1
|
Luo C, Zhang B, Zhou J, Yu K, Chang D. Clinical application of repetitive transcranial magnetic stimulation in the treatment of chronic pelvic pain syndrome: a scoping review. Front Neurol 2025; 16:1499133. [PMID: 40083455 PMCID: PMC11905899 DOI: 10.3389/fneur.2025.1499133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Chronic pelvic pain syndrome is a common condition characterized by persistent symptoms that are difficult to treat. Repetitive transcranial magnetic stimulation (rTMS) is considered a safe treatment option for alleviating chronic pelvic pain, but different stimulation protocols can affect pain relief outcomes. Establishing an optimal stimulation protocol can enhance the uniformity and consistency of rTMS to provide a potentially effective therapeutic intervention. This review sought to systematically review and assess the existing literature on transcranial magnetic stimulation in patients experiencing chronic pelvic pain syndrome, evaluate the therapeutic efficacy, and determine the most effective stimulation protocol. Methods A comprehensive search was conducted across three databases, supplemented by manual searches. Two researchers independently reviewed and extracted relevant studies and subsequently performed a thorough analysis of all available clinical data. Results A total of eight studies were ultimately incorporated into the analysis. These comprised two randomized controlled trials, one self-controlled trial, two case reports, and three prospective studies. All studies demonstrated a notable reduction in pain scores post-treatment. Conclusion rTMS has demonstrated efficacy in alleviating pain in individuals suffering from chronic pelvic pain syndrome. It is regarded as a safe intervention with minimal adverse effects. Nonetheless, the variability observed across studies hindered our ability to conclusively determine the most effective stimulation sites and parameters. Additional research is essential to reduce bias, enhance methodological rigor, and ascertain the optimal conditions and indications for brain stimulation to optimize the therapeutic effectiveness of rTMS. Systematic Review Registration https://inplasy.com/projects/, identifier INPLASY2023120112.
Collapse
Affiliation(s)
- Chunmei Luo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anorectal Department, Chengdu Anorectal Hospital, Chengdu, China
| | - Baocheng Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jing Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulation Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keqiang Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulation Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Degui Chang
- TCM Regulation Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Urology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Powers JM, Koning E, Ioachim G, Stroman PW. Pain is what you think: functional magnetic resonance imaging evidence toward a cognitive and affective approach for pain research. FRONTIERS IN PAIN RESEARCH 2024; 5:1388460. [PMID: 39720318 PMCID: PMC11666527 DOI: 10.3389/fpain.2024.1388460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
The sensory/discriminative domain of pain is often given more consideration than the cognitive and affective influences that ultimately make pain what it is: a highly subjective experience that is based on an individual's life history and experiences. While many investigations of the underlying mechanisms of pain have focused on solely noxious stimuli, few have compared somatosensory stimuli that cross the boundary from innocuous to noxious. Of those that have, there is little consensus on the similarities and differences in neural signaling across these sensory domains. The purpose of this study was to apply our established network connectivity analyses toward the goal of understanding the neural mechanisms behind sensory, cognitive, and affective responses to noxious and innocuous stimuli. Functional MRI data were collected from 19 healthy women and men that experienced warm and hot thermal stimuli across multiple trials. This is a within-subjects cross-sectional experimental study with repeated measures. Ratings of stimulus intensity and unpleasantness that were collected during each run confirmed significant perceptual differences between the two types of stimuli. Despite this finding, no group differences in network connectivity were found across conditions. When individual differences related to pain ratings were investigated, subtle differences were found in connectivity that could be attributed to sensory and association regions in the innocuous condition, and cognitive, affective, and autonomic regions in the pain condition. These results were reflected in the time-course data for each condition. Overall, signaling mechanisms for innocuous and noxious somatosensation are intricately linked, but pain-specific perception appears to be driven by our psychological and autonomic states.
Collapse
Affiliation(s)
- Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Elena Koning
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physics, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Hua Y, Geng Y, Liu S, Xia S, Liu Y, Cheng S, Chen C, Pang C, Zhao Z, Peng B, Dai Y, Ji J, Wu D. Identification of Specific Abnormal Brain Functional Activity and Connectivity in Cancer Pain Patients: A Preliminary Resting-State fMRI Study. J Pain Res 2024; 17:3959-3971. [PMID: 39600396 PMCID: PMC11590652 DOI: 10.2147/jpr.s470750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Objective This study investigates the differences in brain functional activity and connectivity patterns between Cancer Pain (CP) patients and Healthy Controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI) to identify potential neuroimaging biomarkers. Methods This study collected rs-fMRI data from 25 CP patients and 25 hCs, processed the functional MRI images, and calculated metrics such as amplitude of low-frequency fluctuation (ALFF), Regional Homogeneity (ReHo), and FC. Through statistical analysis, differences in brain functional activity and connectivity between the cancer pain group and the healthy control group were investigated, followed by machine learning classification. Results The results showed that compared to the normal group, reductions in the ALFF were primarily observed in the bilateral inferior temporal gyrus; ReHo increased in the right middle temporal gyrus and decreased in the left cerebellum Crus2. Using the statistically different brain areas as seed points to construct FC networks and performing statistical analysis, it was found that the regions with decreased FC connection strength between the cancer pain group and the normal group were mainly in the prefrontal cortex (PFC), the postcentral gyrus of the parietal lobe, and the cerebellum. Statistical results indicated that there was no significant correlation between pain scores (Numeric Rating Scale, NRS) and neuroimaging metrics. According to the machine learning classification, the FC features of the right precentral gyrus achieved higher diagnostic efficacy (AUC = 0.804) compared to ALFF and ReHo in distinguishing between CP patients and HCs. Conclusion Brain activity and FC in CP patients show abnormalities in regions such as the inferior temporal gyrus, middle temporal gyrus, prefrontal cortex, parietal lobe, and cerebellum. These areas may be interconnected through neural networks and jointly participate in functions related to pain perception, emotion regulation, cognitive processing, and motor control. However, the precise connections and mechanisms of action require further research.
