1
|
Bavencoffe A, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Domagala DM, Zhu MX, Dessauer CW, Walters ET. Widespread hyperexcitability of nociceptor somata outlasts enhanced avoidance behavior after incision injury. Pain 2025; 166:1088-1104. [PMID: 39432803 PMCID: PMC12003080 DOI: 10.1097/j.pain.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Nociceptors with somata in dorsal root ganglia (DRGs) readily switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Spontaneous activity (SA) during this state is present in vivo in rats months after spinal cord injury (SCI) and has been causally linked to SCI pain. Intrinsically generated SA and, more generally, ongoing activity (OA) are induced by various neuropathic conditions in rats, mice, and humans and are retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. The present study shows that long-lasting hyperexcitability that can generate OA during modest depolarization in probable nociceptors dissociated from DRGs of male and female rats is induced by plantar incision injury. OA occurred when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This hyperexcitability persisted for at least 3 weeks, whereas behavioral indicators of affective pain-hind paw guarding and increased avoidance of a noxious substrate in an operant conflict test-persisted for 1 week or less. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. An unexpected discovery after plantar incisions was hyperexcitability in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to contribute to hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Falih M. Gorgun
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Breanna Q. Shen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Drue M. Domagala
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
2
|
Khan MA, Fatima G, Emmanuel A, Kim SS, Kwon HS, Yoon KC, Kim YR, Chung E. Modeling Neuropathic Corneal Pain: Pulled Nerve Approach With Elevated Krt16 Gene Expression. Invest Ophthalmol Vis Sci 2025; 66:35. [PMID: 39937496 PMCID: PMC11827619 DOI: 10.1167/iovs.66.2.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Neuropathic corneal pain (NCP) is a debilitating condition affecting millions of people worldwide. Despite their critical importance, currently available animal models for NCP research are limited by complex surgeries with high-risk strategy. To advance fundamental understanding of NCP, we developed a novel rodent model that explores both structural and functional mechanisms of the disease, offering a comprehensive approach. Methods By uplifting (2-3 mm transversely) the long ciliary nerve (LCN) with gentle force (0.09 ± 0.02 newton [N]) and pressure (0.18 ± 0.05 MPa), our pulled nerve model mimics human NCP conditions and was investigated alongside normal control, sham control, and full transection groups. Specifically, we quantified the NCP status by establishing a relationship between pain perception and chemical sensitivity, using Stevens' Power Law concept. Results Following surgery, the temporal patterns of heightened pain perception showed consistent trends across different stimulus methods, suggesting that von Frey and chemical tests could effectively evaluate pain progression. The discernable differences in Alpha values (exponent) of the pain-perception curves across the normal control, pulled nerve, and full transection groups (0.175 ± 0.035, 0.235 ± 0.015, and 0.275 ± 0.005, respectively) demonstrate the model's sensitivity to changes in NCP status. Histological analysis revealed LCN elongation, thickening, and corneal alterations in pulled nerve models, with reduced satellite glial cells (SGCs) in trigeminal ganglion compared to the normal control models. Krt16 gene expression was significantly upregulated following pulled nerve surgery. Conclusions Our model not only delineates the pathological landscape of NCP but also promises to accelerate the development of targeted therapies.
Collapse
Affiliation(s)
- Mohd. Afzal Khan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Gehan Fatima
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Acquah Emmanuel
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sang Seong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyuk Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, South Korea
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
- AI Graduate School, Gwangju Institute of Science and Technology, South Korea
| |
Collapse
|
3
|
Andrade-González RD, Montes-Ángeles CD, Perrusquia-Hernández E, González-Alva P, Hernández-Campos ME, Pérez-Martínez IO. Role of Anterior Cingulate Cortex in the exacerbated facial response to mechanical stimuli as a sign of early orofacial neuropathic pain. THE JOURNAL OF PAIN 2025; 27:104756. [PMID: 39662862 DOI: 10.1016/j.jpain.2024.104756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The study of orofacial neuropathic pain necessitates the use of innovative assessment techniques, such as the facial expression of pain, which mirrors the internal state of the animals and could be utilized to identify the neural correlations involved. The Anterior Cingulate Cortex (ACC) is a crucial center in the processing of sensory and affective components of acute and neuropathic pain. However, its role in the facial response to pain remains a mystery. In this project, we set out to determine the changes in the facial response of early trigeminal neuropathic pain and the contribution of ACC in this process. We evaluated the facial response to mechanical stimulation using a machine-vision analysis in a head-fixed system before and after mental nerve compression in C57BL/6 mice. The role of ACC in the facial response was characterized via acute electrophysiological recording, and both glutamatergic ACC neural-ablation and optogenetic inhibition in a cre-dependent manner. Our results indicate that trigeminal nerve injury leads to an exacerbation of the intensity of the pain-like facial response to aversive stimuli in an early period. ACC neuronal activity is modulated by mechanical stimulation and during the dynamics of the facial response in different proportions before and after the lesion onset. The neuropathic pain-induced changes in the intensity of the facial response are nullified by the ablation or optogenetic inhibition of ACC glutamatergic neurons. Our study underscores the significant role of ACC in the development of signs of orofacial neuropathic pain, such as exacerbated facial response to mechanical stimuli. PERSPECTIVE: This article presents evidence on the sensory coding of mechanical stimulation in a neuropathic pain model in the Anterior Cingulate Cortex, using facial expression as a manifestation of the internal painful state. This evaluation provides a novel approach to evaluating the well-being of animals with neuropathic pain.
Collapse
Affiliation(s)
- Rey David Andrade-González
- Laboratory of Neurobiology of Orofacial Sensations and Movements. FES Iztacala, National Autonomous University of Mexico, Mexico; Postgraduate Studies and Research Section, School of Higher Education in Medicine. National Polytechnic Institute, México
| | - Claudia Daniela Montes-Ángeles
- Laboratory of Neurobiology of Orofacial Sensations and Movements. FES Iztacala, National Autonomous University of Mexico, Mexico
| | - Elías Perrusquia-Hernández
- Laboratory of Neurobiology of Orofacial Sensations and Movements. FES Iztacala, National Autonomous University of Mexico, Mexico; Postgraduate Studies and Research Section, School of Higher Education in Medicine. National Polytechnic Institute, México
| | - Patricia González-Alva
- Laboratory of Tissue Bioengineering, College of Dentistry, National Autonomous University of Mexico, Mexico
| | - María Elena Hernández-Campos
- Postgraduate Studies and Research Section, School of Higher Education in Medicine. National Polytechnic Institute, México
| | - Isaac Obed Pérez-Martínez
- Laboratory of Neurobiology of Orofacial Sensations and Movements. FES Iztacala, National Autonomous University of Mexico, Mexico.
