1
|
Tran EL, Stuedemann SA, Ridlon M, Link OD, Keil Stietz KP, Crawford LK. Genetic tools that target mechanoreceptors produce reliable labeling of bladder afferents and altered mechanosensation. Am J Physiol Renal Physiol 2025; 328:F360-F374. [PMID: 39611874 DOI: 10.1152/ajprenal.00151.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanosensitive neurons are important sensors of bladder distention, but their role in urologic disease remains unclear. Our current knowledge about how disease alters bladder sensation comes from studies that focus primarily on peptidergic nociceptors, leaving our understanding of neuropeptide-negative mechanoreceptors incomplete. In this study, we found that a substantial proportion of neurofilament heavy (NFH)-positive A-fibers innervating the bladder was calcitonin gene-related peptide (CGRP)-negative, potentially representing uncharacterized mechanoreceptors. We then identified two genetic strategies that label mechanoreceptors in mouse skin and confirmed that they likewise label bladder afferents. Cre-mediated tdTomato reporter expression driven by tropomyosin receptor kinase B (TrkB), which labels Aδ mechanoreceptors in the skin, successfully labeled bladder nerve terminals. The majority of TrkB bladder afferents were CGRP-negative and NFH-positive, with more characteristic staining patterns seen at the level of the cell body. The Ret proto-oncogene (Ret) also produced robust labeling of bladder afferents, where colocalization with CGRP and NFH was consistent with multiple afferent subtypes. Because TrkB labeling was more specific for putative mechanoreceptors, we directly tested the role of TrkB neurons in bladder mechanosensation in vivo. Using an intersectional genetic strategy, we selectively ablated TrkB afferents and measured bladder responses to mechanical distention using anesthetized cystometry. Compared with controls, mice with ablated TrkB afferents required higher distention pressure to elicit voids. Interestingly, after ablation, distention also increased the frequency of nonvoiding contractions, a poorly understood phenotype of several urologic diseases. These genetic strategies comprise critical new tools to advance the study of mechanoreceptors in bladder function and urologic disease pathophysiology.NEW & NOTEWORTHY Most mechanosensitive afferents do not express markers of peptidergic nociceptors and therefore remain largely overlooked in studies of bladder dysfunction and disease. TrkB-mediated labeling of putative Aδ mechanoreceptors emerged as a valuable tool for the study of neuropeptide-negative bladder afferents with a confirmed role in bladder mechanosensation. Targeted neuronal ablation likewise validated an intersectional genetic strategy that can now directly test the role of TrkB mechanoreceptors in bladder physiology and disease.
Collapse
Affiliation(s)
- Emily L Tran
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Sara A Stuedemann
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Monica Ridlon
- Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Olivia D Link
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| |
Collapse
|
2
|
Sharma H, Manning SK, Stevens NE, Bourlotos G, Ryan FJ, Tay C, Klebe S, Rogers GB, Lynn DJ, Taylor SL, Grundy L. Acute urinary tract infection elicits bladder afferent hypersensitivity. Brain Behav Immun Health 2025; 44:100944. [PMID: 39901923 PMCID: PMC11788684 DOI: 10.1016/j.bbih.2025.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
•We explored the neurophysiology underlying painful bladder sensations during UTI.•UTI induces significant bladder afferent hypersensitivity during distension.•Low-threshold afferents elicit exaggerated responses at normal bladder pressures.•Afferent hypersensitivity correlated with the development of bladder dysfunction.•Bladder afferents are key regulators of sensory and behavioural responses to UTI.
Collapse
Affiliation(s)
- Harman Sharma
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Sarah K. Manning
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Natalie E. Stevens
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Georgia Bourlotos
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Feargal J. Ryan
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Cindy Tay
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, 5042, Australia
| | - Geraint B. Rogers
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - David J. Lynn
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Steven L. Taylor
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Luke Grundy
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
3
|
Mansfield KJ, Chen Z, Ognenovska S, Briggs N, Sluyter R, Moore KH. A Cross Sectional Study of Cytokines in Women with Refractory Detrusor Overactivity versus Controls. Int Urogynecol J 2025; 36:351-361. [PMID: 39560765 DOI: 10.1007/s00192-024-05999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION AND HYPOTHESIS Previous work has suggested that refractory detrusor overactivity (DO) was commonly associated with urinary tract infection (UTI), which can lead to inflammatory changes in the bladder. This study aimed to investigate the concentrations of urinary cytokines in a large sample of women with refractory detrusor overactivity (DO) and age matched controls. METHODS The urinary concentration of 27 cytokines in 140 women (95 with refractory DO and 45 age matched controls (women without urge incontinence)) was determined using the Human Cytokine 27-plex Assay. Cytokine concentrations were correlated with a "UTI score", the presence or absence of bacteriuria or pyuria on the day of sample collection and a previous history of UTI. RESULTS Pro-inflammatory cytokines were increased in refractory DO women compared to the controls. In women with refractory DO, the UTI score significantly correlated with urinary cytokine concentrations in 15 of the 22 cytokines detected. A previous history of UTI did not affect urinary cytokine concentrations in refractory DO women with no current UTI. Increasing pyuria was associated with increasing concentrations of urinary cytokines. CONCLUSION Careful comparison of cytokine concentrations in women with refractory DO versus age matched controls has shown that changes in pro-inflammatory cytokines are related to the UTI disease burden, suggesting that an underlying inflammatory response, together with UTI, may be an aetiological contributor to the development of refractory DO.