Collapse
Affiliation(s)
- Yingjie Hua
- Department of Pain Medicine, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Yongkang Geng
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin Province, People’s Republic of China
| | - Surui Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Shuiwei Xia
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Yan Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Sufang Cheng
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Chunmiao Chen
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Chunying Pang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin Province, People’s Republic of China
| | - Zhongwei Zhao
- Department of Pain Medicine, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Bo Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Jiansong Ji
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Dan Wu
- Department of Pain Medicine, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Timmers I, Biggs EE, Bruckert L, Tremblay-McGaw AG, Zhang H, Borsook D, Simons LE. Probing white matter microstructure in youth with chronic pain and its relation to catastrophizing using neurite orientation dispersion and density imaging. Pain 2024; 165:2494-2506. [PMID: 38718105 PMCID: PMC11511653 DOI: 10.1097/j.pain.0000000000003269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/25/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT Chronic pain is common in young people and can have a major life impact. Despite the burden of chronic pain, mechanisms underlying chronic pain development and persistence are still poorly understood. Specifically, white matter (WM) connectivity has remained largely unexplored in pediatric chronic pain. Using diffusion-weighted imaging, this study examined WM microstructure in adolescents (age M = 15.8 years, SD = 2.8 years) with chronic pain (n = 44) compared with healthy controls (n = 24). Neurite orientation dispersion and density imaging modeling was applied, and voxel-based whole-white-matter analyses were used to obtain an overview of potential alterations in youth with chronic pain and tract-specific profile analyses to evaluate microstructural profiles of tracts of interest more closely. Our main findings are that (1) youth with chronic pain showed widespread elevated orientation dispersion compared with controls in several tracts, indicative of less coherence; (2) signs of neurite density tract-profile alterations were observed in several tracts of interest, with mainly higher density levels in patients; and (3) several WM microstructural alterations were associated with pain catastrophizing in the patient group. Implicated tracts include both those connecting cortical and limbic structures (uncinate fasciculus, cingulum, anterior thalamic radiation), which were associated with pain catastrophizing, as well as sensorimotor tracts (corticospinal tract). By identifying alterations in the biologically informative WM microstructural metrics orientation dispersion and neurite density, our findings provide important and novel mechanistic insights for understanding the pathophysiology underlying chronic pain. Taken together, the data support alterations in fiber organization as a meaningful characteristic, contributing process to the chronic pain state.
Collapse
Affiliation(s)
- Inge Timmers
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Emma E. Biggs
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Lisa Bruckert
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Alexandra G. Tremblay-McGaw
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Hui Zhang
- Department of Computer Science, University College London, London, United Kingdom
| | - David Borsook
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, MA, United States
| | - Laura E. Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
5
|
Shamli Oghli Y, Ashok A, Glener S, Ailes I, Syed M, Kang KC, Naghizadehkashani S, Fayed I, Mohamed FB, Talekar K, Krisa L, Wu C, Matias C, Alizadeh M. Multimodal functional imaging and clinical correlates of pain regions in chronic low-back pain patients treated with spinal cord stimulation: a pilot study. FRONTIERS IN NEUROIMAGING 2024; 3:1474060. [PMID: 39399386 PMCID: PMC11470492 DOI: 10.3389/fnimg.2024.1474060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Objective Spinal cord stimulation (SCS) is an invasive treatment option for patients suffering from chronic low-back pain (cLBP). It is an effective treatment that has been shown to reduce pain and increase the quality of life in patients. However, the activation of pain processing regions of cLBP patients receiving SCS has not been assessed using objective, quantitative functional imaging techniques. The purpose of the present study was to compare quantitative resting-state (rs)-fMRI and arterial spin labeling (ASL) measures between SCS patients and healthy controls and to correlate clinical measures with quantitative multimodal imaging indices in pain regions. Methods Multi-delay 3D GRASE pseudo-continuous ASL and rs-fMRI data were acquired from five patients post-SCS with cLBP and five healthy controls. Three ASL measures and four rs-fMRI measures were derived and normalized into MNI space and smoothed. Averaged values for each measure from a pain atlas were extracted and compared between patients and controls. Clinical pain scores assessing intensity, sensitization, and catastrophizing, as well as others assessing global pain effects (sleep quality, disability, anxiety, and depression), were obtained in patients and correlated with pain regions using linear regression analysis. Results Arterial transit time derived from ASL and several rs-fMRI measures were significantly different in patients in regions involved with sensation (primary somatosensory cortex and ventral posterolateral thalamus [VPL]), pain input (posterior short gyrus of the insula [PS]), cognition (dorsolateral prefrontal cortex [DLPC] and posterior cingulate cortex [PCC]), and fear/stress response (hippocampus and hypothalamus). Unidimensional pain rating and sensitization scores were linearly associated with PS, VPL, DLPC, PCC, and/or amygdala activity in cLBP patients. Conclusion The present results provide evidence that ASL and rs-fMRI can contrast functional activation in pain regions of cLBP patients receiving SCS and healthy subjects, and they can be associated with clinical pain evaluations as quantitative assessment tools.
Collapse
Affiliation(s)
- Yazan Shamli Oghli
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Steven Glener
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Isaiah Ailes
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mashaal Syed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ki Chang Kang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sara Naghizadehkashani
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Islam Fayed
- Department of Neurosurgery, Cooper University Health Care, Camden, PA, United States
| | - Feroze B. Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran Talekar
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Laura Krisa
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Chen J, Gao Y, Bao ST, Wang YD, Jia T, Yin C, Xiao C, Zhou C. Insula→Amygdala and Insula→Thalamus Pathways Are Involved in Comorbid Chronic Pain and Depression-Like Behavior in Mice. J Neurosci 2024; 44:e2062232024. [PMID: 38453468 PMCID: PMC11007474 DOI: 10.1523/jneurosci.2062-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
The comorbidity of chronic pain and depression poses tremendous challenges for the treatment of either one because they exacerbate each other with unknown mechanisms. As the posterior insular cortex (PIC) integrates multiple somatosensory and emotional information and is implicated in either chronic pain or depression, we hypothesize that the PIC and its projections may contribute to the pathophysiology of comorbid chronic pain and depression. We show that PIC neurons were readily activated by mechanical, thermal, aversive, and stressful and appetitive stimulation in naive and neuropathic pain male mice subjected to spared nerve injury (SNI). Optogenetic activation of PIC neurons induced hyperalgesia and conditioned place aversion in naive mice, whereas inhibition of these neurons led to analgesia, conditioned place preference (CPP), and antidepressant effect in both naive and SNI mice. Combining neuronal tracing, optogenetics, and electrophysiological techniques, we found that the monosynaptic glutamatergic projections from the PIC to the basolateral amygdala (BLA) and the ventromedial nucleus (VM) of the thalamus mimicked PIC neurons in pain modulation in naive mice; in SNI mice, both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons and inhibition of these projections led to analgesia, CPP, and antidepressant-like effect. The present study suggests that potentiation of the PIC→BLA and PIC→VM projections may be important pathophysiological bases for hyperalgesia and depression-like behavior in neuropathic pain and reversing the potentiation may be a promising therapeutic strategy for comorbid chronic pain and depression.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, Binhai County People's Hospital, Yancheng 225559, China
| | - Yuan Gao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Shu-Ting Bao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying-Di Wang
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tao Jia
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
7
|
Mikkelsen MB, Neumann H, Buskbjerg CR, Johannsen M, O'Toole MS, Arendt-Nielsen L, Zachariae R. The effect of experimental emotion induction on experimental pain: a systematic review and meta-analysis. Pain 2024; 165:e17-e38. [PMID: 37889565 DOI: 10.1097/j.pain.0000000000003073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/31/2023] [Indexed: 10/28/2023]
Abstract
ABSTRACT The idea that emotions can influence pain is generally recognized. However, a synthesis of the numerous individual experimental studies on this subject is lacking. The aim of the present systematic review and meta-analysis was to synthesize the existing evidence on the effect of experimental emotion induction on experimental pain in nonclinical adults. PsycInfo and PubMed were searched up until April 10, 2023, for studies assessing differences in self-reported pain between emotion induction groups and/or control groups or between conditions within group. Risk of bias was assessed for the individual studies. The literature search yielded 78 relevant records of 71 independent studies. When compared with control conditions, the pooled results revealed a statistically significant pain-attenuating effect of positive emotion induction (between-group: Hedges g = -0.48, 95% CI: -0.72; -0.25, K = 9; within-group: g = -0.24, 95% CI: -0.32; -0.15, K = 40), and a statistically significant pain-exacerbating effect of negative emotion induction in within-group analyses but not between-group analyses (between-group: g = -0.29, 95% CI: -0.66; 0.07, K = 10; within-group: g = 0.14, 95% CI: 0.06; 0.23, K = 39). Bayesian meta-analysis provided strong support for an effect of positive emotion induction but weak support for an effect of negative emotion induction. Taken together, the findings indicate a pain-attenuating effect of positive emotion induction, while the findings for negative emotion induction are less clear. The findings are discussed with reference to theoretical work emphasizing the role of motivational systems and distraction for pain. Limitations include considerable heterogeneity across studies limiting the generalizability of the findings.