| |
Collapse
|
4
|
Hergenroeder GW, Molina ST, Herrera JJ. Administration of anti-GFAP antibodies increases CGRP expression and increases pain hypersensitivity in spinal cord injured animals. Int J Immunopathol Pharmacol 2025; 39:3946320251320754. [PMID: 40019103 PMCID: PMC11873870 DOI: 10.1177/03946320251320754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) results in a multitude of cellular and pathological changes including neuronal loss, axonal damage, gliosis, and loss of motor and sensory function. In 40%-70% of patients, SCI can also trigger the development of neuropathic pain. Our previous study demonstrated that SCI patients who developed autoantibodies to glial fibrillary acidic protein (GFAP) were at increased risk for the subsequent development of neuropathic pain. However, whether GFAP autoantibodies (GFAPab) contribute to the development of neuropathic pain after SCI had yet to be examined. OBJECTIVE Using a mid-thoracic contusion model of SCI in male Sprague-Dawley rats, we examined the effect of exogenous anti-GFAP antibodies on SCI pathology, pain-associated molecular changes, and behavior. METHODS Anti-GFAP or IgG was administered at 7- and 14-days post-injury. Immunohistochemistry was performed to measure the relative levels of calcitonin gene-related peptide (CGRP), and inflammatory proteins in dorsal horn tissue. To assess the development of neuropathic pain, the von Frey test and the Mechanical Conflict-Avoidance Paradigm (MCAP) were performed. RESULTS CGRP immunoreactivity was significantly higher in the anti-GFAP-treated injured rats compared to control SCI IgG-treated rats. As anticipated, SCI rats had a lower pain threshold at 1- and 2-months post-injury compared to laminectomy-only controls. However, pain withdrawal threshold was not significantly affected by post-injury administration of the anti-GFAP. Operant testing revealed that SCI rats treated with the anti-GFAP had a trending increase in pain sensitivity. CONCLUSION Taken together, these data suggest that autoantibodies to GFAP following SCI may contribute to developing pain states following SCI.
Collapse
Affiliation(s)
- Georgene W Hergenroeder
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samuel T Molina
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
5
|
Avonts BL, Shen Q, Wrobel NJ, Fessler RG, David BT. The relationship between changes in inflammation and locomotor function in sensory phenotypes of central neuropathic pain after spinal cord injury. Pain Rep 2024; 9:e1184. [PMID: 39399305 PMCID: PMC11469887 DOI: 10.1097/pr9.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Central neuropathic pain (CNP) commonly develops in patients after spinal cord injury (SCI), causing debilitating symptoms and sensory abnormalities to mechanical and thermal stimuli. The biological variability of pain phenotypes in individuals has limited the number of positive outcomes. Thus, it is necessary to investigate the physiological processes contributing to sensory changes that develop over time. Objective To investigate the physiological processes contributing to neuropathic pain sensory changes and locomotor impairments with sensory phenotypes that develop over time. Methods Using the tail flick and von Frey tests, we performed hierarchical clustering to determine the subpopulation of rats that developed thermal and mechanical sensory abnormalities. To measure inflammation as a potential mediator of CNP phenotypes, we used flow cytometry and immunohistochemistry. Finally, to assess the secondary effects on locomotor recovery, up to 8 weeks after injury, we used the CatWalk test to assess multiple parameters of gait. Results The von Frey test showed a subpopulation of SCI rats that were hyposensitive to mechanical stimuli from 6 to 8 weeks after injury. The tail flick test showed a subpopulation of SCI rats that were hypersensitive to thermal stimuli at 1 week and 3 to 8 weeks after injury. Although there were no differences in inflammatory cells between subpopulations, we did see significant changes in locomotor recovery between rats with and without sensory abnormalities. Conclusion The myeloid cell population at large is not affected by mechanical or thermal phenotypes of pain in this model; however, locomotor recovery is impaired depending on the pain phenotype present. Further investigation into acute inflammatory cells may be insightful for predicting the development of pain phenotypes.
Collapse
Affiliation(s)
- Brittany L. Avonts
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Quan Shen
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Neal J. Wrobel
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Richard G. Fessler
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Brian T. David
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| |
Collapse
|
6
|
Ferland S, Wang F, De Koninck Y, Ferrini F. An improved conflict avoidance assay reveals modality-specific differences in pain hypersensitivity across sexes. Pain 2024; 165:1304-1316. [PMID: 38277178 PMCID: PMC11090034 DOI: 10.1097/j.pain.0000000000003132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
ABSTRACT Abnormal encoding of somatosensory modalities (ie, mechanical, cold, and heat) are a critical part of pathological pain states. Detailed phenotyping of patients' responses to these modalities have raised hopes that analgesic treatments could one day be tailored to a patient's phenotype. Such precise treatment would require a profound understanding of the underlying mechanisms of specific pain phenotypes at molecular, cellular, and circuitry levels. Although preclinical pain models have helped in that regard, the lack of a unified assay quantifying detailed mechanical, cold, and heat pain responses on the same scale precludes comparing how analgesic compounds act on different sensory phenotypes. The conflict avoidance assay is promising in that regard, but testing conditions require validation for its use with multiple modalities. In this study, we improve upon the conflict avoidance assay to provide a validated and detailed assessment of all 3 modalities within the same animal, in mice. We first optimized testing conditions to minimize the necessary amount of training and to reduce sex differences in performances. We then tested what range of stimuli produce dynamic stimulus-response relationships for different outcome measures in naive mice. We finally used this assay to show that nerve injury produces modality-specific sex differences in pain behavior. Our improved assay opens new avenues to study the basis of modality-specific abnormalities in pain behavior.