Collapse
Affiliation(s)
- Kylie J Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Zhuoran Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Samantha Ognenovska
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Nancy Briggs
- University of New South Wales, Kensington, NSW, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia
| | - Kate H Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| |
Collapse
|
4
|
Elmasri M, Clark A, Grundy L. Peripheral Mechanisms Underlying Bacillus Calmette-Guerin-Induced Lower Urinary Tract Symptoms (LUTS). Brain Sci 2024; 14:1203. [PMID: 39766402 PMCID: PMC11675006 DOI: 10.3390/brainsci14121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) accounts for approximately 70-75% of all bladder cancer cases. The standard treatment for high-risk NMIBC involves transurethral tumour resection followed by intravesical Bacillus Calmette-Guerin (BCG) immunotherapy. While BCG immunotherapy is both safe and effective, it frequently leads to the development of lower urinary tract symptoms (LUTS) such as urinary urgency, frequency, dysuria, and pelvic discomfort. These symptoms can significantly diminish patients' quality of life and may result in the discontinuation of BCG treatment, adversely affecting oncological outcomes. Despite the considerable clinical impact of BCG-induced LUTS, the underlying mechanisms remain unclear, hindering the implementation or development of effective treatments. This review provides novel insights into the potential mechanisms underlying BCG-induced LUTS, focusing on the integrated roles of afferent and efferent nerves in both normal and pathological bladder sensation and function. Specifically, this review examines how the body's response to BCG-through the development of inflammation, increased urothelial permeability, and altered urothelial signalling-might contribute to LUTS development. Drawing from known mechanisms in other common urological disorders and data from successful clinical trials involving NMIBC patients, this review summarises evidence supporting the likely changes in both sensory nerve signalling and bladder muscle function in the development of BCG-induced LUTS. However, further research is required to understand the intricate mechanisms underlying the development of BCG-induced LUTS and identify why some patients are more likely to experience BCG intolerance. Addressing these knowledge gaps could have profound implications for patients' quality of life, treatment adherence, and overall outcomes in NMIBC care.
Collapse
Affiliation(s)
| | | | - Luke Grundy
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia; (M.E.); (A.C.)
| |
Collapse
|
5
|
Liu MC, Jiang YH, Jhang JF, Chang TL, Yang CC, Kuo HC. Persistent Elevation in Urinary Neutrophil Gelatinase-Associated Lipocalin Levels Can Be a Predictor of Urinary Tract Infection Recurrence or Persistence in Women. Int J Mol Sci 2024; 25:12670. [PMID: 39684381 DOI: 10.3390/ijms252312670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Women commonly experience urinary tract infection (UTI) recurrence. However, there is no effective tool for predicting recurrent UTI after the first UTI episode. Hence, this study aimed to investigate potential urinary inflammatory biomarkers and specific biomarkers for predicting UTI recurrence or persistence after antibiotic treatment in women. Forty women who had a history of recurrent UTI within 1 year after the initial episode and acute bacterial cystitis were treated with broad-spectrum antibiotics for 1 week. To measure inflammatory biomarker levels, urine samples were collected at the baseline and after 1 week, 1 month, and 3 months. The levels of urinary pro-inflammatory proteins such as neutrophil gelatinase-associated lipocalin (NGAL), nerve growth factor, CXC-motif chemokine ligand (CXCL)-1, interleukin-8, CXCL-10, monocyte chemoattractant protein-1, and tumor necrosis factor-alpha were measured using commercial kits. Seven healthy age-matched women were included as controls. The changes in urinary biomarker levels at the baseline and various time points were compared between women with and without UTI recurrence within 1 month or within 3 months after the initial antibiotic therapy. At the baseline, patients with a higher urinary white blood cell count had a significantly higher NGAL level than the controls and those with a low white blood cell count. Of the 40 patients with a history of recurrent UTI, 12 presented with UTI persistence or recurrence within 1 month and 19 within 3 months after the initial antibiotic treatment. Among the 28 patients without UTI recurrence at 1 month after treatment, 7 had UTI recurrence within 3 months. Compared with patients without UTI recurrence, those with UTI recurrence had significantly higher urinary NGAL levels at 1 week, 1 month, and 3 months after the initial treatment. This study concludes that persistent elevation in urinary NGAL levels after the initial antibiotic treatment indicated persistent bladder inflammation. Further, it could be a predictor of UTI persistence or recurrence within 1 or 3 months after the initial antibiotic treatment. Patients with a history of recurrent UTI and high urinary NGAL levels after antibiotic treatment might require a longer treatment duration to completely eradicate or prevent UTI recurrence.