Collapse
Affiliation(s)
| | - Henrike Neumann
- Dept. of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | | | - Maja Johannsen
- Dept. of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Mia Skytte O'Toole
- Dept. of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Robert Zachariae
- Dept. of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Sacca V, Chai-Zhang TC, Hodges S, Amores J, Guler S, Todorova N, McDonald CM, Ge T, Kong J. Morphological changes of the limbic system associated with acute and chronic low-back pain: A UK biobank imaging study. Eur J Pain 2024; 28:608-619. [PMID: 38009393 PMCID: PMC10947961 DOI: 10.1002/ejp.2206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Low back pain (LBP) is a major public health issue that influences physical and emotional factors integral to the limbic system. This study aims to investigate the association between LBP and brain morphometry alterations as the duration of LBP increases (acute vs. chronic). METHODS We used the UK Biobank data to investigate the morphological features of the limbic system in acute LBP (N = 115), chronic LBP (N = 243) and controls (N = 358), and tried to replicate our findings with an independent dataset composed of 45 acute LBP participants evaluated at different timepoints throughout 1 year from the OpenPain database. RESULTS We found that in comparison with chronic LBP and pain-free controls, acute LBP was associated with increased volumes of the nucleus accumbens, amygdala, hippocampus, and thalamus, and increased grey matter volumes in the hippocampus and posterior cingulate gyrus. In the replication cohort, we found non-significantly larger hippocampus and thalamus volumes in the 3-month visit (acute LBP) compared to the 1-year visit (chronic LBP), with similar effect sizes as the UK Biobank dataset. CONCLUSIONS Our results suggest that acute LBP is associated with dramatic morphometric increases in the limbic system and mesolimbic pathway, which may reflect an active brain response and self-regulation in the early stage of LBP. SIGNIFICANCE Our study suggests that LBP in the acute phase is associated with the brain morphometric changes (increase) in some limbic areas, indicating that the acute phase of LBP may represent a crucial stage of self-regulation and active response to the disease's onset.
Collapse
Affiliation(s)
- Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Thalia Celeste Chai-Zhang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Judith Amores
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Seyhmus Guler
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Nevyana Todorova
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Caroline Merritt McDonald
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Tian Ge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
| |
Collapse
|
9
|
Fulton T, Lathan EC, Karkare MC, Guelfo A, Eghbalzad L, Ahluwalia V, Ely TD, Turner JA, Turner MD, Currier JM, Mekawi Y, Fani N. Civilian Moral Injury and Amygdala Functional Connectivity During Attention to Threat. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:112-120. [PMID: 37487958 PMCID: PMC10803642 DOI: 10.1016/j.bpsc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Moral injury references emotional and spiritual/existential suffering that may emerge following psychological trauma. Despite being linked to adverse mental health outcomes, little is known about the neurophysiological mechanisms of this phenomenon. In this study, we examined neural correlates of moral injury exposure and distress using the Moral Injury Exposure and Symptom Scale for Civilians. We also examined potential moderation of these effects by race (Black vs. White individuals) given the likely intersection of race-related stress with moral injury. METHODS Forty-eight adults ages 18 to 65 years (mean age = 30.56, SD = 11.93) completed the Moral Injury Exposure and Symptom Scale for Civilians and an affective attentional control measure, the affective Stroop task (AS), during functional magnetic resonance imaging; the AS includes presentation of threat-relevant and neutral distractor stimuli. Voxelwise functional connectivity of the bilateral amygdala was examined in response to threat-relevant versus neutral AS distractor trials. RESULTS Functional connectivity between the right amygdala and left postcentral gyrus/primary somatosensory cortex was positively correlated with the Moral Injury Exposure and Symptom Scale for Civilians exposure score (voxelwise p < .001, cluster false discovery rate-corrected p < .05) in response to threat versus neutral AS distractor trials. Follow-up analyses revealed significant effects of race; Black but not White participants demonstrated this significant pattern of amygdala-left somatosensory cortex connectivity. CONCLUSIONS Increased exposure to potentially morally injurious events may lead to emotion-somatosensory pathway disruptions during attention to threat-relevant stimuli. These effects may be most potent for individuals who have experienced multilayered exposure to morally injurious events, including racial trauma. Moral injury appears to have a distinct neurobiological signature that involves abnormalities in connectivity of emotion-somatosensory paths, which may be amplified by race-related stress.
Collapse
Affiliation(s)
- Travis Fulton
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, Georgia
| | - Emma C Lathan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Maya C Karkare
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Alfonsina Guelfo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Leyla Eghbalzad
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Vishwadeep Ahluwalia
- Center for Advanced Brain Imaging, Georgia Institute of Technology, Atlanta, Georgia
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Joseph M Currier
- Department of Psychology, University of South Alabama, Mobile, Alabama
| | - Yara Mekawi
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
10
|
Kerr PL, Gregg JM. The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac. ADVANCES IN NEUROBIOLOGY 2024; 35:183-220. [PMID: 38874724 DOI: 10.1007/978-3-031-45493-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.