Collapse
Affiliation(s)
| | - Feng Wang
- CERVO Brain Research Centre, Québec, QC, Canada
- Faculty of Dentistry, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Richards JH, Freeman DD, Detloff MR. Myeloid Cell Association with Spinal Cord Injury-Induced Neuropathic Pain and Depressive-like Behaviors in LysM-eGFP Mice. THE JOURNAL OF PAIN 2024; 25:104433. [PMID: 38007034 PMCID: PMC11058038 DOI: 10.1016/j.jpain.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Spinal cord injury (SCI) affects ∼500,000 people worldwide annually, with the majority developing chronic neuropathic pain. Following SCI, approximately 60% of these individuals are diagnosed with comorbid mood disorders, while only ∼21% of the general population will experience a mood disorder in their lifetime. We hypothesize that nociceptive and depressive-like dysregulation occurs after SCI and is associated with aberrant macrophage infiltration in segmental pain centers. We completed moderate unilateral C5 spinal cord contusion on LysM-eGFP reporter mice to visualize infiltrating macrophages. At 6-weeks post-SCI, mice exhibit nociceptive and depressive-like dysfunction compared to naïve and sham groups. There were no differences between the sexes, indicating that sex is not a contributing factor driving nociceptive or depressive-like behaviors after SCI. Utilizing hierarchical cluster analysis, we classified mice based on endpoint nociceptive and depressive-like behavior scores. Approximately 59.3% of the SCI mice clustered based on increased paw withdrawal threshold to mechanical stimuli and immobility time in the forced swim test. SCI mice displayed increased myeloid cell presence in the lesion epicenter, ipsilateral C7-8 dorsal horn, and C7-8 DRGs as evidenced by eGFP, CD68, and Iba1 immunostaining when compared to naïve and sham mice. This was further confirmed by SCI-induced alterations in the expression of genes indicative of myeloid cell activation states and their associated secretome in the dorsal horn and dorsal root ganglia. In conclusion, moderate unilateral cervical SCI caused the development of pain-related and depressive-like behaviors in a subset of mice and these behavioral changes are consistent with immune system activation in the segmental pain pathway. PERSPECTIVE: These experiments characterized pain-related and depressive-like behaviors and correlated these changes with the immune response post-SCI. While humanizing the rodent is impossible, the results from this study inform clinical literature to closely examine sex differences reported in humans to better understand the underlying shared etiologies of pain and depressive-like behaviors following central nervous system trauma.
Collapse
Affiliation(s)
- Jonathan H. Richards
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Daniel D. Freeman
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Megan Ryan Detloff
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| |
Collapse
|
8
|
Bavencoffe AG, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Zhu MX, Dessauer CW, Walters ET. Widespread latent hyperactivity of nociceptors outlasts enhanced avoidance behavior following incision injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578108. [PMID: 38352319 PMCID: PMC10862851 DOI: 10.1101/2024.01.30.578108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nociceptors with somata in dorsal root ganglia (DRGs) exhibit an unusual readiness to switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Ongoing activity (OA) during this state is present in vivo in rats months after spinal cord injury (SCI), and has been causally linked to SCI pain. OA induced by various neuropathic conditions in rats, mice, and humans is retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. An important question is whether similar nociceptor OA is induced by painful conditions other than neuropathy. The present study shows that probable nociceptors dissociated from DRGs of rats subjected to postsurgical pain (induced by plantar incision) exhibit OA. The OA was most apparent when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This latent hyperactivity persisted for at least 3 weeks, whereas behavioral indicators of affective pain - hindpaw guarding and increased avoidance of a noxious substrate in an operant conflict test - persisted for 1 week or less. An unexpected discovery was latent OA in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to amplify hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Falih M. Gorgun
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Breanna Q. Shen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
9
|
Willits AB, Kader L, Eller O, Roberts E, Bye B, Strope T, Freudenthal BD, Umar S, Chintapalli S, Shankar K, Pei D, Christianson J, Baumbauer KM, Young EE. Spinal cord injury-induced neurogenic bowel: A role for host-microbiome interactions in bowel pain and dysfunction. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100156. [PMID: 38601267 PMCID: PMC11004406 DOI: 10.1016/j.ynpai.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Background and aims Spinal cord injury (SCI) affects roughly 300,000 Americans with 17,000 new cases added annually. In addition to paralysis, 60% of people with SCI develop neurogenic bowel (NB), a syndrome characterized by slow colonic transit, constipation, and chronic abdominal pain. The knowledge gap surrounding NB mechanisms after SCI means that interventions are primarily symptom-focused and largely ineffective. The goal of the present studies was to identify mechanism(s) that initiate and maintain NB after SCI as a critical first step in the development of evidence-based, novel therapeutic treatment options. Methods Following spinal contusion injury at T9, we observed alterations in bowel structure and function reflecting key clinical features of NB. We then leveraged tissue-specific whole transcriptome analyses (RNAseq) and fecal 16S rRNA amplicon sequencing in combination with histological, molecular, and functional (Ca2+ imaging) approaches to identify potential mechanism(s) underlying the generation of the NB phenotype. Results In agreement with prior reports focused on SCI-induced changes in the skin, we observed a rapid and persistent increase in expression of calcitonin gene-related peptide (CGRP) expression in the colon. This is suggestive of a neurogenic inflammation-like process engaged by antidromic activity of below-level primary afferents following SCI. CGRP has been shown to disrupt colon homeostasis and negatively affect peristalsis and colon function. As predicted, contusion SCI resulted in increased colonic transit time, expansion of lymphatic nodules, colonic structural and genomic damage, and disruption of the inner, sterile intestinal mucus layer corresponding to increased CGRP expression in the colon. Gut microbiome colonization significantly shifted over 28 days leading to the increase in Anaeroplasma, a pathogenic, gram-negative microbe. Moreover, colon specific vagal afferents and enteric neurons were hyperresponsive after SCI to different agonists including fecal supernatants. Conclusions Our data suggest that SCI results in overexpression of colonic CGRP which could alter colon structure and function. Neurogenic inflammatory-like processes and gut microbiome dysbiosis can also sensitize vagal afferents, providing a mechanism for visceral pain despite the loss of normal sensation post-SCI. These data may shed light on novel therapeutic interventions targeting this process to prevent NB development in patients.