Collapse
Affiliation(s)
- Min-Ching Liu
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien 970, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien 970, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien 970, Taiwan
| | - Tien-Lin Chang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Cheng Yang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien 970, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
6
|
Rutter-Locher Z, Kirkham BW, Bannister K, Bennett DL, Buckley CD, Taams LS, Denk F. An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis. Nat Rev Rheumatol 2024; 20:671-682. [PMID: 39242949 DOI: 10.1038/s41584-024-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Pain is one of the most debilitating symptoms of rheumatoid arthritis (RA), and yet remains poorly understood, especially when pain occurs in the absence of synovitis. Without active inflammation, experts most often attribute joint pain to central nervous system dysfunction. However, advances in the past 5 years in both immunology and neuroscience research suggest that chronic pain in RA is also driven by a variety of abnormal interactions between peripheral neurons and mediators produced by resident cells in the local joint environment. In this Review, we discuss these novel insights from an interdisciplinary neuro-immune perspective. We outline a potential working model for the peripheral drivers of pain in RA, which includes autoantibodies, resident immune and mesenchymal cells and their interactions with different subtypes of peripheral sensory neurons. We also offer suggestions for how future collaborative research could be designed to accelerate analgesic drug development.
Collapse
Affiliation(s)
- Zoe Rutter-Locher
- Department of Rheumatology, Guy's Hospital, London, UK
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Kirsty Bannister
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Leonie S Taams
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK.
| |
Collapse
|
7
|
Lin C, Lyu J, Feng Z. Intake of dietary flavonoids in relation to overactive bladder among U.S. adults: a nutritional strategy for improving urinary health. Front Nutr 2024; 11:1437923. [PMID: 39114124 PMCID: PMC11303291 DOI: 10.3389/fnut.2024.1437923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background The increasing influence of overactive bladder (OAB) on physical as well as mental health of individuals is becoming more pronounced annually, as evidenced by the urge urinary incontinence and nocturia. Symptoms in OAB patients may be influenced by inflammation and oxidative stress. Flavonoids are recognized as significant anti-inflammatory and antioxidant agents, which are commonly available in fruits, tea, vegetables, etc. Previous research has demonstrated the therapeutic potential of flavonoids and their subclasses in treating inflammation, and oxidative stress. Despite this, there remains a paucity of research exploring the potential correlation between flavonoid consumption, specifically within distinct subclasses, and OAB. Thus, our study aims to investigate the relationship between flavonoid intake and OAB to identify possible dietary interventions for OAB management. Methods We utilized the survey data from the National Health and Nutrition Examination Survey (NHANES) and the USDA Food and Nutrient Database for Dietary Studies (FNDDS) to investigate the relationship between dietary intake of total and subclass flavonoids and the risk of OAB based on 13,063 qualified American adults. The dietary flavonoid intake was estimated from two 24-h dietary recalls. Weighted multivariate logistic regression model, quantile-based g-computation, restricted cubic spline model, and stratified analysis were used to explore the association between flavonoid intake and OAB, respectively. Results The participants diagnosed with OAB exhibited a higher percentage of being female, older, Non-Hispanic Black, unmarried, former drinkers, having a lower annual household income, lower poverty to income ratio, lower educational attainment, and a higher likelihood of being obese and smokers. Upon adjusting for confounding factors, the weighted logistic regression models revealed that the third quartile of consumption of anthocyanidin and the second quartile of consumption of flavone were significantly associated with the reduced odds of OAB, while total flavonoid consumption did not show a significant correlation with the risk of OAB. The quantile-based g-computation model indicated that flavone, anthocyanidin and flavonol were the primary contributors to the observed negative correlation. Furthermore, the restricted cubic spline models demonstrated a J-shaped non-linear exposure-response association between anthocyanidin intake and the risk of OAB (P nonlinear = 0.00164). The stratified and interaction analyses revealed that the relationship between anthocyanidin intake and the risk of OAB was significantly influenced by age (P interaction = 0.01) and education level (P interaction = 0.01), while the relationship between flavone intake and the risk of OAB was found to vary by race (P interaction = 0.02) and duration of physical activity (P interaction = 0.05). Conclusion Our research suggests that consuming a diet rich in flavonoid subclass anthocyanidin and flavone is associated with a reduced risk of OAB, potentially offering clinical significance in the prevention of OAB development. This underscores the importance of dietary adjustments in the management of OAB symptoms.