Collapse
Affiliation(s)
- Patrick L Kerr
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA.
| | - John M Gregg
- Department of Surgery, VTCSOM, Blacksburg, VA, USA
| |
Collapse
|
11
|
Guan Y, Ma H, Liu J, Xu L, Zhang Y, Tian L. The abilities of movie-watching functional connectivity in individual identifications and individualized predictions. Brain Imaging Behav 2023; 17:628-638. [PMID: 37553449 DOI: 10.1007/s11682-023-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/10/2023]
Abstract
Quite a few studies have been performed based on movie-watching functional connectivity (FC). As compared to its resting-state counterpart, however, there is still much to know about its abilities in individual identifications and individualized predictions. To pave the way for appropriate usage of movie-watching FC, we systemically evaluated the minimum number of time points, as well as the exact functional networks, supporting individual identifications and individualized predictions of apparent traits based on it. We performed the study based on the 7T movie-watching fMRI data included in the HCP S1200 Release, and took IQ as the test case for the prediction analyses. The results indicate that movie-watching FC based on only 15 time points can support successful individual identifications (99.47%), and the connectivity contributed more to identifications were much associated with higher-order cognitive processes (the secondary visual network, the frontoparietal network and the posterior multimodal network). For individualized predictions of IQ, it was found that successful predictions necessitated 60 time points (predicted vs. actual IQ correlation significant at P < 0.05, based on 5,000 permutations), and the prediction accuracy increased logarithmically with the number of time points used for connectivity calculation. Furthermore, the connectivity that contributed more to individual identifications exhibited the strongest prediction ability. Collectively, our findings demonstrate that movie-watching FC can capture rich information about human brain function, and its ability in individualized predictions depends heavily on the length of fMRI scans.
Collapse
Affiliation(s)
- Yun Guan
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044, China
| | - Hao Ma
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiangcong Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Le Xu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yang Zhang
- Department of Orthopedics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
12
|
Wang Z, Wang Y, Ji Y, Yang Z, Pei Y, Dai J, Zhang Y, Zhou F. Hypoconnectivity of the Amygdala in Patients with Low-Back-Related Leg Pain Linked to Individual Mechanical Pain Sensitivity: A Resting-State Functional MRI Study. J Pain Res 2023; 16:3775-3784. [PMID: 38026465 PMCID: PMC10640821 DOI: 10.2147/jpr.s425874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose To explore resting-state functional connectivity (rsFC) of the amygdala in patients with low-back-related leg pain (LBLP). Patients and Methods For this prospective study, a total of 35 LBLP patients and 30 healthy controls (HCs) were included and underwent functional MRI and clinical assessments. Then, patients with LBLP were divided into acute LBLP (aLBLP) and chronic LBLP (cLBLP) subgroups. We further evaluated the between-group rsFC differences using left and right amygdala seeds in a whole-brain voxel analysis strategy. Finally, we performed correlation analysis between the rsFC values of altered regions and clinical indices. Results Compared to HCs, hypoconnectivity of the amygdala was observed in LBLP patients (P < 0.01, with correction). The amygdala's rsFC pattern was different between aLBLP and cLBLP patients: decreased the amygdala's FC to the right putamen, to the right paracentral lobule (PCL), or to the right posterior temporal lobe in aLBLP patients, while right amygdala to the bilateral anterior cingulate cortex (ACC) and the left postcentral gyrus (PoCG) in cLBLP patients. Correlation analysis showed that lower rsFC of the left amygdala to the right PCL was correlated with the von Frey filament (vF) test values of the left lumbar (p = 0.025) and right lumbar (p = 0.019) regions, and rsFC of the right amygdala to the left PoCG was correlated with lower vF test values of the left lumbar (p = 0.017), right lumbar spine (p = 0.003); to right PoCG was correlated with calf (p = 0.015); the rsFC of the right amygdala to bilateral ACC was negatively correlated with the pain rating index (p = 0.003). Conclusion LBLP patients showed amygdala hypoconnectivity, and the altered pattern of amygdala rsFC was different in the acute and chronic phases. Moreover, the amygdala hypoconnectivity was related to individual mechanical sensitivity (vF test) in LBLP patients.
Collapse
Affiliation(s)
- Ziyun Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People’s Republic of China
- Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People’s Republic of China
| | - Yao Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People’s Republic of China
- Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People’s Republic of China
| | - Yuqi Ji
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People’s Republic of China
- Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People’s Republic of China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People’s Republic of China
- Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People’s Republic of China
| | - Yixiu Pei
- Department of Radiology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Jiankun Dai
- MR Advanced Application, GE Healthcare, Beijing, 100176, People’s Republic of China
| | - Yong Zhang
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People’s Republic of China
- Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People’s Republic of China
| |
Collapse
|
13
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Wang Y, Li Q, Xue X, Xu X, Tao W, Liu S, Li Y, Wang H, Hua Y. Neuroplasticity of pain processing and motor control in CAI patients: A UK Biobank study with clinical validation. Front Mol Neurosci 2023; 16:1096930. [PMID: 36866356 PMCID: PMC9971622 DOI: 10.3389/fnmol.2023.1096930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Pain plays an important role in chronic ankle instability (CAI), and prolonged pain may be associated with ankle dysfunction and abnormal neuroplasticity. PURPOSE To investigate the differences in resting-state functional connectivity among the pain-related brain regions and the ankle motor-related brain regions between healthy controls and patients with CAI, and explore the relationship between patients' motor function and pain. STUDY DESIGN A cross-database, cross-sectional study. METHODS This study included a UK Biobank dataset of 28 patients with ankle pain and 109 healthy controls and a validation dataset of 15 patients with CAI and 15 healthy controls. All participants underwent resting-state functional magnetic resonance imaging scanning, and the functional connectivity (FC) among the pain-related brain regions and the ankle motor-related brain regions were calculated and compared between groups. The correlations between the potentially different functional connectivity and the clinical questionnaires were also explored in patients with CAI. RESULTS The functional connection between the cingulate motor area and insula significantly differed between groups in both the UK Biobank (p = 0.005) and clinical validation dataset (p = 0.049), which was also significantly correlated with Tegner scores (r = 0.532, p = 0.041) in patients with CAI. CONCLUSION A reduced functional connection between the cingulate motor area and the insula was present in patients with CAI, which was also directly correlated with reduction in the level of patient physical activity.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Sports Medicine, Fudan University, Shanghai, China
| | - Qianru Li
- Department of Sports Medicine, Fudan University, Shanghai, China
| | - Xiao'ao Xue
- Department of Sports Medicine, Fudan University, Shanghai, China
| | - Xiaoyun Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weichu Tao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Sixu Liu
- Department of Biomedical Engineering, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyi Li
- Department of Biomedical Engineering, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Yinghui Hua