Collapse
Affiliation(s)
- Adam B. Willits
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Leena Kader
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Olivia Eller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Emily Roberts
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bailey Bye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Taylor Strope
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sree Chintapalli
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie Christianson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle M. Baumbauer
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Resilience to Pain-Related Depression in σ 1 Receptor Knockout Mice Is Associated with the Reversal of Pain-Induced Brain Changes in Affect-Related Genes. ACS Chem Neurosci 2023; 14:3714-3725. [PMID: 37738096 DOI: 10.1021/acschemneuro.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Mice lacking the σ1 receptor chaperone (σ1R-/-) are resilient to depressive-like behaviors secondary to neuropathic pain. Examining the resilience's brain mechanisms could help develop conceptually novel therapeutic strategies. We explored the diminished motivation for a natural reinforcer (white chocolate) in the partial sciatic nerve ligation (PSNL) model in wild-type (WT) and σ1R-/- mice. In the same mice, we performed a comprehensive reverse transcription quantitative PCR (qPCR) analysis across ten brain regions of seven genes implicated in pain regulation and associated affective disorders, such as anxiety and depression. PSNL induced anhedonic-like behavior in WT but not in σ1R-/- mice. In WT mice, PSNL up-regulated dopamine transporter (DAT) and its rate-limiting enzyme, tyrosine hydroxylase (Th), in the ventral tegmental area (VTA) and periaqueductal gray (PAG) as well as the serotonin transporters (SERT) and its rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) in VTA. In addition, μ-opioid receptor (MOR) and σ1R were up-regulated in PAG, and MOR was also elevated in the somatosensory cortex (SS) but down-regulated in the striatum (STR). Finally, increased BDNF was found in the medial prefrontal cortex (mPFC) and hypothalamus (HPT). Sham surgery also produced PSNL-like expression changes in VTA, HPT, and STR. Genetic deletion of the σ1R in mice submitted to PSNL or sham surgery prevented changes in the expression of most of these genes. σ1R is critically involved in the supraspinal gene expression changes produced by PSNL and sham surgery. The changes in gene expression observed in WT mice may be related to pain-related depression, and the absence of these changes observed in σ1R-/- mice may be related to resilience.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
11
|
Fiore NT, Keating BA, Chen Y, Williams SI, Moalem-Taylor G. Differential Effects of Regulatory T Cells in the Meninges and Spinal Cord of Male and Female Mice with Neuropathic Pain. Cells 2023; 12:2317. [PMID: 37759539 PMCID: PMC10527659 DOI: 10.3390/cells12182317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune responses and preserve immune homeostasis. In this study, we utilised intrathecal adoptive transfer of activated Tregs in male and female mice after peripheral nerve injury to investigate Treg migration and whether Treg-mediated suppression of pain behaviours is associated with changes in peripheral immune cell populations in lymphoid and meningeal tissues and spinal microglial and astrocyte reactivity and phenotypes. Treatment with Tregs suppressed mechanical pain hypersensitivity and improved changes in exploratory behaviours after chronic constriction injury (CCI) of the sciatic nerve in both male and female mice. The injected Treg cells were detected in the choroid plexus and the pia mater and in peripheral lymphoid organs in both male and female recipient mice. Nonetheless, Treg treatment resulted in differential changes in meningeal and lymph node immune cell profiles in male and female mice. Moreover, in male mice, adoptive transfer of Tregs ameliorated the CCI-induced increase in microglia reactivity and inflammatory phenotypic shift, increasing M2-like phenotypic markers and attenuating astrocyte reactivity and neurotoxic astrocytes. Contrastingly, in CCI female mice, Treg injection increased astrocyte reactivity and neuroprotective astrocytes. These findings show that the adoptive transfer of Tregs modulates meningeal and peripheral immunity, as well as spinal glial populations, and alleviates neuropathic pain, potentially through different mechanisms in males and females.
Collapse
Affiliation(s)
| | | | | | | | - Gila Moalem-Taylor
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (N.T.F.); (B.A.K.); (Y.C.); (S.I.W.)
| |
Collapse
|
12
|
Luo X, Jean-Toussaint R, Tian Y, Balashov SV, Sacan A, Ajit SK. Small Extracellular Vesicles From Spared Nerve Injury Model and Sham Control Mice Differentially Regulate Gene Expression in Primary Microglia. THE JOURNAL OF PAIN 2023; 24:1570-1581. [PMID: 37044293 PMCID: PMC10524046 DOI: 10.1016/j.jpain.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Nerve injury outcomes might be predicted by examining small extracellular vesicles (sEVs) in circulation, as their biomolecular cargo facilitates cellular communication and can alter transcriptional state and behavior of recipient cells. We found that sEVs from the serum of spared nerve injury (SNI) model male mice had 7 differentially expressed miRNAs compared to sEVs from sham-operated control mice 4 weeks postsurgery. We investigated how these sEVs alter transcription in primary cortical microglia, a crucial mediator of neuropathic pain, using RNA sequencing. While the uptake of sEVs from both SNI model and sham groups changed gene expression in microglia compared to PBS treatment, sEVs from the sham group induced a more drastic change, particularly in genes involved in immune response. This was recapitulated by increased levels of pro-inflammatory cytokines and chemokines in microglia incubated with sEVs from sham control compared to sEVs from SNI model, naïve mice, or PBS. However, treating microglia with sEVs from female mice showed that serum sEVs derived from female SNI mice but not from female sham mice induced a more pronounced microglial secretion of pro-inflammatory mediators. Our data demonstrate that the molecular changes induced by sham surgery injuring skin and muscles are reflected in circulating sEVs in male mice 4 weeks later. Thus, when using sEVs from sham mice as control in comparative mechanistic studies after nerve injury, sex of mice should be taken into consideration. PERSPECTIVE: Microglial uptake of sEVs from male sham control mice induces higher pro-inflammatory responses compared to SNI sEVs but the reverse was observed upon treatment with sEVs from female mice. Wound healing may have a long-term impact on sEVs in male mice and should be considered for comparative studies using sEVs.