Collapse
Affiliation(s)
- Chaohuan Lin
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
| | - Jie Lyu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Zhen Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- College of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Ebrahimzadeh T, Basu U, Lutz KC, Gadhvi J, Komarovsky JV, Li Q, Zimmern PE, De Nisco NJ. Inflammatory markers for improved recurrent UTI diagnosis in postmenopausal women. Life Sci Alliance 2024; 7:e202302323. [PMID: 38331474 PMCID: PMC10853434 DOI: 10.26508/lsa.202302323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Recurrent urinary tract infection (rUTI) severely impacts postmenopausal women. The lack of rapid and accurate diagnostic tools is a major obstacle in rUTI management as current gold standard methods have >24-h diagnostic windows. Work in animal models and limited human cohorts have identified robust inflammatory responses activated during UTI. Consequently, urinary inflammatory cytokines secreted during UTI may function as diagnostic biomarkers. This study aimed to identify urinary cytokines that could accurately diagnose UTI in a controlled cohort of postmenopausal women. Women passing study exclusion criteria were classified into no UTI and active rUTI groups, and urinary cytokine levels were measured by immunoassay. Pro-inflammatory cytokines IL-8, IL-18, IL-1β, and monocyte chemoattractant protein-1 were significantly elevated in the active rUTI group, and anti-inflammatory cytokines IL-13 and IL-4 were elevated in women without UTI. We evaluated cytokine diagnostic performance and found that an IL-8, prostaglandin E2, and IL-13 multivariable model had the lowest misclassification rate and highest sensitivity. Our data identify urinary IL-8, prostaglandin E2, and IL-13 as candidate biomarkers that may be useful in the development of immunoassay-based UTI diagnostics.
Collapse
Affiliation(s)
| | - Ujjaini Basu
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Kevin C Lutz
- Department of Mathematics, University of Texas at Dallas, Dallas, TX, USA
| | - Jashkaran Gadhvi
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jessica V Komarovsky
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Qiwei Li
- Department of Mathematics, University of Texas at Dallas, Dallas, TX, USA
| | - Philippe E Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole J De Nisco
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Bourlotos G, Baigent W, Hong M, Plagakis S, Grundy L. BCG induced lower urinary tract symptoms during treatment for NMIBC-Mechanisms and management strategies. Front Neurosci 2024; 17:1327053. [PMID: 38260019 PMCID: PMC10800852 DOI: 10.3389/fnins.2023.1327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) accounts for ~70-75% of total bladder cancer tumors and requires effective early intervention to avert progression. The cornerstone of high-risk NMIBC treatment involves trans-urethral resection of the tumor followed by intravesical Bacillus Calmette-Guerin (BCG) immunotherapy. However, BCG therapy is commonly accompanied by significant lower urinary tract symptoms (LUTS) including urinary urgency, urinary frequency, dysuria, and pelvic pain which can undermine treatment adherence and clinical outcomes. Despite this burden, the mechanisms underlying the development of BCG-induced LUTS have yet to be characterized. This review provides a unique perspective on the mechanisms thought to be responsible for the development of BCG-induced LUTS by focussing on the sensory nerves responsible for bladder sensory transduction. This review focuses on how the physiological response to BCG, including inflammation, urothelial permeability, and direct interactions between BCG and sensory nerves could drive bladder afferent sensitization leading to the development of LUTS. Additionally, this review provides an up-to-date summary of the latest clinical data exploring interventions to relieve BCG-induced LUTS, including therapeutic targeting of bladder contractions, inflammation, increased bladder permeability, and direct inhibition of bladder sensory signaling. Addressing the clinical burden of BCG-induced LUTS holds significant potential to enhance patient quality of life, treatment compliance, and overall outcomes in NMIBC management. However, the lack of knowledge on the pathophysiological mechanisms that drive BCG-induced LUTS has limited the development of novel and efficacious therapeutic options. Further research is urgently required to unravel the mechanisms that drive BCG-induced LUTS.