- Department of Sports Medicine, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, China
| |
Collapse
|
15
|
Cha M, Eum YJ, Kim K, Kim L, Bak H, Sohn JH, Cheong C, Lee BH. Diffusion tensor imaging reveals sex differences in pain sensitivity of rats. Front Mol Neurosci 2023; 16:1073963. [PMID: 36937048 PMCID: PMC10017469 DOI: 10.3389/fnmol.2023.1073963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Studies on differences in brain structure and function according to sex are reported to contribute to differences in behavior and cognition. However, few studies have investigated brain structures or used tractography to investigate gender differences in pain sensitivity. The identification of tracts involved in sex-based structural differences that show pain sensitivity has remained elusive to date. Here, we attempted to demonstrate the sex differences in pain sensitivity and to clarify its relationship with brain structural connectivity. In this study, pain behavior test and brain diffusion tensor imaging (DTI) were performed in male and female rats and tractography was performed on the whole brain using fiber tracking software. We selected eight brain regions related to pain and performed a tractography analysis of these regions. Fractional anisotropy (FA) measurements using automated tractography revealed sex differences in the anterior cingulate cortex (ACC)-, prefrontal cortex (PFC)-, and ventral posterior thalamus-related brain connections. In addition, the results of the correlation analysis of pain sensitivity and DTI tractography showed differences in mean, axial, and radial diffusivities, as well as FA. This study revealed the potential of DTI for exploring circuits involved in pain sensitivity. The behavioral and functional relevance's of measures derived from DTI tractography is demonstrated by their relationship with pain sensitivity.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Ji Eum
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Leejeong Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hun Sohn
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
- *Correspondence: Chaejoon Cheong,
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Bae Hwan Lee,
| |
Collapse
|
16
|
WEI XL, TIAN J, JIA SH, SHU Q. Acupuncture for the relief of chronic pain: regulating negative emotions and reward/motivation circuits based on the theory of “spirit-regulation with acupuncture" 针灸改善慢性疼痛的新视角:“针灸治神”调控负性情绪及奖赏/动机环路. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Liu D, Zhou X, Tan Y, Yu H, Cao Y, Tian L, Yang L, Wang S, Liu S, Chen J, Liu J, Wang C, Yu H, Zhang J. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary resting-state fMRI study. Front Neurol 2022; 13:936012. [PMID: 36212659 PMCID: PMC9532555 DOI: 10.3389/fneur.2022.936012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis pain (BMP) is one of the most prevalent symptoms among cancer survivors. The present study aims to explore the brain functional activity and connectivity patterns in BMP of lung cancer patients preliminarily. Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex were recruited from inpatients and communities, respectively. All participants underwent fMRI data acquisition and pain assessment. Low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate brain functional activity. Then, functional connectivity (FC) was calculated for the ALFF- and ReHo-identified seed brain regions. A two-sample t-test or Manny–Whitney U-test was applied to compare demographic and neuropsychological data as well as the neuroimaging indices according to the data distribution. A correlation analysis was conducted to explore the potential relationships between neuroimaging indices and pain intensity. Receiver operating characteristic curve analysis was applied to assess the classification performance of neuroimaging indices in discriminating individual subjects between the BMP patients and HCs. No significant intergroup differences in demographic and neuropsychological data were noted. BMP patients showed reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in the bilateral thalamus and left fusiform gyrus. The lower FC was found within the prefrontal cortex. No significant correlation between the neuroimaging indices and pain intensity was observed. The neuroimaging indices showed satisfactory classification performance between the BMP patients and HCs, and the combined ALFF and ReHo showed a better accuracy rate (93.7%) than individual indices. In conclusion, altered brain functional activity and connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be associated with the neuropathology of BMP and may represent a potential biomarker for classifying BMP patients and healthy controls.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ling Tian
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Liejun Yang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sixiong Wang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shihong Liu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huiqing Yu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Huiqing Yu
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Jiuquan Zhang
| |
Collapse
|
18
|
Meng X, Yue L, Liu A, Tao W, Shi L, Zhao W, Wu Z, Zhang Z, Wang L, Zhang X, Zhou W. Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J Biol Chem 2022; 298:102207. [PMID: 35772494 PMCID: PMC9304789 DOI: 10.1016/j.jbc.2022.102207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 01/28/2023] Open
Abstract
Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.
Collapse
Affiliation(s)
- Xiaojing Meng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Lingxiao Yue
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Pathology, Anhui Medical College, Hefei, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Shi
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Wan Zhao
- Department of Otolaryngology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongmin Wu
- Department of Anatomy, Medical College of Taizhou University, Taizhou, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China.
| | - Wenjie Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
19
|
Verriotis M, Sorger C, Peters J, Ayoub LJ, Seunarine KK, Clark CA, Walker SM, Moayedi M. Amygdalar Functional Connectivity Differences Associated With Reduced Pain Intensity in Pediatric Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:918766. [PMID: 35692562 PMCID: PMC9184677 DOI: 10.3389/fpain.2022.918766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is evidence of altered corticolimbic circuitry in adults with chronic pain, but relatively little is known of functional brain mechanisms in adolescents with neuropathic pain (NeuP). Pediatric NeuP is etiologically and phenotypically different from NeuP in adults, highlighting the need for pediatric-focused research. The amygdala is a key limbic region with important roles in the emotional-affective dimension of pain and in pain modulation. Objective To investigate amygdalar resting state functional connectivity (rsFC) in adolescents with NeuP. Methods This cross-sectional observational cohort study compared resting state functional MRI scans in adolescents aged 11–18 years with clinical features of chronic peripheral NeuP (n = 17), recruited from a tertiary clinic, relative to healthy adolescents (n = 17). We performed seed-to-voxel whole-brain rsFC analysis of the bilateral amygdalae. Next, we performed post hoc exploratory correlations with clinical variables to further explain rsFC differences. Results Adolescents with NeuP had stronger negative rsFC between right amygdala and right dorsolateral prefrontal cortex (dlPFC) and stronger positive rsFC between right amygdala and left angular gyrus (AG), compared to controls (PFDR<0.025). Furthermore, lower pain intensity correlated with stronger negative amygdala-dlPFC rsFC in males (r = 0.67, P = 0.034, n = 10), and with stronger positive amygdala-AG rsFC in females (r = −0.90, P = 0.006, n = 7). These amygdalar rsFC differences may thus be pain inhibitory. Conclusions Consistent with the considerable affective and cognitive factors reported in a larger cohort, there are rsFC differences in limbic pain modulatory circuits in adolescents with NeuP. Findings also highlight the need for assessing sex-dependent brain mechanisms in future studies, where possible.
