synaptic optogenetic experiments consistently demonstrated that the PVTGlut→NAc circuit bi-directionally modulates pain behaviors. Furthermore, circuit-specific molecular profiling and pharmacological studies revealed dopamine receptor 3 as a candidate target for pain modulation and non-opioid analgesic development. Taken together, these findings provide a previously unknown neural circuit for pain sensation and non-opioid analgesia and a valuable molecular target for developing future safer medication.
Collapse
Affiliation(s)
- Guangchao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shiya Zou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Bingqian Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Suwan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi NO.2 People's Hospital, Wuxi 214000, Jiangsu, China
| | - Tantan Fang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - He Liu
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, Jiangsu, PR China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
17
|
Wu FL, Chen SH, Li JN, Zhao LJ, Wu XM, Hong J, Zhu KH, Sun HX, Shi SJ, Mao E, Zang WD, Cao J, Kou ZZ, Li YQ. Projections from the Rostral Zona Incerta to the Thalamic Paraventricular Nucleus Mediate Nociceptive Neurotransmission in Mice. Metabolites 2023; 13:metabo13020226. [PMID: 36837844 PMCID: PMC9966812 DOI: 10.3390/metabo13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Zona incerta (ZI) is an integrative subthalamic region in nociceptive neurotransmission. Previous studies demonstrated that the rostral ZI (ZIR) is an important gamma-aminobutyric acid-ergic (GABAergic) source to the thalamic paraventricular nucleus (PVT), but whether the ZIR-PVT pathway participates in nociceptive modulation is still unclear. Therefore, our investigation utilized anatomical tracing, fiber photometry, chemogenetic, optogenetic and local pharmacological approaches to investigate the roles of the ZIRGABA+-PVT pathway in nociceptive neurotransmission in mice. We found that projections from the GABAergic neurons in ZIR to PVT were involved in nociceptive neurotransmission. Furthermore, chemogenetic and optogenetic activation of the ZIRGABA+-PVT pathway alleviates pain, whereas inhibiting the activities of the ZIRGABA+-PVT circuit induces mechanical hypersensitivity and partial heat hyperalgesia. Importantly, in vivo pharmacology combined with optogenetics revealed that the GABA-A receptor (GABAAR) is crucial for GABAergic inhibition from ZIR to PVT. Our data suggest that the ZIRGABA+-PVT pathway acts through GABAAR-expressing glutamatergic neurons in PVT mediates nociceptive neurotransmission.
Collapse
Affiliation(s)
- Feng-Ling Wu
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Si-Hai Chen
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Liu-Jie Zhao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Ke-Hua Zhu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Su-Juan Shi
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - E Mao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Wei-Dong Zang
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| | - Yun-Qing Li
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali 671000, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| |
Collapse
|
18
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Khan KM, Bierlein-De La Rosa G, Biggerstaff N, Pushpavathi Selvakumar G, Wang R, Mason S, Dailey ME, Marcinkiewcz CA. Adolescent ethanol drinking promotes hyperalgesia, neuroinflammation and serotonergic deficits in mice that persist into adulthood. Brain Behav Immun 2023; 107:419-431. [PMID: 35907582 PMCID: PMC10289137 DOI: 10.1016/j.bbi.2022.07.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Adolescent alcohol use can permanently alter brain function and lead to poor health outcomes in adulthood. Emerging evidence suggests that alcohol use can predispose individuals to pain disorders or exacerbate existing pain conditions, but the underlying neural mechanisms are currently unknown. Here we report that mice exposed to adolescent intermittent access to ethanol (AIE) exhibit increased pain sensitivity and depressive-like behaviors that persist for several weeks after alcohol cessation and are accompanied by elevated CD68 expression in microglia and reduced numbers of serotonin (5-HT)-expressing neurons in the dorsal raphe nucleus (DRN). 5-HT expression was also reduced in the thalamus, anterior cingulate cortex (ACC) and amygdala as well as the lumbar dorsal horn of the spinal cord. We further demonstrate that chronic minocycline administration after AIE alleviated hyperalgesia and social deficits, while chemogenetic activation of microglia in the DRN of ethanol-naïve mice reproduced the effects of AIE on pain and social behavior. Chemogenetic activation of microglia also reduced tryptophan hydroxylase 2 (Tph2) expression and was negatively correlated with the number of 5-HT-immunoreactive cells in the DRN. Taken together, these results indicate that microglial activation in the DRN may be a primary driver of pain, negative affect, and 5-HT depletion after AIE.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Natalie Biggerstaff
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Suzanne Mason
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Michael E Dailey
- Iowa Neuroscience Institute, University of Iowa, United States; Department of Biology, University of Iowa, United States
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, United States; Iowa Neuroscience Institute, University of Iowa, United States.
