1
|
Deng J, Yang Z, Wang QM, Lv ZG. Two decades of vagus nerve stimulation for stroke: a bibliometric analysis. Front Neurol 2025; 16:1531127. [PMID: 40255891 PMCID: PMC12006007 DOI: 10.3389/fneur.2025.1531127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background Stroke is a major global health concern, imposing significant medical and social burdens. Vagus nerve stimulation (VNS), an emerging neuromodulation technology, has shown potential in the treatment of stroke. This bibliometric analysis aims to explore the knowledge structure and research trends in the field of VNS for stroke from 2004 to 2024. Methods Publications were retrieved from the Web of Science Core Collection. CiteSpace and VOSviewer were used to conduct bibliometric analyses, including author productivity, institutional contributions, and emerging research themes etc. Results A total of 191 eligible publications were analysed. Kilgard, M. P., and Hays, S. A. were the most prolific authors, each contributing 26 publications. The USA (96 publications), China (69 publications), and Scotland (17 publications) were the most prolific countries. The University of Texas at Dallas (33 publications) was the most prolific institution, followed by Chongqing Medical University (19 publications) and the University of Glasgow (15 publications). Future research is expected to focus on: (1) neurophysiological mechanisms of VNS in stroke recovery; (2) synergistic effects of VNS with other rehabilitation therapies; (3) comparative efficacy of non-invasive transauricular VNS versus invasive VNS; (4) safety and effectiveness of VNS for post-stroke functional impairments beyond motor rehabilitation; and (5) optimisation of VNS parameters for stroke treatment. Conclusion The field of VNS for stroke has experienced steady growth over the past two decades. This bibliometric analysis provides valuable insights to guide future research, clinical applications, and policy developments.
Collapse
Affiliation(s)
- Jiao Deng
- Department of Rehabilitation Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Zhen Yang
- Physical Activity, Sports & Health Research Group, Faculty of Movement and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Boston, MA, United States
| | - Zhi Gang Lv
- Department of Rehabilitation Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|
2
|
Liu TT, Chen PY, Tseng CY, Chen YN, Chen JB, Ni TH, Wang SJ, Chen SP, Yen JC. Activation of central and peripheral transient receptor potential melastatin 8 increases susceptibility to spreading depolarization and facilitates trigeminal neuroinflammation. J Headache Pain 2025; 26:55. [PMID: 40087597 PMCID: PMC11907788 DOI: 10.1186/s10194-025-01997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/09/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Transient receptor potential melastatin 8 (TRPM8), a gene encoding a nonselective cation channel responsive to cold stimuli, has been implicated in migraine susceptibility. Despite this association, the role of TRPM8 to migraine pathogenesis remains elusive. This study aims to elucidate the potential role of TRPM8 in migraine pathophysiology. METHODS TRPM8 expression in the cortex and primary trigeminal ganglion (TG) cells was analyzed via immunostaining. The central role of TRPM8 was assessed using a spreading depolarization (SD) model, where intracerebroventricular injections or topical applications of TRPM8 agonists and antagonists were administered to rats to investigate their effects on KCl-evoked SD and SD-induced cortical inflammation. The peripheral role of TRPM8 in migraine was evaluated using primary cultures of rat TG cells by analyzing the effects of TRPM8 activation on calcitonin gene-related peptide (CGRP) expression, release, and trigeminal neuroinflammation. RESULTS TRPM8 was homogeneously distributed in the cerebral cortex, predominantly co-localizing with cortical neurons. Activation of cortical TRPM8 increased the frequency of KCl-evoked SD and exacerbated SD-induced cortical inflammation. Interestingly. Interestingly, inhibition of cerebral TRPM8 had negligible effects. In TG primary cultures, TRPM8 activation upregulated CGRP expression and release and induced cyclooxygenase-2 (Cox2) upregulation via a calmodulin kinase II (CaMKII)-dependent mechanism. CONCLUSIONS TRPM8 activation increased susceptibility to SD and facilitated the effects of CGRP and trigeminal neuroinflammation, implicating that TRPM8 may contribute to migraine pathophysiology through central and peripheral mechanisms.
Collapse
Affiliation(s)
- Tzu-Ting Liu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, 5th floor, Shouren Building, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 112, Taiwan
| | - Pin-Yu Chen
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chyun-Yea Tseng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, 5th floor, Shouren Building, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 112, Taiwan
| | - Yun-Ning Chen
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, 5th floor, Shouren Building, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 112, Taiwan
| | - Jian-Bang Chen
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, 5th floor, Shouren Building, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 112, Taiwan
| | - Tz-Han Ni
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, 5th floor, Shouren Building, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 112, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Jiin-Cherng Yen
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, 5th floor, Shouren Building, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 112, Taiwan.