Collapse
Affiliation(s)
- Madeleine Verriotis
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Madeleine Verriotis
| | - Clarissa Sorger
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Judy Peters
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Lizbeth J. Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Kiran K. Seunarine
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Chris A. Clark
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Suellen M. Walker
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| |
Collapse
|
20
|
Powers JM, Ioachim G, Stroman PW. Evidence for Integration of Cognitive, Affective, and Autonomic Influences During the Experience of Acute Pain in Healthy Human Volunteers. Front Neurosci 2022; 16:884093. [PMID: 35692431 PMCID: PMC9178236 DOI: 10.3389/fnins.2022.884093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Our psychological state greatly influences our perception of sensations and pain, both external and visceral, and is expected to contribute to individual pain sensitivity as well as chronic pain conditions. This investigation sought to examine the integration of cognitive and emotional communication across brainstem regions involved in pain modulation by comparing data from previous functional MRI studies of affective modulation of pain. Data were included from previous studies of music analgesia (Music), mood modulation of pain (Mood), and individual differences in pain (ID), totaling 43 healthy women and 8 healthy men. The Music and Mood studies were combined into an affective modulation group consisting of runs with music and positive-valenced emotional images plus concurrent presentation of pain, and a control group of runs with no-music, and neutral-valenced images with concurrent presentation of pain. The ID group was used as an independent control. Ratings of pain intensity were collected for each run and were analyzed in relation to the functional data. Differences in functional connectivity were identified across conditions in relation to emotional, autonomic, and pain processing in periods before, during and after periods of noxious stimulation. These differences may help to explain healthy pain processes and the cognitive and emotional appraisal of predictable noxious stimuli, in support of the Fields’ Decision Hypothesis. This study provides a baseline for current and future investigation of expanded neural networks, particularly within higher limbic and cortical structures. The results obtained by combining data across studies with different methods of pain modulation provide further evidence of the neural signaling underlying the complex nature of pain.
Collapse
Affiliation(s)
- Jocelyn M. Powers
- Stroman Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Stroman Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Stroman Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physics, Queen’s University, Kingston, ON, Canada
- *Correspondence: Patrick W. Stroman,
| |
Collapse
|
21
|
Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex. Neuroimage 2022; 256:119278. [PMID: 35523367 PMCID: PMC9250649 DOI: 10.1016/j.neuroimage.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Resting state functional connectivity (FC) is widely used to assess functional brain alterations in patients with chronic pain. However, reports of FC accompanying tonic pain in pain-free persons are rare. A network we term the Descending Pain Modulatory Network (DPMN) is implicated in healthy and pathologic pain modulation. Here, we evaluate the effect of tonic pain on FC of specific nodes of this network: anterior cingulate cortex (ACC), amygdala (AMYG), periaqueductal gray (PAG), and parabrachial nuclei (PBN). METHODS In 50 pain-free participants (30F), we induced tonic pain using a capsaicin-heat pain model. functional MRI measured resting BOLD signal during pain-free rest with a 32°C thermode and then tonic pain where participants experienced a previously warm temperature combined with capsaicin. We evaluated FC from ACC, AMYG, PAG, and PBN with correlation of self-report pain intensity during both states. We hypothesized tonic pain would diminish FC dyads within the DPMN. RESULTS Of all hypothesized FC dyads, only PAG and subgenual ACC was weakly altered during pain (F=3.34; p=0.074; pain-free>pain d=0.25). After pain induction sACC-PAG FC became positively correlated with pain intensity (R=0.38; t=2.81; p=0.007). Right PBN-PAG FC during pain-free rest positively correlated with subsequently experienced pain (R=0.44; t=3.43; p=0.001). During pain, this connection's FC was diminished (paired t=-3.17; p=0.0026). In whole-brain analyses, during pain-free rest, FC between left AMYG and right superior parietal lobule and caudate nucleus were positively correlated with subsequent pain. During pain, FC between left AMYG and right inferior temporal gyrus negatively correlated with pain. Subsequent pain positively correlated with right AMYG FC with right claustrum; right primary visual cortex and right temporo-occipitoparietal junction Conclusion: We demonstrate sACC-PAG tonic pain FC positively correlates with experienced pain and resting right PBN-PAG FC correlates with subsequent pain and is diminished during tonic pain. Finally, we reveal PAG- and right AMYG-anchored networks which correlate with subsequently experienced pain intensity. Our findings suggest specific connectivity patterns within the DPMN at rest are associated with subsequently experienced pain and modulated by tonic pain. These nodes and their functional modulation may reveal new therapeutic targets for neuromodulation or biomarkers to guide interventions.
Collapse
|
22
|
Harrison R, Gandhi W, van Reekum CM, Salomons TV. Conditioned pain modulation is associated with heightened connectivity between the periaqueductal grey and cortical regions. Pain Rep 2022; 7:e999. [PMID: 35558091 PMCID: PMC9084428 DOI: 10.1097/pr9.0000000000000999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Conditioned pain modulation (CPM) is a psychophysical assessment used to estimate the efficiency of an individual's endogenous modulatory mechanisms. Conditioned pain modulation has been used as a predictive assessment for the development of chronic pain and responses to pain interventions. Although much is known about the spinal cord mechanisms associated with descending pain modulation, less is known about the contribution of supraspinal and especially cortical regions. Objectives We aimed to explore how whole-brain connectivity of a core modulatory region, the periaqueductal grey (PAG), is associated with conditioned pain modulation, and endogenous pain modulation more broadly. Methods We measured CPM and resting-state connectivity of 35 healthy volunteers, absent of chronic pain diagnoses. As a region of interest, we targeted the PAG, which is directly involved in endogenous modulation of input to the spinal cord and is a key node within the descending pain modulation network. Results We found that CPM was associated with heightened connectivity between the PAG and key regions associated with pain processing and inhibition, such as the primary and secondary somatosensory cortices, as well as the motor, premotor, and dorsolateral prefrontal cortices. These findings are consistent with connectivity findings in other resting-state and event-related fMRI studies. Conclusion These findings indicate that individuals who are efficient modulators have greater functional connectivity between the PAG and regions involved in processing pain. The heightened connectivity of these regions may contribute to the beneficial outcomes in clinical pain management, as quantified by CPM. These results may function as brain-based biomarkers for vulnerability or resilience to pain.