Collapse
Affiliation(s)
- Georgia Bourlotos
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - William Baigent
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Matthew Hong
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Urology Unit, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sophie Plagakis
- Urology Unit, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Luke Grundy
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
10
|
Konesan J, Wang J, Moore KH, Mansfield KJ, Liu L. Cranberry, but not D-mannose and ibuprofen, prevents against uropathogenic Escherichia coli-induced cell damage and cell death in MDCK cells. Front Microbiol 2023; 14:1319785. [PMID: 38098676 PMCID: PMC10719950 DOI: 10.3389/fmicb.2023.1319785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction The main function of the urinary tract is to form an impermeable barrier against urinary solutes and bacteria. However, this barrier can be compromised by urinary tract infections, most commonly caused by uropathogenic Escherichia coli (UPEC). This can result in damage to the epithelial barrier, leading to decreased epithelial thickness, loss of tight junctions, loss of epithelial integrity, and apoptosis. Due to the rise in antimicrobial resistance, there is worldwide interest in exploring non-antibiotic agents as alternative therapy. Methods Using the Madin-Darby canine kidney (MDCK) cell line, a widely accepted epithelial cell model for the urinary tract, and the UPEC strain UTI89, this paper aimed to investigate the impact of UPEC on cell integrity, permeability, and barrier functions, and determine whether cranberry, D-mannose and ibuprofen could counteract the effects induced by UPEC. Furthermore, the study examined the protective potential of these agents against UPEC-induced increase in reactive oxygen species (ROS) production and programmed death-ligand 1 (PD-L1) expression. Results The results demonstrated that UTI89 caused a marked reduction in cell viability and monolayer integrity. Cranberry (3 mg/mL) was protective against these changes. In addition, cranberry exhibited protective effects against UPEC-induced damage to cell barrier integrity, escalation of oxidative stress, and UPEC/TNFα-triggered PD-L1 expression. However, no effect was observed for D-mannose and ibuprofen in alleviating UPEC-induced cell damage and changes in ROS and PD-L1 levels. Conclusion Overall, cranberry, but not D-mannose or ibuprofen, has a protective influence against UPEC associated damage in urinary epithelial cells.
Collapse
Affiliation(s)
- Jenane Konesan
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jenny Wang
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate H. Moore
- St George Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Kylie J. Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lu Liu
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Nguyen TTH, Starkey MR. Shining the spotlight on urinary tract immunology. Mucosal Immunol 2023; 16:563-566. [PMID: 37597761 DOI: 10.1016/j.mucimm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Theresa T H Nguyen
- Bladder and Kidney Health Discovery Program, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Malcolm R Starkey
- Bladder and Kidney Health Discovery Program, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
12
|
Chess-Williams R, Sellers DJ. Pathophysiological Mechanisms Involved in Overactive Bladder/Detrusor Overactivity. CURRENT BLADDER DYSFUNCTION REPORTS 2023. [DOI: 10.1007/s11884-023-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Purpose of Review
To examine the latest published findings on the pathophysiological mechanisms involved in the development of overactive bladder (OAB) and detrusor overactivity (DO), and to identify common pathways linked to the risk factors associated with these conditions.
Recent Findings
Evidence is accumulating, both clinical and experimental, that many of the factors linked to the development of OAB/DO, including ageing, bladder outlet obstruction, psychological stress, and obesity are associated with reduced bladder blood flow. This induces local tissue inflammation with cytokine release and enhanced oxidative stress, ultimately resulting in altered detrusor sensitivity, detrusor hypertrophy and fibrosis, together with afferent hypersensitivity. These mechanisms would explain the symptoms of urgency and frequency observed in OAB patients. Although not a characteristic of OAB, undetected low level bacterial infections of the bladder have been proposed to explain the OAB symptoms in patients resistant to standard treatments. In this condition, inflammatory responses without reductions in perfusion activate the inflammatory pathways.
Summary
Evidence is mounting that poor bladder perfusion and local inflammatory responses are central mechanisms involved in the development of OAB/DO. As our understanding of these pathophysiological mechanisms advances, new avenues for drug development will be identified and ultimately treatment may become more individualized depending on the particular pathway involved and the drugs available.
Collapse
|
13
|
Urinary Oxidative Stress Biomarkers in the Diagnosis of Detrusor Overactivity in Female Patients with Stress Urinary Incontinence. Biomedicines 2023; 11:biomedicines11020357. [PMID: 36830894 PMCID: PMC9953419 DOI: 10.3390/biomedicines11020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Ninety-three women with urodynamic stress incontinence (USI) and a mean age of 60.8 ± 10.7 (36-83) years were retrospectively enrolled. According to their VUDS, 31 (33%) were grouped into USI and detrusor overactivity (DO), 28 (30.1%) were grouped into USI and hypersensitive bladder (HSB), and 34 (36.6%) were controls (USI and stable bladder). The USI and DO group had significantly increased 8-isoprostane (mean, 33.3 vs. 10.8 pg/mL) and 8-hydroxy-2-deoxyguanosine (8-OHdG; mean, 28.9 vs. 17.4 ng/mL) and decreased interleukin (IL)-2 (mean, 0.433 vs. 0.638 pg/mL), vascular endothelial growth factor (mean, 5.51 vs. 8.99 pg/mL), and nerve growth factor (mean, 0.175 vs. 0.235 pg/mL) levels compared to controls. Oxidative stress biomarkers were moderately diagnostic of DO from controls, especially 8-isoprostane (area under the curve (AUC) > 0.7). Voided volume was highly diagnostic of DO from either controls or non-DO patients (AUC 0.750 and 0.915, respectively). The proposed prediction model with voided volume, 8-OHdG, and 8-isoprostane (cutoff values 384 mL, 35 ng/mL, and 37 pg/mL, respectively) had an accuracy of 81.7% (sensitivity, 67.7%; specificity, 88.7%; positive predictive value, 75.0%; negative predictive value, 84.6%). Combined with voided volume, urinary oxidative stress biomarkers have the potential to be used to identify urodynamic DO in patients with USI.