Collapse
Affiliation(s)
- Xuan Luo
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Renée Jean-Toussaint
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Yuzhen Tian
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Sergey V Balashov
- Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Seena K Ajit
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Liu H, Lauzadis J, Gunaratna K, Sipple E, Kaczocha M, Puopolo M. Inhibition of T-Type Calcium Channels With TTA-P2 Reduces Chronic Neuropathic Pain Following Spinal Cord Injury in Rats. THE JOURNAL OF PAIN 2023; 24:1681-1695. [PMID: 37169156 DOI: 10.1016/j.jpain.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Spinal cord injury (SCI)-induced neuropathic pain (SCI-NP) develops in up to 60 to 70% of people affected by traumatic SCI, leading to a major decline in quality of life and increased risk for depression, anxiety, and addiction. Gabapentin and pregabalin, together with antidepressant drugs, are commonly prescribed to treat SCI-NP, but their efficacy is unsatisfactory. The limited efficacy of current pharmacological treatments for SCI-NP likely reflects our limited knowledge of the underlying mechanism(s) responsible for driving the maintenance of SCI-NP. The leading hypothesis in the field supports a major role for spontaneously active injured nociceptors in driving the maintenance of SCI-NP. Recent data from our laboratory provided additional support for this hypothesis and identified the T-type calcium channels as key players in driving the spontaneous activity of SCI-nociceptors, thus providing a rational pharmacological target to treat SCI-NP. To test whether T-type calcium channels contribute to the maintenance of SCI-NP, male and female SCI and sham rats were treated with TTA-P2 (a blocker of T-type calcium channels) to determine its effects on mechanical hypersensitivity (as measured with the von Frey filaments) and spontaneous ongoing pain (as measured with the conditioned place preference paradigm), and compared them to the effects of gabapentin, a blocker of high voltage-activated calcium channels. We found that both TTA-P2 and gabapentin reduced mechanical hypersensitivity in male and females SCI rats, but surprisingly only TTA-P2 reduced spontaneous ongoing pain in male SCI rats. PERSPECTIVES: SCI-induced neuropathic pain, and in particular the spontaneous ongoing pain component, is notoriously very difficult to treat. Our data provide evidence that inhibition of T-type calcium channels reduces spontaneous ongoing pain in SCI rats, supporting a clinically relevant role for T-type channels in the maintenance of SCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Huilin Liu
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Kavindu Gunaratna
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Erin Sipple
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York.
| |
Collapse
|
14
|
Cuevas-Diaz Duran R, Li Y, Garza Carbajal A, You Y, Dessauer CW, Wu J, Walters ET. Major Differences in Transcriptional Alterations in Dorsal Root Ganglia Between Spinal Cord Injury and Peripheral Neuropathic Pain Models. J Neurotrauma 2023; 40:883-900. [PMID: 36178348 PMCID: PMC10150729 DOI: 10.1089/neu.2022.0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic, often intractable, pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain. Both PNI and SCI produce DRG neuron hyperexcitability linked to pain, but contusive SCI produces little peripheral axotomy or peripheral nerve inflammation. Thus, comparison of transcriptional signatures of DRGs across PNI and SCI models may highlight pain-associated transcriptional alterations in sensory ganglia that do not depend on peripheral axotomy or associated effects such as peripheral Wallerian degeneration. Data from our rat thoracic SCI experiments were combined with meta-analysis of published whole-DRG RNA-seq datasets from prominent rat PNI models. Striking differences were found between transcriptional responses to PNI and SCI, especially in regeneration-associated genes (RAGs) and long noncoding RNAs (lncRNAs). Many transcriptomic changes after SCI also were found after corresponding sham surgery, indicating they were caused by injury to surrounding tissue, including bone and muscle, rather than to the spinal cord itself. Another unexpected finding was of few transcriptomic similarities between rat neuropathic pain models and the only reported transcriptional analysis of human DRGs linked to neuropathic pain. These findings show that DRGs exhibit complex transcriptional responses to central and peripheral neural injury and associated tissue damage. Although only a few genes in DRG cells exhibited similar changes in expression across all the painful conditions examined here, these genes may represent a core set whose transcription in various DRG cell types is sensitive to significant bodily injury, and which may play a fundamental role in promoting neuropathic pain.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Yong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yanan You
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
15
|
Eller OC, Stair RN, Neal C, Rowe PS, Nelson-Brantley J, Young EE, Baumbauer KM. Comprehensive phenotyping of cutaneous afferents reveals early-onset alterations in nociceptor response properties, release of CGRP, and hindpaw edema following spinal cord injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100097. [PMID: 35756343 PMCID: PMC9218836 DOI: 10.1016/j.ynpai.2022.100097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a complex syndrome that has profound effects on patient well-being, including the development of medically-resistant chronic pain. The mechanisms underlying SCI pain have been the subject of thorough investigation but remain poorly understood. While the majority of the research has focused on changes occurring within and surrounding the site of injury in the spinal cord, there is now a consensus that alterations within the peripheral nervous system, namely sensitization of nociceptors, contribute to the development and maintenance of chronic SCI pain. Using an ex vivo skin/nerve/DRG/spinal cord preparation to characterize afferent response properties following SCI, we found that SCI increased mechanical and thermal responding, as well as the incidence of spontaneous activity (SA) and afterdischarge (AD), in below-level C-fiber nociceptors 24 hr following injury relative to naïve controls. Interestingly, the distribution of nociceptors that exhibit SA and AD are not identical, and the development of SA was observed more frequently in nociceptors with low heat thresholds, while AD was found more frequently in nociceptors with high heat thresholds. We also found that SCI resulted in hindpaw edema and elevated cutaneous calcitonin gene-related peptide (CGRP) concentration that were not observed in naïve mice. These results suggest that SCI causes a rapidly developing nociceptor sensitization and peripheral inflammation that may contribute to the early emergence and persistence of chronic SCI pain.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rena N. Stair
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher Neal
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S.N. Rowe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The Kidney Institute & Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| |
Collapse
|
16
|
Bavencoffe A, Spence EA, Zhu MY, Garza-Carbajal A, Chu KE, Bloom OE, Dessauer CW, Walters ET. Macrophage Migration Inhibitory Factor (MIF) Makes Complex Contributions to Pain-Related Hyperactivity of Nociceptors after Spinal Cord Injury. J Neurosci 2022; 42:5463-5480. [PMID: 35610050 PMCID: PMC9270921 DOI: 10.1523/jneurosci.1133-21.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/08/2023] Open
Abstract