Collapse
Affiliation(s)
- Richard Harrison
- University of Reading, School of Psychology and Clinical Language Sciences, Reading, United Kingdom
| | - Wiebke Gandhi
- University of Reading, School of Psychology and Clinical Language Sciences, Reading, United Kingdom
| | - Carien M. van Reekum
- University of Reading, School of Psychology and Clinical Language Sciences, Reading, United Kingdom
| | - Tim V. Salomons
- University of Reading, School of Psychology and Clinical Language Sciences, Reading, United Kingdom
- Department of Psychology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
23
|
Timmers I, López-Solà M, Heathcote LC, Heirich M, Rush GQ, Shear D, Borsook D, Simons LE. Amygdala functional connectivity mediates the association between catastrophizing and threat-safety learning in youth with chronic pain. Pain 2022; 163:719-728. [PMID: 35302974 PMCID: PMC8933619 DOI: 10.1097/j.pain.0000000000002410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT There is a need to identify brain connectivity alterations predictive of transdiagnostic processes that may confer vulnerability for affective symptomology. Here, we tested whether amygdala resting-state functional connectivity (rsFC) mediated the relationship between catastrophizing (negative threat appraisals and predicting poorer functioning) and altered threat-safety discrimination learning (critical to flexibly adapt to new and changing environments) in adolescents with persistent pain. We examined amygdala rsFC in 46 youth with chronic pain and 29 healthy peers (age M = 15.8, SD = 2.9; 64 females) and its relationship with catastrophizing and threat-safety learning. We used a developmentally appropriate threat-safety learning paradigm and performed amygdala seed-based rsFC and whole-brain mediation analyses. Patients exhibited enhanced connectivity between the left amygdala and right supramarginal gyrus (SMG) (cluster-level P-FDR < 0.05), whereas right amygdala rsFC showed no group differences. Only in patients, elevated catastrophizing was associated with facilitated threat-safety learning (CS+>CS-; rp = 0.49, P = 0.001). Furthermore, in patients, elevated catastrophizing was associated with reduced left amygdala connectivity with SMG / parietal operculum, and increased left amygdala connectivity with hippocampus, dorsal striatum, paracingulate, and motor regions (P < 0.001). In addition, blunted left amygdala rsFC with right SMG/parietal operculum mediated the association between catastrophizing and threat-safety learning (P < 0.001). To conclude, rsFC between the left amygdala (a core emotion hub) and inferior parietal lobe (involved in appraisal and integration of bodily signals and attentional reorienting) explains associations between daily-life relevant catastrophizing and threat-safety learning. Findings provide a putative model for understanding pathophysiology involved in core psychological processes that cut across diagnoses, including disabling pain, and are relevant for their etiology.
Collapse
Affiliation(s)
- Inge Timmers
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Marina López-Solà
- Serra Hunter Program, Unit of Psychological Medicine, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Lauren C Heathcote
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Marissa Heirich
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Gillian Q Rush
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Deborah Shear
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - David Borsook
- Center for Pain and the Brain, Boston Children’s Hospital, Center for Pain and the Brain, Boston, MA 02115, United States
| | - Laura E Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| |
Collapse
|
24
|
Wei HL, Xu CH, Wang JJ, Zhou GP, Guo X, Chen YC, Yu YS, He ZZ, Yin X, Li J, Zhang H. Disrupted Functional Connectivity of the Amygdala Predicts the Efficacy of Non-steroidal Anti-inflammatory Drugs in Migraineurs Without Aura. Front Mol Neurosci 2022; 15:819507. [PMID: 35283727 PMCID: PMC8908446 DOI: 10.3389/fnmol.2022.819507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Machine learning (ML) has been largely applied for predicting migraine classification. However, the prediction of efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in migraine is still in the early stages. This study aims to evaluate whether the combination of machine learning and amygdala-related functional features could help predict the efficacy of NSAIDs in patients with migraine without aura (MwoA). A total of 70 MwoA patients were enrolled for the study, including patients with an effective response to NSAIDs (M-eNSAIDs, n = 35) and MwoA patients with ineffective response to NSAIDs (M-ieNSAIDs, n = 35). Furthermore, 33 healthy controls (HCs) were matched for age, sex, and education level. The study participants were subjected to resting-state functional magnetic resonance imaging (fMRI) scanning. Disrupted functional connectivity (FC) patterns from amygdala-based FC analysis and clinical characteristics were considered features that could promote classification through multivariable logistic regression (MLR) and support vector machine (SVM) for predicting the efficacy of NSAIDs. Further, receiver operating characteristic (ROC) curves were drawn to evaluate the predictive ability of the models. The M-eNSAIDs group exhibited enhanced FC with ipsilateral calcarine sulcus (CAL), superior parietal gyrus (SPG), paracentral lobule (PCL), and contralateral superior frontal gyrus (SFG) in the left amygdala. However, the M-eNSAIDs group showed decreased FC with ipsilateral caudate nucleus (CAU), compared to the M-ieNSAIDs group. Moreover, the M-eNSAIDs group showed higher FC with left pre-central gyrus (PreCG) and post-central gyrus (PoCG) compared to HCs. In contrast, the M-ieNSAIDs group showed lower FC with the left anterior cingulate cortex (ACC) and right SFG. Furthermore, the MwoA patients showed increased FC with the left middle frontal gyrus (MFG) in the right amygdala compared to HCs. The disrupted left amygdala-related FC patterns exhibited significant correlations with migraine characteristics in the M-ieNSAIDs group. The MLR and SVM models discriminated clinical efficacy of NSAIDs with an area under the curve (AUC) of 0.891 and 0.896, sensitivity of 0.971 and 0.833, and specificity of 0.629 and 0.875, respectively. These findings suggest that the efficacy of NSAIDs in migraine could be predicted using ML algorithm. Furthermore, this study highlights the role of amygdala-related neural function in revealing underlying migraine-related neuroimaging mechanisms.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Hui Xu
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Jin Wang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Guo
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen-Zhen He
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Junrong Li,
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Hong Zhang,
| |
Collapse
|
25
|
den Hollander M, Smeets RJEM, van Meulenbroek T, van Laake-Geelen CCM, Baadjou VA, Timmers I. Exposure in Vivo as a Treatment Approach to Target Pain-Related Fear: Theory and New Insights From Research and Clinical Practice. Phys Ther 2022; 102:6515749. [PMID: 35084025 DOI: 10.1093/ptj/pzab270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 01/07/2023]
Abstract
UNLABELLED Pain-related fear (PRF) can be a significant factor contributing to the development and maintenance of pain-related disability in individuals with persistent pain. One treatment approach to target PRF and related avoidance behavior is exposure in vivo (EXP). EXP has a long history in the field of anxiety, a field that is constantly evolving. This Perspective outlines recent theoretical advancements and how they apply to EXP for PRF, including suggestions for how to optimize inhibitory learning during EXP; reviews mechanistic work from neuroimaging supporting the targeting of PRF in people with chronic pain; and focuses on clinical applications of EXP for PRF, as EXP is moving into new directions regarding who is receiving EXP (eg, EXP in chronic secondary pain) and how treatment is provided (EXP in primary care with a crucial role for physical therapists). Considerations are provided regarding challenges, remaining questions, and promising future perspectives. IMPACT For patients with chronic pain who have elevated pain-related fear (PRF), exposure is the treatment of choice. This Perspective highlights the inhibitory learning approach, summarizes mechanistic work from experimental psychology and neuroimaging regarding PRF in chronic pain, and describes possible clinical applications of EXP in chronic secondary pain as well as in primary care.