Collapse
|
14
|
The T-type calcium channel Ca V 3.2 regulates bladder afferent responses to mechanical stimuli. Pain 2022; 164:1012-1026. [PMID: 36279179 PMCID: PMC10108591 DOI: 10.1097/j.pain.0000000000002795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.
Collapse
|
15
|
Ognenovska S, Mukerjee C, Sanderson-Smith M, Moore KH, Mansfield KJ. Virulence Mechanisms of Common Uropathogens and Their Intracellular Localisation within Urothelial Cells. Pathogens 2022; 11:pathogens11080926. [PMID: 36015046 PMCID: PMC9415470 DOI: 10.3390/pathogens11080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
A recurrent urinary tract infection (UTI) is a common debilitating condition whereby uropathogens are able to survive within the urinary tract. In this study, we aimed to determine if the common uropathogens Escherichia coli, Enterococcus faecalis, and Group B Streptococcus possessed virulence mechanisms that enable the invasion of urothelial cells. Urothelial cells were isolated from women with detrusor overactivity and recurrent UTIs; the intracellular localisation of the uropathogens was determined by confocal microscopy. Uropathogens were also isolated from women with acute UTIs and their intracellular localisation and virulence mechanisms were examined (yeast agglutination, biofilm formation, and haemolysis). Fluorescent staining and imaging of urothelial cells isolated from women with refractory detrusor overactivity and recurrent UTIs demonstrated that all three uropathogens were capable of intracellular colonisation. Similarly, the bacterial isolates from women with acute UTIs were also seen to intracellularly localise using an in vitro model. All Enterococcus and Streptococcus isolates possessed a haemolytic capacity and displayed a strong biofilm formation whilst yeast cell agglutination was unique to Escherichia coli. The expression of virulence mechanisms by these uropathogenic species was observed to correlate with successful urothelial cell invasion. Invasion into the bladder urothelium was seen to be a common characteristic of uropathogens, suggesting that bacterial reservoirs within the bladder contribute to the incidence of recurrent UTIs.
Collapse
Affiliation(s)
- Samantha Ognenovska
- Detrusor Muscle Laboratory, Department of Urogynaecology, University of New South Wales, St. George Hospital, Sydney, NSW 2217, Australia
| | - Chinmoy Mukerjee
- Department of Microbiology, St. George Hospital, Sydney, NSW 2217, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kate H. Moore
- Detrusor Muscle Laboratory, Department of Urogynaecology, University of New South Wales, St. George Hospital, Sydney, NSW 2217, Australia
| | - Kylie J. Mansfield
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence:
| |
Collapse
|
16
|
Mansfield KJ, Chen Z, Moore KH, Grundy L. Urinary Tract Infection in Overactive Bladder: An Update on Pathophysiological Mechanisms. Front Physiol 2022; 13:886782. [PMID: 35860658 PMCID: PMC9289139 DOI: 10.3389/fphys.2022.886782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Overactive bladder (OAB) is a clinical syndrome defined by urinary urgency, increased daytime urinary frequency and/or nocturia, with or without urinary incontinence, that affects approximately 11% of the western population. OAB is accepted as an idiopathic disorder, and is charactersied clinically in the absence of other organic diseases, including urinary tract infection. Despite this, a growing body of research provides evidence that a significant proportion of OAB patients have active bladder infection. This review discusses the key findings of recent laboratory and clinical studies, providing insight into the relationship between urinary tract infection, bladder inflammation, and the pathophysiology of OAB. We summarise an array of clinical studies that find OAB patients are significantly more likely than control patients to have pathogenic bacteria in their urine and increased bladder inflammation. This review reveals the complex nature of OAB, and highlights key laboratory studies that have begun to unravel how urinary tract infection and bladder inflammation can induce urinary urgency and urinary frequency. The evidence presented in this review supports the concept that urinary tract infection may be an underappreciated contributor to the pathophysiology of some OAB patients.