| |
Collapse
|
3
|
Hu Y, Xiong R, Pan S, Huang K. A narrative review of vagus nerve stimulation in stroke. J Cent Nerv Syst Dis 2024; 16:11795735241303069. [PMID: 39677973 PMCID: PMC11645777 DOI: 10.1177/11795735241303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Stroke is a significant health concern impacting society and the health care system. Reperfusion therapy for acute ischemic stroke and standard rehabilitative therapies may not always be effective at improving post-stroke neurological function, and developing alternative strategies is particularly important. Vagus nerve stimulation (VNS) is a treatment option currently approved by the Food and Drug Administration (FDA) for intractable epilepsy, refractory depression, primary headache disorders, obesity, and moderate to severe upper-limb motor dysfunction in chronic ischemic stroke patients. Moreover, VNS has demonstrated potential efficacy in various conditions, including autoimmune diseases, disorders of consciousness, Alzheimer's disease, Parkinson's disease, traumatic brain injury, stroke, and other diseases. Although the popularity and application of VNS continue to increase rapidly, the field generally lacks a consensus on the optimal stimulation parameters. The stimulation parameters for VNS are directly related to the clinical outcome, and determining the optimal stimulation conditions for VNS has become an essential concern in its clinical application. This review summarizes the current evidence on VNS for stroke in preclinical models and clinical trials in humans, paying attention to the current types and stimulation parameters of VNS, highlighting the mechanistic pathways involved in the beneficial effects of VNS, critically evaluating clinical implementation challenges and proposing some suggestions for its future research directions. Achieving safe and effective clinical transformation of VNS requires further animal and clinical studies to determine the optimal stimulation parameters and therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanhong Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqi Xiong
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Kitamura E, Imai N. Molecular and Cellular Neurobiology of Spreading Depolarization/Depression and Migraine: A Narrative Review. Int J Mol Sci 2024; 25:11163. [PMID: 39456943 PMCID: PMC11508361 DOI: 10.3390/ijms252011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine is a prevalent neurological disorder, particularly among individuals aged 20-50 years, with significant social and economic impacts. Despite its high prevalence, the pathogenesis of migraine remains unclear. In this review, we provide a comprehensive overview of cortical spreading depolarization/depression (CSD) and its close association with migraine aura, focusing on its role in understanding migraine pathogenesis and therapeutic interventions. We discuss historical studies that have demonstrated the role of CSD in the visual phenomenon of migraine aura, along with modern imaging techniques confirming its propagation across the occipital cortex. Animal studies are examined to indicate that CSD is not exclusive to migraines; it also occurs in other neurological conditions. At the cellular level, we review how CSD is characterized by ionic changes and excitotoxicity, leading to neuronal and glial responses. We explore how CSD activates the trigeminal nervous system and upregulates the expression of calcitonin gene-related peptides (CGRP), thereby contributing to migraine pain. Factors such as genetics, obesity, and environmental conditions that influence the CSD threshold are discussed, suggesting potential therapeutic targets. Current treatments for migraine, including prophylactic agents and CGRP-targeting drugs, are evaluated in the context of their expected effects on suppressing CSD activity. Additionally, we highlight emerging therapies such as intranasal insulin-like growth factor 1 and vagus nerve stimulation, which have shown promise in reducing CSD susceptibility and frequency. By elucidating the molecular and cellular mechanisms of CSD, this review aims to enhance the understanding of migraine pathogenesis and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara 252-0329, Japan;
| | - Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
5
|
Yu Y, Yao R, Liu Z, Lu Y, Zhu Y, Cao J. Feasibility and effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) in awake mice. CNS Neurosci Ther 2024; 30:e70043. [PMID: 39258798 PMCID: PMC11388527 DOI: 10.1111/cns.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
AIMS Transcutaneous auricular vagus nerve stimulation (taVNS) is widely used to treat a variety of disorders because it is noninvasive, safe, and well tolerated by awake patients. However, long-term and repetitive taVNS is difficult to achieve in awake mice. Therefore, developing a new taVNS method that fully mimics the method used in clinical settings and is well-tolerated by awake mice is greatly important for generalizing research findings related to the effects of taVNS. The study aimed to develop a new taVNS device for use in awake mice and to test its reliability and effectiveness. METHODS We demonstrated the reliability of this taVNS device through retrograde neurotropic pseudorabies virus (PRV) tracing and evaluated its effectiveness through morphological analysis. After 3 weeks of taVNS application, the open field test (OFT) and elevated plus maze (EPM) were used to evaluate anxiety-like behaviors, and the Y-maze test and novel object recognition test (NORT) were used to evaluate recognition memory behaviors, respectively. RESULTS We found that repetitive taVNS was well tolerated by awake mice, had no effect on anxiety-like behaviors, and significantly improved memory. CONCLUSION Our findings suggest that this new taVNS device for repetitive stimulation of awake mice is safe, tolerable, and effective.
Collapse
Affiliation(s)
- Yu‐Mei Yu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Rui Yao
- Department of AnesthesiologyXuzhou First People's HospitalXuzhouJiangsuChina
| | - Zhou‐Liang Liu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yao Lu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yang‐Zi Zhu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyXuzhou Central HospitalXuzhouJiangsuChina
| | - Jun‐Li Cao
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
6
|
Liu Y, Jia N, Tang C, Long H, Wang J. Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy. Mol Neurobiol 2024; 61:7109-7126. [PMID: 38366306 DOI: 10.1007/s12035-024-04022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
There is growing concern about the role of the microbiota-gut-brain axis in neurological illnesses, and it makes sense to consider microglia as a critical component of this axis in the context of epilepsy. Microglia, which reside in the central nervous system, are dynamic guardians that monitor brain homeostasis. Microglia receive information from the gut microbiota and function as hubs that may be involved in triggering epileptic seizures. Vagus nerve bridges the communication in the axis. Essential axis signaling molecules, such as gamma-aminobutyric acid, 5-hydroxytryptamin, and short-chain fatty acids, are currently under investigation for their participation in drug-resistant epilepsy (DRE). In this review, we explain how vagus nerve connects the gut microbiota to microglia in the brain and discuss the emerging concepts derived from this interaction. Understanding microbiota-gut-brain axis in epilepsy brings hope for DRE therapies. Future treatments can focus on the modulatory effect of the axis and target microglia in solving DRE.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Ningkang Jia
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- The Second Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Chuqi Tang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Morais A, Chung JY, Wu L, Ayata C, Simon B, Whalen MJ. Non-Invasive Vagal Nerve Stimulation Pre-Treatment Reduces Neurological Dysfunction After Closed Head Injury in Mice. Neurotrauma Rep 2024; 5:150-158. [PMID: 38435077 PMCID: PMC10908330 DOI: 10.1089/neur.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Non-invasive vagus nerve stimulation (nVNS) has recently been suggested as a potential therapy for traumatic brain injury (TBI). We previously demonstrated that nVNS inhibits cortical spreading depolarization, the electrophysiological event underlying migraine aura, and is relevant to TBI. Our past work also suggests a role for interleukin-1 beta (IL-1β) in cognitive deficits after closed head injury (CHI) in mice. We show that nVNS pre-treatment suppresses CHI-associated spatial learning and memory impairment and prevents IL-1β activation in injured neurons, but not endothelial cells. In contrast, nVNS administered 10 min after CHI was ineffective. These data suggest that nVNS prophylaxis might ameliorate neuronal dysfunction associated with CHI in populations at high risk for concussive TBI.