| |
Collapse
|
20
|
Li L, Zhang H, Zheng Z, Ma N, Zhang Y, Liu Y, Zhang J, Su S, Zang W, Shao J, Cao J. Perioperative sleep deprivation activates the paraventricular thalamic nucleus resulting in persistent postoperative incisional pain in mice. Front Neuroanat 2022; 16:1074310. [PMID: 36620195 PMCID: PMC9813598 DOI: 10.3389/fnana.2022.1074310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background The duration of postsurgical pain is closely correlated with perioperative stress. Most patients suffer short-term sleep disorder/deprivation before and/or after surgery, which leads to extended postsurgical pain by an undetermined mechanism. The paraventricular thalamus (PVT) is a critical area that contributes to the regulation of feeding, awakening, and emotional states. However, whether the middle PVT is involved in postoperative pain or the extension of postoperative pain caused by perioperative sleep deprivation has not yet been investigated. Methods We established a model of postoperative pain by plantar incision with perioperative rapid eye movement sleep deprivation (REMSD) 6 h/day for 3 consecutive days in mice. The excitability of the CaMKIIα+ neurons in the middle PVT (mPVTCaMKIIα) was detected by immunofluorescence and fiber photometry. The activation/inhibition of mPVTCaMKIIα neurons was conducted by chemogenetics. Results REMSD prolonged the duration of postsurgical pain and increased the excitability of mPVTCaMKIIα neurons. In addition, mPVTCaMKIIα neurons showed increased excitability in response to nociceptive stimuli or painful conditions. However, REMSD did not delay postsurgical pain recovery following the ablation of CaMKIIα neurons in the mPVT. The activation of mPVTCaMKIIα neurons prolonged the duration of postsurgical pain and elicited anxiety-like behaviors. In contrast, inhibition of mPVTCaMKIIα neurons reduced the postsurgical pain after REMSD. Conclusion Our data revealed that the CaMKIIα neurons in the mPVT are involved in the extension of the postsurgical pain duration induced by REMSD, and represented a novel potential target to treat postoperative pain induced by REMSD.
Collapse
Affiliation(s)
- Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huijie Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenli Zheng
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Department of Medical Record Management, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Nan Ma
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yidan Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Liu
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jingjing Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Songxue Su
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Jinping Shao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China,*Correspondence: Jinping Shao,
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China,Jing Cao,
| |
Collapse
|
21
|
Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury. Brain Res Bull 2022; 188:1-10. [PMID: 35850188 DOI: 10.1016/j.brainresbull.2022.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.