Collapse
Affiliation(s)
- Kylie J. Mansfield
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Zhuoran Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Kate H. Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- *Correspondence: Luke Grundy,
| |
Collapse
|
17
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
18
|
Montalbetti N, Dalghi MG, Bastacky SI, Clayton DR, Ruiz WG, Apodaca G, Carattino MD. Bladder infection with uropathogenic Escherichia coli increases the excitability of afferent neurons. Am J Physiol Renal Physiol 2022; 322:F1-F13. [PMID: 34779263 PMCID: PMC8698541 DOI: 10.1152/ajprenal.00167.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
Urinary tract infections (UTIs) cause bladder hyperactivity and pelvic pain, but the underlying causes of these symptoms remain unknown. We investigated whether afferent sensitization contributes to the bladder overactivity and pain observed in mice suffering from experimentally induced bacterial cystitis. Inoculation of mouse bladders with the uropathogenic Escherichia coli strain UTI89 caused pelvic allodynia, increased voiding frequency, and prompted an acute inflammatory process marked by leukocytic infiltration and edema of the mucosa. Compared with controls, isolated bladder sensory neurons from UTI-treated mice exhibited a depolarized resting membrane potential, lower action potential threshold and rheobase, and increased firing in response to suprathreshold stimulation. To determine whether bacterial virulence factors can contribute to the sensitization of bladder afferents, neurons isolated from naïve mice were incubated with supernatants collected from bacterial cultures with or depleted of lipopolysaccharide (LPS). Supernatants containing LPS prompted the sensitization of bladder sensory neurons with both tetrodotoxin (TTX)-resistant and TTX-sensitive action potentials. However, bladder sensory neurons with TTX-sensitive action potentials were not affected by bacterial supernatants depleted of LPS. Unexpectedly, ultrapure LPS increased the excitability only of bladder sensory neurons with TTX-resistant action potentials, but the supplementation of supernatants depleted of LPS with ultrapure LPS resulted in the sensitization of both population of bladder sensory neurons. In summary, the results of our study indicate that multiple virulence factors released from UTI89 act on bladder sensory neurons to prompt their sensitization. These sensitized bladder sensory neurons mediate, at least in part, the bladder hyperactivity and pelvic pain seen in mice inoculated with UTI89.NEW & NOTEWORTHY Urinary tract infection (UTI) produced by uropathogenic Escherichia coli (UPEC) promotes sensitization of bladder afferent sensory neurons with tetrodotoxin-resistant and tetrodotoxin-sensitive action potentials. Lipopolysaccharide and other virulence factors produced by UPEC contribute to the sensitization of bladder afferents in UTI. In conclusion, sensitized afferents contribute to the voiding symptoms and pelvic pain present in mice bladder inoculated with UPEC.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marianela G Dalghi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dennis R Clayton
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Ognenovska S, Chen Z, Mukerjee C, Moore KH, Mansfield KJ. Bacterial colonization of bladder urothelial cells in women with refractory Detrusor Overactivity: the effects of antibiotic therapy. Pathog Dis 2021; 79:6304831. [PMID: 34143186 DOI: 10.1093/femspd/ftab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
Bacterial infection may have a pathophysiological role in refractory Detrusor Overactivity (DO). The aim of this study was to observe any impact of antibiotic therapy upon bacterial colonization of urothelial cells, and to determine whether a relationship existed between colonization and symptom severity. Mid-stream urine samples were collected as part of a clinical trial of antibiotics in women with refractory DO. Wright stained urothelial cells were categorized according to the degree of bacterial colonization as; 'clear' (free of bacteria), or as associated with bacteria that were 'adjacent' to the cell or 'intracellular' at low or high density. The average percentages were compared with routine microbiology cultures, over the 26 week trial, and with patient clinical outcome measures of DO severity. In patients receiving placebo, 'high-density intracellular bacteria' significantly increased during urinary tract infection (P = 0.0008). In antibiotic patients, 'clear' cells were more prevalent. Amoxicillin & Clavulanic Acid significantly decreased bacterial colonization within urothelial cells, suggesting that these antibiotics possess the greatest intracellular efficacy. 'High-density intracellular bacteria' positively correlated with symptom severity, measured by leakage on pad test (P = 0.014), leaks per day (P = 0.004), and voids per day (P = 0.005). Thus, by decreasing high density intracellular bacteria, antibiotic treatment may improve the refractory DO condition.
Collapse
Affiliation(s)
- S Ognenovska
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah NSW 2217, Australia
| | - Z Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah NSW 2217, Australia
| | - C Mukerjee
- Division of Microbiology, SEALS, St. George Hospital, Kogarah, NSW 2217, Australia
| | - K H Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah NSW 2217, Australia
| | - K J Mansfield
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong NSW 2522, Australia
| |
Collapse
|
20
|
Activation of MrgprA3 and MrgprC11 on Bladder-Innervating Afferents Induces Peripheral and Central Hypersensitivity to Bladder Distension. J Neurosci 2021; 41:3900-3916. [PMID: 33727332 DOI: 10.1523/jneurosci.0033-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ-/- mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterΔ-/- mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.SIGNIFICANCE STATEMENT Determining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitization may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.