Collapse
Affiliation(s)
- Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joon Yong Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bruce Simon
- ElectroCore, Inc., Basking Ridge, New Jersey, USA
| | - Michael J. Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
8
|
Liu TT, Chen SP, Wang SJ, Yen JC. Vagus nerve stimulation inhibits cortical spreading depression via glutamate-dependent TrkB activation mechanism in the nucleus tractus solitarius. Cephalalgia 2024; 44:3331024241230466. [PMID: 38329067 DOI: 10.1177/03331024241230466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) was recently found to inhibit cortical spreading depression (CSD), the underlying mechanism of migraine aura, through activation of the nucleus tractus solitarius (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DRN). The molecular mechanisms underlying the effect of VNS on CSD in these nuclei remain to be explored. We hypothesized that VNS may activate glutamate receptor-mediated tropomyosin kinase B (TrkB) signaling in the NTS, thereby facilitating the noradrenergic and serotonergic neurotransmission to inhibit CSD. METHODS To investigate the role of TrkB and glutamate receptors in non-invasive VNS efficacy on CSD, a validated KCl-evoked CSD rat model coupled with intra-NTS microinjection of selective antagonists, immunoblot and immunohistochemistry was employed. RESULTS VNS increased TrkB phosphorylation in the NTS. Inhibition of intra-NTS TrkB abrogated the suppressive effect of VNS on CSD and CSD-induced cortical neuroinflammation. TrkB was found colocalized with glutamate receptors in NTS neurons. Inhibition of glutamate receptors in the NTS abrogated VNS-induced TrkB activation. Moreover, the blockade of TrkB in the NTS attenuated VNS-induced activation of the LC and DRN. CONCLUSIONS VNS induces the activation of glutamate receptor-mediated TrkB signaling in the NTS, which might modulate serotonergic and norepinephrinergic innervation to the cerebral cortex to inhibit CSD and cortical inflammation.
Collapse
Affiliation(s)
- Tzu-Ting Liu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiin-Cherng Yen
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
10
|
McPherson JI, Nazir MSZ, Willer BS, Leddy JJ, Haider MN. Does Physiologic Post-Concussion Disorder Cause Persistent Post-Traumatic Headache? Curr Pain Headache Rep 2023; 27:793-799. [PMID: 37831366 DOI: 10.1007/s11916-023-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE OF REVIEW One system classifies patients with symptoms after concussion into physiologic, vestibulo-ocular, cervicogenic, and mood/cognition post-concussion disorders (PCD) based upon the preponderance of specific symptoms and physical impairments. This review discusses physiologic PCD and its potential relationship to the development of persistent post-traumatic headaches (PPTH). RECENT FINDINGS Headache is the most reported symptom after a concussion. Headaches in physiologic PCD are suspected to be due to abnormal cellular metabolism, subclinical neuroinflammation, and dysfunction of the autonomic nervous system (ANS). These abnormalities have been linked to the development of migraine-like and neuralgia-related PPTH. Physiologic PCD is a potential cause of PPTH after a concussion. Future research should focus on how to prevent PPTH in patients with physiologic PCD.
Collapse
Affiliation(s)
- Jacob I McPherson
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, 534 Kimball Tower, Buffalo, NY, 14214, USA.
| | - Muhammad S Z Nazir
- Concussion Management Clinic and Research Center, UBMD Orthopedics and Sports Medicine, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Barry S Willer
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14215, USA
| | - John J Leddy
- Department of Orthopedics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14215, USA
| | - Mohammad N Haider
- Department of Orthopedics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14215, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Chronic migraine (CM) affects a large proportion of the population and is a significant source of disability and lost productivity. Numerous non-pharmacological approaches have been attempted during the past decades. This review discusses the most recent and evidence-based advances in acute and preventive non-pharmacological therapeutic approaches for CM, offering alternatives to drug treatment. RECENT FINDINGS A growing number of non-pharmacological treatment options, including non-invasive or invasive neuromodulation, acupuncture, psychotherapy, and physiotherapy, have shown promising efficacy in CM. There is strong evidence for the effectiveness of non-invasive neuromodulation such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcutaneous electrical nerve stimulation (TENS) in CM, but less evidence for approaches such as invasive neuromodulation, physical therapy, or dietary approaches. Acupuncture for migraine remains controversial, with the main point of contention still being the placebo effect. Non-pharmacological approaches can be offered as a reliable alternative for patients with CM, and more research is being done to evaluate the efficacy of non-invasive neuromodulation with different parameters and the combination of different treatments in CM.