Collapse
|
22
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated With Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2022; 23:595-615. [PMID: 34785365 DOI: 10.1016/j.jpain.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
In this double-blinded, sham-controlled, counterbalanced, and crossover study, we investigated the potential neuroplasticity underlying pain relief and daily function improvements following repetitive transcranial magnetic stimulation of the motor cortex (M1-rTMS) in fibromyalgia syndrome (FMS) patients. Specifically, we used magnetic resonance imaging (MRI) to examine changes in brain structural and resting-state functional connectivity (rsFC) that correlated with improvements in FMS symptomology following M1-rTMS. Twenty-seven women with FMS underwent real and sham treatment series, each consisting of 10 daily treatments of 10Hz M1-rTMS over 2 weeks, with a washout period in between. Before and after each series, participants underwent anatomical and resting-state functional MRI scans and questionnaire assessments of FMS-related clinical pain and functional and psychological burdens. The expected reductions in FMS-related symptomology following M1-rTMS occurred with the real treatment only and correlated with rsFC changes in brain areas associated with pain processing and modulation. Specifically, between the ventromedial prefrontal cortex and the M1 (t = -5.54, corrected P = .002), the amygdala and the posterior insula (t = 5.81, corrected P = .044), and the anterior and posterior insula (t = 6.01, corrected P = .029). Neither treatment significantly changed brain structure. Therefore, we provide the first evidence of an association between the acute clinical effects of M1-rTMS in FMS and functional alterations of brain areas that have a significant role in the experience of chronic pain. Structural changes could potentially occur over a more extended treatment period. PERSPECTIVE: We show that the neurophysiological mechanism of the improvement in fibromyalgia symptoms following active, but not sham, rTMS applied to M1 involves changes in resting-state functional connectivity in sensory, affective and cognitive pain processing brain areas, thus substantiating the essence of fibromyalgia syndrome as a treatable brain-based disorder.
Collapse
Affiliation(s)
- Yuval Argaman
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
23
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
24
|
Shyu BC, He AB, Yu YH, Huang ACW. Tricyclic antidepressants and selective serotonin reuptake inhibitors but not anticonvulsants ameliorate pain, anxiety, and depression symptoms in an animal model of central post-stroke pain. Mol Pain 2021; 17:17448069211063351. [PMID: 34903115 PMCID: PMC8679055 DOI: 10.1177/17448069211063351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Central post-stroke pain (CPSP) is a type of neuropathic pain caused by
dysfunction in the spinothalamocortical pathway. However, no animal studies
have examined comorbid anxiety and depression symptoms. Whether the typical
pharmacological treatments for CPSP, which include antidepressants,
selective serotonin reuptake inhibitors (SSRIs), and anticonvulsants, can
treat comorbid anxiety and depression symptoms in addition to pain remains
unclear? The present study ablated the ventrobasal complex of the thalamus
(VBC) to cause various CPSP symptoms. The effects of the tricyclic
antidepressants amitriptyline and imipramine, the SSRI fluoxetine, and the
anticonvulsant carbamazepine on pain, anxiety, and depression were
examined. Results The results showed that VBC lesions induced sensitivity to thermal pain,
measured using a hot water bath; mechanical pain, assessed by von Frey test;
anxiety behavior, determined by the open-field test, elevated plus-maze
test, and zero-maze test; and depression behavior, assessed by the forced
swim test. No effect on motor activity in the open-field test was observed.
Amitriptyline reduced thermal and mechanical pain sensitivity and anxiety
but not depression. Imipramine suppressed thermal and mechanical pain
sensitivity, anxiety, and depression. Fluoxetine blocked mechanical but not
thermal pain sensitivity, anxiety, and depression. However, carbamazepine
did not affect pain, anxiety, or depression. Conclusion In summary, antidepressants and SSRIs but not anticonvulsants can effectively
ameliorate pain and comorbid anxiety and depression in CPSP. The present
findings, including discrepancies in the effects observed following
treatment with anticonvulsants, antidepressants, and SSRIs in this CPSP
animal model, can be applied in the clinical setting to guide the
pharmacological treatment of CPSP symptoms.