Collapse
Affiliation(s)
- Marlies den Hollander
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rob J E M Smeets
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands.,CIR Revalidatie, location Eindhoven, the Netherlands
| | - Thijs van Meulenbroek
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Charlotte C M van Laake-Geelen
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Vera A Baadjou
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Inge Timmers
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
26
|
Delgado-Gallén S, Soler MD, Albu S, Pachón-García C, Alviárez-Schulze V, Solana-Sánchez J, Bartrés-Faz D, Tormos JM, Pascual-Leone A, Cattaneo G. Cognitive Reserve as a Protective Factor of Mental Health in Middle-Aged Adults Affected by Chronic Pain. Front Psychol 2021; 12:752623. [PMID: 34759872 PMCID: PMC8573249 DOI: 10.3389/fpsyg.2021.752623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic pain is associated with worse mental health and cognitive impairment, which can be a cause or a consequence of brain structure and function alterations, e.g., maladaptive plasticity, antinociceptive system dysregulation. Cognitive reserve reflects the effectiveness of the internal connections of the brain and it has been shown to be a protective factor in brain damage, slowing cognitive aging or reducing the risk of mental health disorders. The current study explored the impact of chronic pain on psychosocial factors, mental health, and cognition. Furthermore, we aimed to examine the role of cognitive reserve in the relationship between mental health and chronic pain clinical characteristics in middle-aged adults. The study group consisted of 477 volunteers from the Barcelona Brain Health Initiative who completed online surveys on pain, mental health, cognitive reserve, and psychosocial factors (sleep and quality of life). We described the differences in sociodemographic data, psychosocial factors, mental health, and self-perceived cognitive impairment, and neuropsychological assessment, between participants reporting pain compared with those without pain, as well as the main characteristics of the chronic pain group. Finally, to study the role of cognitive reserve in the modulation of the relationship between chronic pain and mental health, we compared variables between subgroups of participants with high/low pain intensity and cognitive reserve. The results showed that chronic pain was reported by 45.5% of middle-aged adults. Our results revealed that participants with chronic pain were older and had worse health status than people without pain. The presence of chronic pain affected working memory, mental health, and daily life activities. Moreover, cognitive reserve moderated the influence of pain intensity on mental health, resulting in less mental health affection in people suffering from high pain intensity with high cognitive reserve. In conclusion, the construct of the cognitive reserve could explain differential susceptibility between chronic pain and its mental health association and be a powerful tool in chronic pain assessment and treatment, principally due to its modifiable nature.
Collapse
Affiliation(s)
- Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - M. Dolors Soler
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergiu Albu
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Catherine Pachón-García
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Vanessa Alviárez-Schulze
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Josep M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
27
|
Ettlin DA, Napimoga MH, Meira E Cruz M, Clemente-Napimoga JT. Orofacial musculoskeletal pain: An evidence-based bio-psycho-social matrix model. Neurosci Biobehav Rev 2021; 128:12-20. [PMID: 34118294 DOI: 10.1016/j.neubiorev.2021.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Pain is a multidimensional experience comprising sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions. Clinical and research findings have demonstrated a complex interplay between social burdens, individual coping strategies, mood states, psychological disorders, sleep disturbances, masticatory muscle tone, and orofacial musculoskeletal pain. Accordingly, current classification systems for orofacial pain require psychosocial assessments to be an integral part of the multidimensional diagnostic process. Here, we review evidence on how psychosocial and biological factors may generate and perpetuate musculoskeletal orofacial pain. Specifically, we discuss studies investigating a putative causal relationship between stress, bruxism, and pain in the masticatory system. We present findings that attribute brain structures various roles in modulating pain perception and pain-related behavior. We also examine studies investigating how the nervous and immune system on cellular and molecular levels may account for orofacial nociceptive signaling. Furthermore, we review evidence pointing towards associations between orofacial musculoskeletal pain and neuroendocrine imbalances, sleep disturbances, and alterations of the circadian timing system. We conclude with several proposals that may help to alleviate orofacial pain in the future.
Collapse
Affiliation(s)
- Dominik A Ettlin
- Clinic of Masticatory Disorders, Orofacial Pain Unit, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Berne, Berne, Switzerland.
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto e Centro De Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | - Miguel Meira E Cruz
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto e Centro De Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil; Sleep Unit, Cardiovascular Center of University of Lisbon, Lisbon School of Medicine, Lisbon, Portugal
| | - Juliana Trindade Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto e Centro De Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
28
|
Tanner JJ, Johnson AJ, Terry EL, Cardoso J, Garvan C, Staud R, Deutsch G, Deshpande H, Lai S, Addison A, Redden D, Goodin BR, Price CC, Fillingim RB, Sibille KT. Resilience, pain, and the brain: Relationships differ by sociodemographics. J Neurosci Res 2021; 99:1207-1235. [PMID: 33606287 DOI: 10.1002/jnr.24790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
Chronic musculoskeletal (MSK) pain is disabling to individuals and burdensome to society. A relationship between telomere length and resilience was reported in individuals with consideration for chronic pain intensity. While chronic pain associates with brain changes, little is known regarding the neurobiological interface of resilience. In a group of individuals with chronic MSK pain, we examined the relationships between a previously investigated resilience index, clinical pain and functioning measures, and pain-related brain structures, with consideration for sex and ethnicity/race. A cross-sectional analysis of 166 non-Hispanic Black and non-Hispanic White adults, 45-85 years of age with pain ≥ 1 body site (s) over the past 3 months was completed. Measures of clinical pain and functioning, biobehavioral and psychosocial resilience, and structural MRI were completed. Our findings indicate higher levels of resilience associate with lower levels of clinical pain and functional limitations. Significant associations between resilience, ethnicity/race, and/or sex, and pain-related brain gray matter structure were demonstrated in the right amygdaloid complex, bilateral thalamus, and postcentral gyrus. Our findings provide compelling evidence that in order to decipher the neurobiological code of chronic pain and related protective factors, it will be important to improve how chronic pain is phenotyped; to include an equal representation of females in studies including analyses stratifying by sex, and to consider other sociodemographic factors.
Collapse
Affiliation(s)
- Jared J Tanner
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alisa J Johnson
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Ellen L Terry
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Josue Cardoso
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Cynthia Garvan
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roland Staud
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg Deutsch
- Department of Radiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA
| | - Hrishikesh Deshpande
- Department of Radiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA
| | - Song Lai
- Department of Radiation Oncology & CTSI Human Imaging Core, University of Florida, Gainesville, FL, USA
| | - Adriana Addison
- Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catherine C Price
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.,Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Kimberly T Sibille
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Aging and Geriatric Research, College of Medicine, UF Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|