Collapse
Affiliation(s)
- Xun Han
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
12
|
VanderPluym JH, Victorio MCC, Oakley CB, Rastogi RG, Orr SL. Beyond the Guidelines: A Narrative Review of Treatments on the Horizon for Migraine in Children and Adolescents. Neurology 2023; 101:788-797. [PMID: 37604658 PMCID: PMC10634646 DOI: 10.1212/wnl.0000000000207677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/06/2023] [Indexed: 08/23/2023] Open
Abstract
Migraine is common in children and adolescents and can cause significant disability. There are relatively limited evidence-based treatment options available, especially when compared with treatment of migraine in adults. The Pediatric Research Equity Act requires the study of a new drug or biologic in pediatric populations. As such it is mandatory that the newest migraine treatment options available for adults be evaluated in children and adolescents. It will take years before results from clinical trials in pediatric patients become available. In the meantime, there is eagerness among clinicians to seek out the existing evidence that may help provide clarity on utilization of the newer migraine therapies in children and adolescents because many of the currently available, guideline-recommended treatments do not provide benefit for all patients. In this narrative review, the literature regarding onabotulinumtoxinA, neuromodulatory devices, calcitonin gene-related peptide (CGRP) monoclonal antibodies, 5-hydroxytryptamine (1F) agonists (i.e., ditans), and CGRP small-molecule receptor antagonists (i.e., gepants) for the treatment of migraine in children and adolescents will be summarized.
Collapse
Affiliation(s)
- Juliana H VanderPluym
- From the Department of Neurology (J.H.V.), Mayo Clinic, Scottsdale, AZ; Division of Neurology (M.C.C.V.), NeuroDevelopmental Science Center, Akron Children's Hospital, OH; Department of Neurology (C.B.O.), Johns Hopkins University School of Medicine, Baltimore, MD; Division of Neurology (R.G.R.), Barrow Neurological Institute at Phoenix Children's Hospital, AZ; Department of Child Health and Neurology (R.G.R.), University of Arizona College of Medicine-Phoenix; Departments of Pediatrics (S.L.O.), Community Health Sciences, and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta; and Department of Neurology (S.L.O.), Alberta Children's Hospital, Calgary, Canada.
| | - M Cristina C Victorio
- From the Department of Neurology (J.H.V.), Mayo Clinic, Scottsdale, AZ; Division of Neurology (M.C.C.V.), NeuroDevelopmental Science Center, Akron Children's Hospital, OH; Department of Neurology (C.B.O.), Johns Hopkins University School of Medicine, Baltimore, MD; Division of Neurology (R.G.R.), Barrow Neurological Institute at Phoenix Children's Hospital, AZ; Department of Child Health and Neurology (R.G.R.), University of Arizona College of Medicine-Phoenix; Departments of Pediatrics (S.L.O.), Community Health Sciences, and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta; and Department of Neurology (S.L.O.), Alberta Children's Hospital, Calgary, Canada
| | - Christopher B Oakley
- From the Department of Neurology (J.H.V.), Mayo Clinic, Scottsdale, AZ; Division of Neurology (M.C.C.V.), NeuroDevelopmental Science Center, Akron Children's Hospital, OH; Department of Neurology (C.B.O.), Johns Hopkins University School of Medicine, Baltimore, MD; Division of Neurology (R.G.R.), Barrow Neurological Institute at Phoenix Children's Hospital, AZ; Department of Child Health and Neurology (R.G.R.), University of Arizona College of Medicine-Phoenix; Departments of Pediatrics (S.L.O.), Community Health Sciences, and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta; and Department of Neurology (S.L.O.), Alberta Children's Hospital, Calgary, Canada
| | - Reena G Rastogi
- From the Department of Neurology (J.H.V.), Mayo Clinic, Scottsdale, AZ; Division of Neurology (M.C.C.V.), NeuroDevelopmental Science Center, Akron Children's Hospital, OH; Department of Neurology (C.B.O.), Johns Hopkins University School of Medicine, Baltimore, MD; Division of Neurology (R.G.R.), Barrow Neurological Institute at Phoenix Children's Hospital, AZ; Department of Child Health and Neurology (R.G.R.), University of Arizona College of Medicine-Phoenix; Departments of Pediatrics (S.L.O.), Community Health Sciences, and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta; and Department of Neurology (S.L.O.), Alberta Children's Hospital, Calgary, Canada
| | - Serena L Orr
- From the Department of Neurology (J.H.V.), Mayo Clinic, Scottsdale, AZ; Division of Neurology (M.C.C.V.), NeuroDevelopmental Science Center, Akron Children's Hospital, OH; Department of Neurology (C.B.O.), Johns Hopkins University School of Medicine, Baltimore, MD; Division of Neurology (R.G.R.), Barrow Neurological Institute at Phoenix Children's Hospital, AZ; Department of Child Health and Neurology (R.G.R.), University of Arizona College of Medicine-Phoenix; Departments of Pediatrics (S.L.O.), Community Health Sciences, and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta; and Department of Neurology (S.L.O.), Alberta Children's Hospital, Calgary, Canada
| |
Collapse
|
13
|
Baig SS, Kamarova M, Bell SM, Ali AN, Su L, Dimairo M, Dawson J, Redgrave JN, Majid A. tVNS in Stroke: A Narrative Review on the Current State and the Future. Stroke 2023; 54:2676-2687. [PMID: 37646161 DOI: 10.1161/strokeaha.123.043414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Ischemic stroke is a leading cause of disability and there is a paucity of therapeutic strategies that promote functional recovery after stroke. Transcutaneous vagus nerve stimulation (tVNS) has shown promising evidence as a tool to reduce infarct size in animal models of hyperacute stroke. In chronic stroke, tVNS paired with limb movements has been shown to enhance neurological recovery. In this review, we summarize the current evidence for tVNS in preclinical models and clinical trials in humans. We highlight the mechanistic pathways involved in the beneficial effects of tVNS. We critically evaluate the current gaps in knowledge and recommend the key areas of research required to translate tVNS into clinical practice in acute and chronic stroke.