Collapse
Affiliation(s)
| | - Alan Bh He
- Department of Psychology, 56854Fo Guang University, Yilan County 26247, Taiwan
| | - Ying H Yu
- Department of Psychology, 56854Fo Guang University, Yilan County 26247, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County 260, Taiwan
| | | |
Collapse
|
25
|
Neuronal basis for pain- and anxiety-like behaviors in the central nucleus of the amygdala. Pain 2021; 163:e463-e475. [PMID: 34174041 DOI: 10.1097/j.pain.0000000000002389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is often accompanied by anxiety and depression disorders. Amygdala nuclei play important roles in emotional responses, fear, depression, anxiety and pain modulation. The exact mechanism of how amygdala neurons are involved in pain and anxiety is not completely understood. The central nucleus of the amygdala (CeA) contains two major subpopulations of GABAergic neurons that express somatostatin (SOM+) or protein kinase Cδ (PKCδ+). In this study, we found about 70% of pERK-positive neurons colocalized with PKCδ+ neurons in the formalin-induced pain model in mice. Optogenetic activation of PKCδ+ neurons was sufficient to induce mechanical hyperalgesia without changing anxiety-like behavior in naïve mice. Conversely, chemogenetic inhibition of PKCδ+ neurons significantly reduced the mechanical hyperalgesia in the pain model. In contrast, optogenetic inhibition of SOM+ neurons induced mechanical hyperalgesia in naïve mice and increased pERK-positive neurons mainly in PKCδ+ neurons. Optogenetic activation of SOM+ neurons slightly reduced the mechanical hyperalgesia in the pain model but did not change the mechanical sensitivity in naïve mice. Instead, it induced anxiety-like behavior. Our results suggest that the PKCδ+ and SOM+ neurons in CeA exert different functions in regulating pain- and anxiety-like behaviors in mice.
Collapse
|
26
|
Heinsbroek JA, De Vries TJ, Peters J. Glutamatergic Systems and Memory Mechanisms Underlying Opioid Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039602. [PMID: 32341068 DOI: 10.1101/cshperspect.a039602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain and is of critical importance for the synaptic and circuit mechanisms that underlie opioid addiction. Opioid memories formed over the course of repeated drug use and withdrawal can become powerful stimuli that trigger craving and relapse, and glutamatergic neurotransmission is essential for the formation and maintenance of these memories. In this review, we discuss the mechanisms by which glutamate, dopamine, and opioid signaling interact to mediate the primary rewarding effects of opioids, and cover the glutamatergic systems and circuits that mediate the expression, extinction, and reinstatement of opioid seeking over the course of opioid addiction.
Collapse
Affiliation(s)
- Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Taco J De Vries
- Amsterdam Neuroscience, Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, VU University, 1081HV Amsterdam, The Netherlands.,Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center, 1081HZ Amsterdam, The Netherlands
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
27
|
Brandon-Mong GJ, Shaw GTW, Chen WH, Chen CC, Wang D. A network approach to investigating the key microbes and stability of gut microbial communities in a mouse neuropathic pain model. BMC Microbiol 2020; 20:295. [PMID: 32998681 PMCID: PMC7525972 DOI: 10.1186/s12866-020-01981-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background Neuropathic pain is an abnormally increased sensitivity to pain, especially from mechanical or thermal stimuli. To date, the current pharmacological treatments for neuropathic pain are still unsatisfactory. The gut microbiota reportedly plays important roles in inducing neuropathic pain, so probiotics have also been used to treat it. However, the underlying questions around the interactions in and stability of the gut microbiota in a spared nerve injury-induced neuropathic pain model and the key microbes (i.e., the microbes that play critical roles) involved have not been answered. We collected 66 fecal samples over 2 weeks (three mice and 11 time points in spared nerve injury-induced neuropathic pain and Sham groups). The 16S rRNA gene was polymerase chain reaction amplified, sequenced on a MiSeq platform, and analyzed using a MOTHUR- UPARSE pipeline. Results Here we show that spared nerve injury-induced neuropathic pain alters gut microbial diversity in mice. We successfully constructed reliable microbial interaction networks using the Metagenomic Microbial Interaction Simulator (MetaMIS) and analyzed these networks based on 177,147 simulations. Interestingly, at a higher resolution, our results showed that spared nerve injury-induced neuropathic pain altered both the stability of the microbial community and the key microbes in a gut micro-ecosystem. Oscillospira, which was classified as a low-abundance and core microbe, was identified as the key microbe in the Sham group, whereas Staphylococcus, classified as a rare and non-core microbe, was identified as the key microbe in the spared nerve injury-induced neuropathic pain group. Conclusions In summary, our results provide novel experimental evidence that spared nerve injury-induced neuropathic pain reshapes gut microbial diversity, and alters the stability and key microbes in the gut.