Neuropathic pain is a major, inadequately treated challenge for people with spinal cord injury (SCI). While SCI pain mechanisms are often assumed to be in the CNS, rodent studies have revealed mechanistic contributions from primary nociceptors. These neurons become chronically hyperexcitable after SCI, generating ongoing electrical activity that promotes ongoing pain. A major question is whether extrinsic chemical signals help to drive ongoing electrical activity after SCI. People living with SCI exhibit acute and chronic elevation of circulating levels of macrophage migration inhibitory factor (MIF), a cytokine implicated in preclinical pain models. Probable nociceptors isolated from male rats and exposed to an MIF concentration reported in human plasma (1 ng/ml) showed hyperactivity similar to that induced by SCI, although, surprisingly, a 10-fold higher concentration failed to increase excitability. Conditioned behavioral aversion to a chamber associated with peripheral MIF injection suggested that MIF stimulates affective pain. A MIF inhibitor, Iso-1, reversed SCI-induced hyperexcitability. Unlike chronic SCI-induced hyperexcitability, acute MIF-induced hyperexcitability was only partially abrogated by inhibiting ERK signaling. Unexpectedly, MIF concentrations that induced hyperactivity in nociceptors from naive animals, after SCI induced a long-lasting conversion from a highly excitable nonaccommodating type to a rapidly accommodating, hypoexcitable type, possibly as a homeostatic response to prolonged depolarization. Treatment with conditioned medium from cultures of DRG cells obtained after SCI was sufficient to induce MIF-dependent hyperactivity in neurons from naive rats. Thus, changes in systemic and DRG levels of MIF may help to maintain SCI-induced nociceptor hyperactivity that persistently promotes pain.SIGNIFICANCE STATEMENT Chronic neuropathic pain is a major challenge for people with spinal cord injury (SCI). Pain can drastically impair quality of life, and produces substantial economic and social burdens. Available treatments, including opioids, remain inadequate. This study shows that the cytokine macrophage migration inhibitory factor (MIF) can induce pain-like behavior and plays an important role in driving persistent ongoing electrical activity in injury-detecting sensory neurons (nociceptors) in a rat SCI model. The results indicate that SCI produces an increase in MIF release within sensory ganglia. Low MIF levels potently excite nociceptors, but higher levels trigger a long-lasting hypoexcitable state. These findings suggest that therapeutic targeting of MIF in neuropathic pain states may reduce pain and sensory dysfunction by curbing nociceptor hyperactivity.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Emily A Spence
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Michael Y Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Anibal Garza-Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Kerry E Chu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Ona E Bloom
- Laboratory of Spinal Cord Injury Research, Feinstein Institutes for Medical Research, Manhasset, New York 11030
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| |
Collapse
|
17
|
Wanstrath BJ, McLean SA, Zhao Y, Mickelson J, Bauder M, Hausch F, Linnstaedt SD. Duration of Reduction in Enduring Stress-Induced Hyperalgesia Via FKBP51 Inhibition Depends on Timing of Administration Relative to Traumatic Stress Exposure. THE JOURNAL OF PAIN 2022; 23:1256-1267. [PMID: 35296422 PMCID: PMC9271550 DOI: 10.1016/j.jpain.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Chronic pain development is a frequent outcome of severe stressor exposure, with or without tissue injury. Enduring stress-induced hyperalgesia (ESIH) is believed to play a central role, but the precise mechanisms mediating the development of chronic post-traumatic pain, and the time-dependency of these mechanisms, remain poorly understood. Clinical and preclinical data suggest that the inhibition of FK506-binding protein 51 (FKBP51), a key stress system regulator, might prevent ESIH. We evaluated whether peritraumatic inhibition of FKBP51 in an animal model of traumatic stress exposure, the single prolonged stress (SPS) model, reversed ESIH evaluated via daily mechanical von Frey testing. FKBP51 inhibition was achieved using SAFit2, a potent and specific small molecule inhibitor of FKBP51, administered to male and female Sprague-Dawley rats via intraperitoneal injection. To assess timing effects, FKBP51 was administered at different times relative to stress (SPS) exposure. SAFit2 administration immediately after SPS produced a complete reversal in ESIH lasting >7 days. In contrast, SAFit2 administration 72 hours following SPS produced only temporary hyperalgesia reversal, and administration 120h following SPS had no effect. Similarly, animals undergoing SPS together with tissue injury (plantar incision) receiving SAFit2 immediately post-surgery developed acute hyperalgesia but recovered by 4 days and did not develop ESIH. These data suggest that: 1) FKBP51 plays an important, time-dependent role in ESIH pathogenesis, 2) time windows of opportunity may exist to prevent ESIH via FKBP51 inhibition after traumatic stress, with or without tissue injury, and 3) the use of inhibitors of specific pathways may provide new insights into chronic post-traumatic pain development. PERSPECTIVE: The current work adds to a growing body of literature indicating that FKBP51 inhibition is a highly promising potential treatment strategy for reducing hyperalgesia. In the case of post-traumatic chronic pain, we show that such a treatment strategy would be particularly impactful if administered early after traumatic stress exposure.
Collapse
Affiliation(s)
- Britannia J Wanstrath
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina
| | - Samuel A McLean
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Emergency Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ying Zhao
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina
| | - Jacqueline Mickelson
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina
| | - Michael Bauder
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Sarah D Linnstaedt
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
18
|
Andrade-Gonzalez RD, Perrusquia-Hernández E, Zepeda-Reyes KI, Campos Me H, Perez-Martinez IO. Sensory-motor response elicited by first time intraoral administered ethanol after trigeminal neuropathic injury. Alcohol 2022; 103:9-17. [PMID: 35714863 DOI: 10.1016/j.alcohol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Recent findings have shown a relationship between alcohol use disorders (AUD) and chronic pain. Preclinical models have demonstrated that chronic pain, including trigeminal nerve injury, increases ethanol consumption throughout extended administration periods. Nevertheless, it remains unclear whether chronic pain induces a greater susceptibility to developing AUD by altering motor control consumption regardless of the symptomatology of neuropathic pain and if sex influences this susceptibility. We used a former prolonged pain experience model induced by a constriction of the mental nerve (mNC) to answer this question. We analyzed ethanol consumption in a short access protocol to reduce the post-ingestional effects and compared licking microstructure between groups. The constriction of the mental nerve induced evoked and spontaneous pain and reduction in the hedonic value of sucrose. The differences in alcohol consumption were not reflective of the former prolonged pain experience. Female mice showed a more efficient dynamic of consumption of alcohol reflected in a long burst of licking and a less variable licking rate within a cluster.
Collapse
Affiliation(s)
- R D Andrade-Gonzalez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - E Perrusquia-Hernández
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - K I Zepeda-Reyes
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Bioquímica Diagnóstica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Av. 1ro. De Mayo S/N, Col. Santa María De Las Torres Cuautitlán Izcalli, 54740, Mexico
| | - Hernandez Campos Me
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - I O Perez-Martinez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México.