Collapse
Affiliation(s)
- Sheharyar S Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Marharyta Kamarova
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Simon M Bell
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Ali N Ali
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Li Su
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Munya Dimairo
- School of Health and Related Research, University of Sheffield, United Kingdom (M.D.)
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Queen Elizabeth University Hospital, United Kingdom (J.D.)
| | - Jessica N Redgrave
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| |
Collapse
|
14
|
Divani AA, Salazar P, Ikram HA, Taylor E, Wilson CM, Yang Y, Mahmoudi J, Seletska A, SantaCruz KS, Torbey MT, Liebler EJ, Bragina OA, Morton RA, Bragin DE. Non-Invasive Vagus Nerve Stimulation Improves Brain Lesion Volume and Neurobehavioral Outcomes in a Rat Model of Traumatic Brain Injury. J Neurotrauma 2023; 40:1481-1494. [PMID: 36869619 PMCID: PMC10294566 DOI: 10.1089/neu.2022.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract Traumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS. We used the gammaCore nVNS device to deliver stimulations. Magnetic resonance imaging studies were performed 1 and 7 days post-injury to confirm lesion volume. We observed smaller brain lesion volume in the lower dose nVNS group compared with the control group on days 1 and 7. The lesion volume for the higher dose nVNS group was significantly smaller than either the lower dose nVNS or the control groups on days 1 and 7 post-injury. The apparent diffusion coefficient differences between the ipsilateral and contralateral hemispheres on day 1 were significantly smaller for the higher dose (2 × 2 min) nVNS group than for the control group. Voxel-based morphometry analysis revealed an increase in the ipsilateral cortical volume in the control group caused by tissue deformation and swelling. On day 1, these abnormal volume changes were 13% and 55% smaller in the lower dose and higher dose nVNS groups, respectively, compared with the control group. By day 7, nVNS dampened cortical volume loss by 35% and 89% in the lower dose and higher dose nVNS groups, respectively, compared with the control group. Rotarod, beam walking, and anxiety performances were significantly improved in the higher-dose nVNS group on day 1 compared with the control group. The anxiety indices were also improved on day 7 post-injury compared with the control and the lower-dose nVNS groups. In conclusion, the higher dose nVNS (five 2 × 2-min stimulations) reduced brain lesion volume to a level that further refined the role of nVNS therapy for the acute treatment of TBI. Should nVNS prove effective in additional pre-clinical TBI models and later in clinical settings, it would have an enormous impact on the clinical practice of TBI in both civilian and military settings, as it can easily be adopted into routine clinical practice.
Collapse
Affiliation(s)
- Afshin A. Divani
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Pascal Salazar
- Canon Medical Informatics, Inc., Minnetonka, Minnesota, USA
| | - Hafiz A. Ikram
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Erik Taylor
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Colin M. Wilson
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alina Seletska
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Karen S. SantaCruz
- Department of Pathology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Michel T. Torbey
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Olga A. Bragina
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Russel A. Morton
- Department of Neuroscience, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Denis E. Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
15
|
Chen SP. Migraine and treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 281:149-173. [PMID: 37806714 DOI: 10.1016/bs.pbr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Migraine and major depressive disorders (MDD) or treatment resistant depression (TRD) represent a significant global burden and are often comorbid, further complicating diagnosis and treatment. Epidemiological studies have demonstrated a bidirectional relationship between migraine and MDD/TRD, with patients suffering from one disorder exhibiting a heightened risk of developing the other. This association is believed to result from shared genetic factors, neurotransmitter dysregulation, inflammation, hormonal alteration, and other conditions comorbid with both disorders. Emerging evidence suggests that therapeutics targeting common pathways in both disorders may be beneficial for comorbid patients. Novel therapeutics for migraine or MDD/TRD, such as calcitonin gene-related peptide (CGRP)-targeting therapy, onabotulinumtoxinA, ketamine/esketamine, vagus nerve stimulation or transcranial magnetic stimulation, may be helpful in selected patients with comorbid migraine-MDD/TRD. Nevertheless, continued efforts are needed to improve early detection and intervention, to better understand the complex interplay between genetic, environmental, and psychosocial factors contributing to this comorbidity, to identify novel therapeutic targets, and ultimately, to alleviate the disease burden caused by this comorbidity.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
16
|
Nash C, Powell K, Lynch DG, Hartings JA, Li C. Nonpharmacological modulation of cortical spreading depolarization. Life Sci 2023:121833. [PMID: 37302793 DOI: 10.1016/j.lfs.2023.121833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
AIMS Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.
Collapse
Affiliation(s)
- Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Barnard College, New York, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
17
|
Villar-Martinez MD, Goadsby PJ. Non-invasive neuromodulation of the cervical vagus nerve in rare primary headaches. FRONTIERS IN PAIN RESEARCH 2023; 4:1062892. [PMID: 36994091 PMCID: PMC10040883 DOI: 10.3389/fpain.2023.1062892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Primary headache disorders can be remarkably disabling and the therapeutic options available are usually limited to medication with a high rate of adverse events. Here, we discuss the mechanism of action of non-invasive vagal nerve stimulation, as well as the findings of the main studies involving patients with primary headaches other than migraine or cluster headache, such as hemicrania continua, paroxysmal hemicrania, cough headache, or short-lasting neuralgiform headache attacks (SUNCT/SUNA), in a narrative analysis. A bibliographical search of low-prevalence disorders such as rare primary headaches retrieves a moderate number of studies, usually underpowered. Headache intensity, severity, and duration showed a clinically significant reduction in the majority, especially those involving indomethacin-responsive headaches. The lack of response of some patients with a similar diagnosis could be due to a different stimulation pattern, technique, or total dose. The use of non-invasive vagal nerve stimulation for the treatment of primary headache disorders represents an excellent option for patients with these debilitating and otherwise refractory conditions, or that cannot tolerate several lines of preventive medication, and should always be considered before contemplating invasive, non-reversible stimulation techniques.