Collapse
Affiliation(s)
- Guo-Jie Brandon-Mong
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Grace Tzun-Wen Shaw
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Daryi Wang
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan. .,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
28
|
Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2020; 101:213-258. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Guida F, De Gregorio D, Palazzo E, Ricciardi F, Boccella S, Belardo C, Iannotta M, Infantino R, Formato F, Marabese I, Luongo L, de Novellis V, Maione S. Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21093396. [PMID: 32403385 PMCID: PMC7246983 DOI: 10.3390/ijms21093396] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is a pathological condition induced by a lesion or disease affecting the somatosensory system, with symptoms like allodynia and hyperalgesia. It has a multifaceted pathogenesis as it implicates several molecular signaling pathways involving peripheral and central nervous systems. Affective and cognitive dysfunctions have been reported as comorbidities of neuropathic pain states, supporting the notion that pain and mood disorders share some common pathogenetic mechanisms. The understanding of these pathophysiological mechanisms requires the development of animal models mimicking, as far as possible, clinical neuropathic pain symptoms. Among them, the Spared Nerve Injury (SNI) model has been largely characterized in terms of behavioral and functional alterations. This model is associated with changes in neuronal firing activity at spinal and supraspinal levels, and induces late neuropsychiatric disorders (such as anxious-like and depressive-like behaviors, and cognitive impairments) comparable to an advanced phase of neuropathy. The goal of this review is to summarize current findings in preclinical research, employing the SNI model as a tool for identifying pathophysiological mechanisms of neuropathic pain and testing pharmacological agent.
Collapse
Affiliation(s)
- Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
- Correspondence: (F.G.); (S.M.)
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC H3A1A1, Canada;
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Federica Formato
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Vito de Novellis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
- Correspondence: (F.G.); (S.M.)
| |
Collapse
|
30
|
Ma L, Chen W, Yu D, Han Y. Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei. Front Syst Neurosci 2020; 14:15. [PMID: 32317941 PMCID: PMC7150367 DOI: 10.3389/fnsys.2020.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) is the ventral part of the striatum and the interface between cognition, emotion, and action. It is composed of three major subnuclei: i.e., NAc core (NAcC), lateral shell (NAcLS), and medial shell (NAcMS), which exhibit functional heterogeneity. Thus, determining the synaptic inputs of the subregions of the NAc is important for understanding the circuit mechanisms involved in regulating different functions. Here, we simultaneously labeled subregions of the NAc with cholera toxin subunit B conjugated with multicolor Alexa Fluor, then imaged serial sections of the whole brain with a fully automated slide scanning system. Using the interactive WholeBrain framework, we characterized brain-wide inputs to the NAcC subdomains, including the rostral, caudal, dorsal, and ventral subdomains (i.e., rNAcC, cNAcC, dNAcC, and vNAcC, respectively) and the NAc subnuclei. We found diverse brain regions, distributed from the cerebrum to brain stem, projecting to the NAc. Of the 57 brain regions projecting to the NAcC, the anterior olfactory nucleus (AON) exhibited the greatest inputs. The input neurons of rNAcC and cNAcC are two distinct populations but share similar distribution over the same upstream brain regions, whereas the input neurons of dNAcC and vNAcC exhibit slightly different distributions over the same upstream regions. Of the 55 brain regions projecting to the NAcLS, the piriform area contributed most of the inputs. Of the 72 brain regions projecting to the NAcMS, the lateral septal nucleus contributed most of the inputs. The input neurons of NAcC and NAcLS share similar distributions, whereas the NAcMS exhibited brain-wide distinct distribution. Thus, the NAcC subdomains appeared to share the same upstream brain regions, although with distinct input neuron populations and slight differences in the input proportions, whereas the NAcMS subnuclei received distinct inputs from multiple upstream brain regions. These results lay an anatomical foundation for understanding the different functions of NAcC subdomains and NAc subnuclei.
Collapse
Affiliation(s)
- Liping Ma
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenqi Chen
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Danfang Yu
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Department of Neurology, Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|