Collapse
|
21
|
Chen Z, Ognenovska S, Sluyter R, Moore KH, Mansfield KJ. Urinary cytokines in women with refractory detrusor overactivity: A longitudinal study of rotating antibiotic versus placebo treatment. PLoS One 2021; 16:e0247861. [PMID: 33657181 PMCID: PMC7928483 DOI: 10.1371/journal.pone.0247861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
Over 50% of women with detrusor overactivity (DO), who do not respond to therapy have been shown to have bacteriuria, which may stimulate the release of inflammatory cytokines than can enhance nerve signalling, leading to symptoms of urgency. This study made use of a consecutive series of urine samples collected from women with refractory DO, who participated in a clinical trial of rotating antibiotic therapy. The aim was to determine the effect of bacteriuria and antibiotic treatment on the levels of urinary cytokines, and to correlate the cytokine concentration with patient outcome measures relating to urgency or urge incontinence. The urinary cytokines chosen were IL-1α, IL-1 receptor antagonist, IL-4, IL-6, IL-8, IL-10, CXCL10 (IP-10), MCP-1 and TNF-α. The presence of bacteriuria stimulated a significant increase in the concentrations of IL-1α (P 0.0216), IL-1 receptor antagonist (P 0.0264), IL-6 (P 0.0003), IL-8 (P 0.0043) and CXCL-10 (P 0.009). Antibiotic treatment significantly attenuated the release of IL-1α (P 0.005), IL-6 (P 0.0027), IL-8 (P 0.0001), IL-10 (P 0.049), and CXCL-10 (P 0.042), i.e. the response to the presence of bacteria was less in the antibiotic treated patients. Across the 26 weeks of the trial, antibiotic treatment reduced the concentration of five of the nine cytokines measured (IL-1α, IL-6, IL-8, IL-10 and CXCL-10); this did not reach significance at every time point. In antibiotic treated patients, the urinary concentration of CXCL-10 correlated positively with four of the six measures of urgency. This study has shown that cytokines associated with activation of the innate immune system (e.g. cytokines chemotactic for or activators of macrophages and neutrophils) are reduced by antibiotic therapy in women with refractory DO. Antibiotic therapy is also associated with symptom improvement in these women, therefore the inflammatory response may have a role in the aetiology of refractory DO.
Collapse
Affiliation(s)
- Zhuoran Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Ognenovska
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Ronald Sluyter
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Kate H. Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Kylie J. Mansfield
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- * E-mail:
| |
Collapse
|
22
|
Borghi SM, Fattori V, Carvalho TT, Tatakihara VLH, Zaninelli TH, Pinho-Ribeiro FA, Ferraz CR, Staurengo-Ferrari L, Casagrande R, Pavanelli WR, Cunha FQ, Cunha TM, Pinge-Filho P, Verri WA. Experimental Trypanosoma cruzi Infection Induces Pain in Mice Dependent on Early Spinal Cord Glial Cells and NFκB Activation and Cytokine Production. Front Immunol 2021; 11:539086. [PMID: 33574810 PMCID: PMC7870690 DOI: 10.3389/fimmu.2020.539086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
The neglected tropical infirmity Chagas disease (CD) presents high mortality. Its etiological agent T. cruzi is transmitted by infected hematophagous insects. Symptoms of the acute phase of the infection include fever, fatigue, body aches, and headache, making diagnosis difficult as they are present in other illnesses as well. Thus, in endemic areas, individuals with undetermined pain may be considered for CD. Although pain is a characteristic symptom of CD, its cellular and molecular mechanisms are unknown except for demonstration of a role for peripheral TNF-α in CD pain. In this study, we evaluate the role of spinal cord glial cells in experimental T. cruzi infection in the context of pain using C57BL/6 mice. Pain, parasitemia, survival, and glial and neuronal function as well as NFκB activation and cytokine/chemokine production were assessed. T. cruzi infection induced chronic mechanical and thermal hyperalgesia. Systemic TNF-α and IL-1β peaked 14 days postinfection (p.i.). Infected mice presented increased spinal gliosis and NFκB activation compared to uninfected mice at 7 days p.i. Glial and NFκB inhibitors limited T. cruzi–induced pain. Nuclear phosphorylated NFκB was detected surrounded by glia markers, and glial inhibitors reduced its detection. T. cruzi–induced spinal cord production of cytokines/chemokines was also diminished by glial inhibitors. Dorsal root ganglia (DRG) neurons presented increased activity in infected mice, and the production of inflammatory mediators was counteracted by glial/NFκB inhibitors. The present study unveils the contribution of DRG and spinal cord cellular and molecular events leading to pain in T. cruzi infection, contributing to a better understanding of CD pathology.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil.,Center for Research in Health Science, University of Northern Paraná-Unopar, Londrina, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Vera L H Tatakihara
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Health Sciences Center, University Hospital, Londrina State University, Londrina, Brazil
| | - Wander R Pavanelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Phileno Pinge-Filho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| |
Collapse
|