Collapse
Affiliation(s)
- Maria Dolores Villar-Martinez
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Peter J. Goadsby
| |
Collapse
|
18
|
George N, Tepper SJ. Novel Migraine Treatments: A Review. J Oral Facial Pain Headache 2023; 37:25-32. [PMID: 36917235 PMCID: PMC10586574 DOI: 10.11607/ofph.3163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/29/2022] [Indexed: 03/16/2023]
Abstract
Aims: To present a review of the mechanisms of action, available clinical data, and safety profiles of novel migraine therapeutics to inform practice. Methods: PubMed, Medline, and Google Scholar were searched for randomized controlled trials (24 publications), review articles (15 publications), and other pertinent literature (16 publications) discussing the novel migraine therapeutics available between the years 2010 and 2021. All publications were reviewed to assess the mechanism of action, relevant clinical data, and side effect profile for each novel treatment. Therapeutic gain was also recorded in studies that included a placebo arm. Results: A total of 55 studies were included in the final analysis. In the preventive treatment of migraine, novel medications target calcitonin gene-related peptide (CGRP) and fall into either the monoclonal anti-CGRP or gepant class. For the acute treatment of migraine, novel medications fall into either the ditan or gepant class. Several medical devices have been developed for the acute and preventive treatment of migraine. Conclusion: Novel therapeutics are available for both the prevention and acute treatment of migraine headaches. These new medications and neuromodulatory devices appear overall to be safe and effective in the management of migraine headaches.
Collapse
|
19
|
Arsava EM, Topcuoglu MA, Ay I, Ozdemir AO, Gungor IL, Togay Isikay C, Nazliel B, Kozak HH, Ozturk S, Yilmaz İA, Dora B, Ay H, Ozel T, Sorgun MH, Bahadır EA, Peker E, Aykac O, Mehdiyev Z, Caglayan HZB, Gurses AA, Pektezel MY, Yilmaz E, Oge DD, Parlak S, Bugrul A, Ozguner H, Seker AC, Ozdemir G, Ongun G, Yilmaz SE, Ozguncu C, Turan Isik SM, Ildiz OF, Mammadli A, Yildogan AT, McClure C. Assessment of safety and feasibility of non-invasive vagus nerve stimulation for treatment of acute stroke. Brain Stimul 2022; 15:1467-1474. [PMID: 36356829 DOI: 10.1016/j.brs.2022.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Non-invasive vagus nerve stimulation (nVNS) using a hand-held stimulator placed on the neck is an FDA-approved treatment for primary headache disorders. The safety of nVNS is unknown in stroke patients. OBJECTIVE To assess the safety and feasibility of nVNS for the acute treatment of stroke. METHODS TR-VENUS (clinicaltrials.gov identifier NCT03733431) was a randomized, sham-controlled, open-label, multicenter trial conducted in patients with acute ischemic stroke (IS) or intracerebral hemorrhage (ICH). Patients were randomly assigned to standard-dose nVNS, high-dose nVNS, or sham stimulation. The primary endpoint was a composite safety outcome defined as bradycardia or reduction in mean arterial blood pressure during treatment or progression of neurological or death within 24 h of treatment. The feasibility endpoints were the proportion of eligible subjects receiving nVNS within 6 h of symptom onset and the proportion completing all pre-specified treatment doses. Efficacy assessments included infarct growth from baseline to 24 h after treatment. RESULTS Sixty-nine patients (61 IS, 8 ICH) completed the study. The composite safety outcome was achieved in 32.0% in sham and 47.7% in nVNS group (p = 0.203). Treatment was initiated in all but two randomized patients. All dosed subjects received 100% of prespecified stimulations. A non-significant reduction in infarct growth was observed in the high-dose nVNS group (184.2% in sham vs. 63.3% in high-dose nVNS; p = 0.109). CONCLUSIONS The results of this study suggest that nVNS may be safe and feasible in the setting of acute stroke. These findings support further development of nVNS as a potential treatment for acute ischemic stroke.
Collapse
Affiliation(s)
| | | | - Ilknur Ay
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Bijen Nazliel
- Department of Neurology, Gazi University, Ankara, Turkey
| | | | | | | | - Babur Dora
- Department of Neurology, Akdeniz University, Antalya, Turkey
| | - Hakan Ay
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cheng K, Wang Z, Bai J, Xiong J, Chen J, Ni J. Research advances in the application of vagus nerve electrical stimulation in ischemic stroke. Front Neurosci 2022; 16:1043446. [PMID: 36389255 PMCID: PMC9650138 DOI: 10.3389/fnins.2022.1043446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Stroke seriously endangers human well-being and brings a severe burden to family and society. Different post-stroke dysfunctions result in an impaired ability to perform activities of daily living. Standard rehabilitative therapies may not meet the requirements for functional improvement after a stroke; thus, alternative approaches need to be proposed. Currently, vagus nerve stimulation (VNS) is clinically applied for the treatment of epilepsy, depression, cluster headache and migraine, while its treatment of various dysfunctions after an ischemic stroke is still in the clinical research stage. Recent studies have confirmed that VNS has neuroprotective effects in animal models of transient and permanent focal cerebral ischemia, and that its combination with rehabilitative training significantly improves upper limb motor dysfunction and dysphagia. In addition, vagus-related anatomical structures and neurotransmitters are closely implicated in memory–cognition enhancement processes, suggesting that VNS is promising as a potential treatment for cognitive dysfunction after an ischemic stroke. In this review, we outline the current status of the application of VNS (invasive and non-invasive) in diverse functional impairments after an ischemic stroke, followed by an in-depth discussion of the underlying mechanisms of its mediated neuroprotective effects. Finally, we summarize the current clinical implementation challenges and adverse events of VNS and put forward some suggestions for its future research direction. Research on VNS for ischemic stroke has reached a critical stage. Determining how to achieve the clinical transformation of this technology safely and effectively is important, and more animal and clinical studies are needed to clarify its therapeutic mechanism.