| |
Collapse
|
19
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Comprehensive Preclinical Assessment of Sensory, Functional, Motivational-Affective, and Neurochemical Outcomes in Neuropathic Pain: The Case of the Sigma-1 Receptor. ACS Pharmacol Transl Sci 2022; 5:240-254. [PMID: 35434530 PMCID: PMC9003638 DOI: 10.1021/acsptsci.2c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Chronic pain remains a major health problem and is currently facing slow drug innovation. New drug treatments should address not only the sensory-discriminative but also functional and motivational-affective components of chronic pain. In a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSNL), we analyzed sensory and functional-like outcomes by hindpaw mechanical stimulation and automated gait analysis (CatWalk). We characterized over time a reward-seeking task based on diminished motivation for natural reinforcers (anhedonic-like behavior). To differentiate the appetitive ("wanting") and consummatory ("liking") aspects of motivational behavior, we quantified the latency and number of approaches to eat white chocolate, as well as the eating duration and amount consumed. We explored a putative chronic pain-induced dysregulation of monoamine function by measuring monoamine levels in the nucleus accumbens (NAc), a well-known brain reward area. Finally, we investigated the role of sigma-1 receptor (σ1R) modulation, a nonopioid target, in these multiple dimensions by genetic deletion and pharmacological dose-response studies. After 6 weeks, PSNL increased the approach latency and reduced the consumption of white chocolate in 20-25% of the mice, while around 50-60% had one or the other parameter affected independently. After 10 weeks, sham-operated mice also displayed anhedonic-like behavior. PSNL was associated with reduced extracellular baseline dopamine and increased norepinephrine in the NAc and with a suppression of increased dopamine and serotonin efflux in response to the rewarding stimulus. Genetic and pharmacological blockade of σ1R relieved these multiple alterations in nerve-injured mice. We comprehensively describe sensory, functional, and depression-like impairment of key components of motivated behavior associated with nerve injury. We provide a neurochemical substrate for the depressed mesocorticolimbic reward processing in chronic pain, with a potentially increased translational value. Our results also highlight σ1R for the therapeutic intervention of neuropathic pain.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
20
|
Fiore NT, Yin Z, Guneykaya D, Gauthier CD, Hayes J, D’hary A, Butovsky O, Moalem-Taylor G. Sex-specific transcriptome of spinal microglia in neuropathic pain due to peripheral nerve injury. Glia 2022; 70:675-696. [PMID: 35050555 PMCID: PMC8852349 DOI: 10.1002/glia.24133] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a prevalent and debilitating chronic disease that is characterized by activation in glial cells in various pain-related regions within the central nervous system. Recent studies have suggested a sexually dimorphic role of microglia in the maintenance of neuropathic pain in rodents. Here, we utilized RNA sequencing analysis and in vitro primary cultures of microglia to identify whether there is a common neuropathic microglial signature and characterize the sex differences in microglia in pain-related regions in nerve injury and chemotherapy-induced peripheral neuropathy mouse models. While mechanical allodynia and behavioral changes were observed in all models, transcriptomic analysis of microglia revealed no common transcriptional changes in spinal and supraspinal regions and in the different neuropathic models. However, there was a substantial change in microglial gene expression within the ipsilateral lumbar spinal cord 7 days after chronic constriction injury (CCI) of the sciatic nerve. Both sexes upregulated genes associated with inflammation, phagosome, and lysosome activation, though males revealed a prominent global transcriptional shift not observed in female mice. Transcriptomic comparison between male spinal microglia after CCI and data from other nerve injury models and neurodegenerative microglia demonstrated a unique CCI-induced signature reflecting acute activation of microglia. Further, in vitro studies revealed that only male microglia from nerve-injured mice developed a reactive phenotype with increased phagocytotic activity. This study demonstrates a lack of a common neuropathic microglial signature and indicates distinct sex differences in spinal microglia, suggesting they contribute to the sex-specific pain processing following nerve injury.
Collapse
Affiliation(s)
- Nathan T Fiore
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dilansu Guneykaya
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian D Gauthier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Hayes
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Aaron D’hary
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia,Correspondence: A/Prof. Gila Moalem-Taylor, Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, Wallace Wurth Building, Level 3, room 355B, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia, +61-2-90658014,
| |
Collapse
|
21
|
Gaffney CM, Muwanga G, Shen H, Tawfik VL, Shepherd AJ. Mechanical Conflict-Avoidance Assay to Measure Pain Behavior in Mice. J Vis Exp 2022:10.3791/63454. [PMID: 35253785 PMCID: PMC9058981 DOI: 10.3791/63454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pain comprises of both sensory (nociceptive) and affective (unpleasant) dimensions. In preclinical models, pain has traditionally been assessed using reflexive tests that allow inferences regarding pain's nociceptive component but provide little information about the affective or motivational component of pain. Developing tests that capture these components of pain are therefore translationally important. Hence, researchers need to use non-reflexive behavioral assays to study pain perception at that level. Mechanical conflict-avoidance (MCA) is an established voluntary non-reflexive behavior assay, for studying motivational responses to a noxious mechanical stimulus in a 3 chamber paradigm. A change in a mouse's location preference, when faced with competing noxious stimuli, is used to infer the perceived unpleasantness of bright light versus tactile stimulation of the paws. This protocol outlines a modified version of the MCA assay which pain researchers can use to understand affective-motivational responses in a variety of mouse pain models. Though not specifically described here, our example MCA data use the intraplantar complete Freund's adjuvant (CFA), spared nerve injury (SNI), and a fracture/casting model as pain models to illustrate the MCA procedure.
Collapse
Affiliation(s)
- Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, and the MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center
| | - Gabriella Muwanga
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Huaishuang Shen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine;
| | - Andrew J Shepherd
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine;
| |
Collapse
|
22
|
Andrade-González RD, Perrusquia-Hernández E, Montes-Ángeles CD, Castillo-Díaz LA, Hernández Campos ME, Pérez-Martínez IO. Encoding signs of orofacial neuropathic pain from facial expressions in mice. Arch Oral Biol 2022; 135:105369. [DOI: 10.1016/j.archoralbio.2022.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
|
23
|
Li J, Stratton HJ, Lorca SA, Grace PM, Khanna R. Small molecule targeting NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in chronic constriction injury (CCI) rats. Channels (Austin) 2022; 16:1-8. [PMID: 34983286 PMCID: PMC8741281 DOI: 10.1080/19336950.2021.2023383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is a critical player in the transmission of nociceptive information. This channel has been heavily implicated in human genetic pain disorders and is a validated pain target. However, targeting this channel directly has failed, and an indirect approach – disruption of interactions with accessory protein partners – has emerged as a viable alternative strategy. We recently reported that a small-molecule inhibitor of CRMP2 SUMOylation, compound 194, selectively reduces NaV1.7 currents in DRG neurons across species from mouse to human. This compound also reversed mechanical allodynia in a spared nerve injury and chemotherapy-induced model of neuropathic pain. Here, we show that oral administration of 194 reverses mechanical allodynia in a chronic constriction injury (CCI) model of neuropathic pain. Furthermore, we show that orally administered 194 reverses the increased latency to cross an aversive barrier in a mechanical conflict-avoidance task following CCI. These two findings, in the context of our previous report, support the conclusion that 194 is a robust inhibitor of NaV1.7 function with the ultimate effect of profoundly ameliorating mechanical allodynia associated with nerve injury. The fact that this was observed using both traditional, evoked measures of pain behavior as well as the more recently developed operator-independent mechanical conflict-avoidance assay increases confidence in the efficacy of 194-induced anti-nociception.
Collapse
Affiliation(s)
- Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Harrison J Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Sabina A Lorca
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
24
|
EPAC1 and EPAC2 promote nociceptor hyperactivity associated with chronic pain after spinal cord injury. NEUROBIOLOGY OF PAIN 2019; 7:100040. [PMID: 31890991 PMCID: PMC6926371 DOI: 10.1016/j.ynpai.2019.100040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic pain following spinal cord injury (SCI) is associated with electrical hyperactivity (spontaneous and evoked) in primary nociceptors. Cyclic adenosine monophosphate (cAMP) signaling is an important contributor to nociceptor excitability, and knockdown of the cAMP effector, exchange protein activated by cAMP (EPAC), has been shown to relieve pain-like responses in several chronic pain models. To examine potentially distinct roles of each EPAC isoform (EPAC1 and 2) in maintaining chronic pain, we used rat and mouse models of contusive spinal cord injury (SCI). Pharmacological inhibition of EPAC1 or 2 in a rat SCI model was sufficient to reverse SCI-induced nociceptor hyperactivity, indicating that EPAC1 and 2 signaling activity are complementary, with both required to maintain hyperactivity. However, EPAC activation was not sufficient to induce similar hyperactivity in nociceptors from naïve rats, and we observed no change in EPAC protein expression after SCI. In the mouse SCI model, inhibition of both EPAC isoforms through a combination of pharmacological inhibition and genetic deletion was required to reverse SCI-induced nociceptor hyperactivity. This was consistent with our finding that neither EPAC1-/- nor EPAC2-/- mice were protected against SCI-induced chronic pain as assessed with an operant mechanical conflict test. Thus, EPAC1 and 2 activity may play a redundant role in mouse nociceptors, although no corresponding change in EPAC protein expression levels was detected after SCI. Despite some differences between these species, our data demonstrate a fundamental role for both EPAC1 and EPAC2 in mechanisms maintaining nociceptor hyperactivity and chronic pain after SCI.
Collapse
|
25
|
Yasko JR, Moss IL, Mains RE. Transcriptional Profiling of Non-injured Nociceptors After Spinal Cord Injury Reveals Diverse Molecular Changes. Front Mol Neurosci 2019; 12:284. [PMID: 32038157 PMCID: PMC6988781 DOI: 10.3389/fnmol.2019.00284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Traumatic spinal cord injury (SCI) has devastating implications for patients, including a high predisposition for developing chronic pain distal to the site of injury. Chronic pain develops weeks to months after injury, consequently, patients are treated after irreparable changes have occurred. Nociceptors are central to chronic pain; however, the diversity of this cellular population presents challenges to understanding mechanisms and attributing pain modalities to specific cell types. To begin to address how peripheral sensory neurons below the injury level may contribute to the below-level pain reported by SCI patients, we examined SCI-induced changes in gene expression in lumbar dorsal root ganglia (DRG) below the site of injury. SCI was performed at the T10 vertebral level, with injury produced by a vessel clip with a closing pressure of 15 g for 1 min. Alterations in gene expression produce long-term sensory changes, therefore, we were interested in studying SCI-induced transcripts before the onset of chronic pain, which may trigger changes in downstream signaling pathways and ultimately facilitate the transmission of pain. To examine changes in the nociceptor subpopulation in DRG distal to the site of injury, we retrograde labeled sensory neurons projecting to the hairy hindpaw skin with fluorescent dye and collected the corresponding lumbar (L2–L6) DRG 4 days post-injury. Following dissociation, labeled neurons were purified by fluorescence-activated cell sorting (FACS). RNA was extracted from sorted sensory neurons of naïve, sham, or SCI mice and sequenced. Transcript abundances validated that the desired population of nociceptors were isolated. Cross-comparisons to data sets from similar studies confirmed, we were able to isolate our cells of interest and identify a unique pattern of gene expression within a subpopulation of neurons projecting to the hairy hindpaw skin. Differential gene expression analysis showed high expression levels and significant transcript changes 4 days post-injury in SCI cell populations relevant to the onset of chronic pain. Regulatory interrelationships predicted by pathway analysis implicated changes within the synaptogenesis signaling pathway as well as networks related to inflammatory signaling mechanisms, suggesting a role for synaptic plasticity and a correlation with pro-inflammatory signaling in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Jessica R Yasko
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, United States
| | - Isaac L Moss
- Department of Orthopedic Surgery and the Comprehensive Spine Center, University of Connecticut Health Center, Farmington, CT, United States
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
26
|
Walters ET. Adaptive mechanisms driving maladaptive pain: how chronic ongoing activity in primary nociceptors can enhance evolutionary fitness after severe injury. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190277. [PMID: 31544606 DOI: 10.1098/rstb.2019.0277] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is considered maladaptive by clinicians because it provides no apparent protective or recuperative benefits. Similarly, evolutionary speculations have assumed that chronic pain represents maladaptive or evolutionarily neutral dysregulation of acute pain mechanisms. By contrast, the present hypothesis proposes that chronic pain can be driven by mechanisms that evolved to reduce increased vulnerability to attack from predators and aggressive conspecifics, which often target prey showing physical impairment after severe injury. Ongoing pain and anxiety persisting long after severe injury continue to enhance vigilance and behavioural caution, decreasing the heightened vulnerability to attack that results from motor impairment and disfigurement, thereby increasing survival and reproduction (fitness). This hypothesis is supported by evidence of animals surviving and reproducing after traumatic amputations, and by complex specializations that enable primary nociceptors to detect local and systemic signs of injury and inflammation, and to maintain low-frequency discharge that can promote ongoing pain indefinitely. Ongoing activity in nociceptors involves intricate electrophysiological and anatomical specializations, including inducible alterations in the expression of ion channels and receptors that produce persistent hyperexcitability and hypersensitivity to chemical signals of injury. Clinically maladaptive chronic pain may sometimes result from the recruitment of this powerful evolutionary adaptation to severe bodily injury. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|