Collapse
|
21
|
Fu C, Zhang Y, Ye Y, Hou X, Wen Z, Yan Z, Luo W, Feng M, Liu B. Predicting response to tVNS in patients with migraine using functional MRI: A voxels-based machine learning analysis. Front Neurosci 2022; 16:937453. [PMID: 35992927 PMCID: PMC9388938 DOI: 10.3389/fnins.2022.937453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMigraine is a common disorder, affecting many patients. However, for one thing, lacking objective biomarkers, misdiagnosis, and missed diagnosis happen occasionally. For another, though transcutaneous vagus nerve stimulation (tVNS) could alleviate migraine symptoms, the individual difference of tVNS efficacy in migraineurs hamper the clinical application of tVNS. Therefore, it is necessary to identify biomarkers to discriminate migraineurs as well as select patients suitable for tVNS treatment.MethodsA total of 70 patients diagnosed with migraine without aura (MWoA) and 70 matched healthy controls were recruited to complete fMRI scanning. In study 1, the fractional amplitude of low-frequency fluctuation (fALFF) of each voxel was calculated, and the differences between healthy controls and MWoA were compared. Meaningful voxels were extracted as features for discriminating model construction by a support vector machine. The performance of the discriminating model was assessed by accuracy, sensitivity, and specificity. In addition, a mask of these significant brain regions was generated for further analysis. Then, in study 2, 33 of the 70 patients with MWoA in study 1 receiving real tVNS were included to construct the predicting model in the generated mask. Discriminative features of the discriminating model in study 1 were used to predict the reduction of attack frequency after a 4-week tVNS treatment by support vector regression. A correlation coefficient between predicted value and actual value of the reduction of migraine attack frequency was conducted in 33 patients to assess the performance of predicting model after tVNS treatment. We vislized the distribution of the predictive voxels as well as investigated the association between fALFF change (post-per treatment) of predict weight brain regions and clinical outcomes (frequency of migraine attack) in the real group.ResultsA biomarker containing 3,650 features was identified with an accuracy of 79.3%, sensitivity of 78.6%, and specificity of 80.0% (p < 0.002). The discriminative features were found in the trigeminal cervical complex/rostral ventromedial medulla (TCC/RVM), thalamus, medial prefrontal cortex (mPFC), and temporal gyrus. Then, 70 of 3,650 discriminative features were identified to predict the reduction of attack frequency after tVNS treatment with a correlation coefficient of 0.36 (p = 0.03). The 70 predictive features were involved in TCC/RVM, mPFC, temporal gyrus, middle cingulate cortex (MCC), and insula. The reduction of migraine attack frequency had a positive correlation with right TCC/RVM (r = 0.433, p = 0.021), left MCC (r = 0.451, p = 0.016), and bilateral mPFC (r = 0.416, p = 0.028), and negative with left insula (r = −0.473, p = 0.011) and right superior temporal gyrus/middle temporal gyrus (r = −0.684, p < 0.001), respectively.ConclusionsBy machine learning, the study proposed two potential biomarkers that could discriminate patients with MWoA and predict the efficacy of tVNS in reducing migraine attack frequency. The pivotal features were mainly located in the TCC/RVM, thalamus, mPFC, and temporal gyrus.
Collapse
Affiliation(s)
- Chengwei Fu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeying Wen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Luo
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Menghan Feng
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Bo Liu
| |
Collapse
|
22
|
Han S, Contreras MI, Bazrafkan A, Rafi M, Dara SM, Orujyan A, Panossian A, Crouzet C, Lopour B, Choi B, Wilson RH, Akbari Y. Cortical Anoxic Spreading Depolarization During Cardiac Arrest is Associated with Remote Effects on Peripheral Blood Pressure and Postresuscitation Neurological Outcome. Neurocrit Care 2022; 37:139-154. [PMID: 35729464 PMCID: PMC9259534 DOI: 10.1007/s12028-022-01530-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/29/2022] [Indexed: 10/25/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) are self-propagating waves of neuronal and glial depolarizations often seen in neurological conditions in both humans and animal models. Because SD is thought to worsen neurological injury, the role of SD in a variety of cerebral insults has garnered significant investigation. Anoxic SD is a type of SD that occurs because of anoxia or asphyxia. Although asphyxia leading to a severe drop in blood pressure may affect cerebral hemodynamics and is widely known to cause anoxic SD, the effect of anoxic SD on peripheral blood pressure in the extremities has not been investigated. This relationship is especially important to understand for conditions such as circulatory shock and cardiac arrest that directly affect both peripheral and cerebral perfusion in addition to producing anoxic SD in the brain. METHODS In this study, we used a rat model of asphyxial cardiac arrest to investigate the role of anoxic SD on cerebral hemodynamics and metabolism, peripheral blood pressure, and the relationship between these variables in 8- to 12-week-old male rats. We incorporated a multimodal monitoring platform measuring cortical direct current simultaneously with optical imaging. RESULTS We found that during anoxic SD, there is decoupling of peripheral blood pressure from cerebral blood flow and metabolism. We also observed that anoxic SD may modify cerebrovascular resistance. Furthermore, shorter time difference between anoxic SDs measured at different locations in the same rat was associated with better neurological outcome on the basis of the recovery of electrocorticography activity (bursting) immediately post resuscitation and the neurological deficit scale score 24 h post resuscitation. CONCLUSIONS To our knowledge, this is the first study to quantify the relationship between peripheral blood pressure, cerebral hemodynamics and metabolism, and neurological outcome in anoxic SD. These results indicate that the characteristics of SD may not be limited to cerebral hemodynamics and metabolism but rather may also encompass changes in peripheral blood flow, possibly through a brain-heart connection, providing new insights into the role of anoxic SD in global ischemia and recovery.
Collapse
Affiliation(s)
- Sangwoo Han
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | | | - Afsheen Bazrafkan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Masih Rafi
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Shirin M Dara
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Ani Orujyan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Anais Panossian
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Christian Crouzet
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA
| | - Beth Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Bernard Choi
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.,Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Robert H Wilson
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.,Department of Surgery, University of California, Irvine, Irvine, CA, USA.,Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yama Akbari
- Department of Neurology, University of California, Irvine, Irvine, CA, USA. .,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA. .,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
23
|
Mosley N, Chung JY, Jin G, Franceschini MA, Whalen MJ, Chung DY. Cortical Spreading Depolarization, Blood Flow, and Cognitive Outcomes in a Closed Head Injury Mouse Model of Traumatic Brain Injury. Neurocrit Care 2022; 37:102-111. [PMID: 35378664 PMCID: PMC9262867 DOI: 10.1007/s12028-022-01474-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cortical spreading depolarizations (CSDs) are associated with worse outcomes in many forms of acute brain injury, including traumatic brain injury (TBI). Animal models could be helpful in developing new therapies or biomarkers to improve outcomes in survivors of TBI. Recently, investigators have observed CSDs in murine models of mild closed head injury (CHI). We designed the currently study to determine additional experimental conditions under which CSDs can be observed, from mild to relatively more severe TBI. METHODS Adult male C57Bl/6J mice (8-14 weeks old) were anesthetized with isoflurane and subjected to CHI with an 81-g weight drop from 152 or 183 cm. CSDs were detected with minimally invasive visible light optical intrinsic signal imaging. Cerebral blood flow index (CBFi) was measured in the 152-cm drop height cohort using diffuse correlation spectroscopy at baseline before and 4 min after CHI. Cognitive outcomes were assessed at 152- and 183-cm drop heights for the Morris water maze hidden platform, probe, and visible platform tests. RESULTS CSDs occurred in 43% (n = 12 of 28) of 152-cm and 58% (n = 15 of 26) of 183-cm drop height CHI mice (p = 0.28). A lower baseline preinjury CBFi was associated with development of CSDs in CHI mice (1.50 ± 0.07 × 10-7 CHI without CSD [CSD-] vs. 1.17 ± 0.04 × 10-7 CHI with CSD [CSD+], p = 0.0001). Furthermore, in CHI mice that developed CSDs, the ratio of post-CHI to pre-CHI CBFi was lower in the hemisphere ipsilateral to a CSD compared with non-CSD hemispheres (0.19 ± 0.07 less in the CSD hemisphere, p = 0.028). At a 152-cm drop height, there were no detectable differences between sham injured (n = 10), CHI CSD+ (n = 12), and CHI CSD- (n = 16) mice on Morris water maze testing at 4 weeks. At a 183-cm drop height, CHI CSD+ mice had worse performance on the hidden platform test at 1-2 weeks versus sham mice (n = 15 CHI CSD+, n = 9 sham, p = 0.045), but there was no appreciable differences compared with CHI CSD- mice (n = 11 CHI CSD-). CONCLUSIONS The data suggest that a lower baseline cerebral blood flow prior to injury may contribute to the occurrence of a CSD. Furthermore, a CSD at the time of injury can be associated with worse cognitive outcome under the appropriate experimental conditions in a mouse CHI model of TBI.
Collapse
Affiliation(s)
- Nathaniel Mosley
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon Y Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gina Jin
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria A Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, 02129, USA.
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
| |
Collapse
|
24
|
Devices for Episodic Migraine: Past, Present, and Future. Curr Pain Headache Rep 2022; 26:259-265. [PMID: 35147856 PMCID: PMC8930505 DOI: 10.1007/s11916-022-01024-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Historically, therapies for migraine have generally involved pharmacological treatments using non-selective or selective analgesics and preventive treatments. However, for many patients these treatments are not effective, while others prefer to use non-pharmacological-based therapies. To fill this need, over the last 15 years, neuromodulatory devices have entered the market for migraine treatment. Here, we will review the most recent findings for the use of these devices in the treatment of migraine. RECENT FINDINGS Non-invasive vagus nerve stimulation and spring-pulse transcranial magnetic stimulation are both cleared for the treatment of migraine, supported by preclinical studies that validate efficacy and mechanism of action, and complemented with clinical trial data. Other options also authorized for use include transcutaneous supraorbital nerve stimulation and remote electrical neuromodulation. Various options are available to treat migraine using authorized neuromodulatory devices. These data support their efficacy in the treatment of episodic migraine, although further studies are necessary to elucidate their mechanism of action and to provide rigor to clinical trial data.
Collapse
|
25
|
Coppola G, Magis D, Casillo F, Sebastianelli G, Abagnale C, Cioffi E, Di Lenola D, Di Lorenzo C, Serrao M. Neuromodulation for Chronic Daily Headache. Curr Pain Headache Rep 2022; 26:267-278. [PMID: 35129825 PMCID: PMC8927000 DOI: 10.1007/s11916-022-01025-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 11/29/2022]
Abstract
Purpose of Review We reviewed the literature that explored the use of central and peripheral neuromodulation techniques for chronic daily headache (CDH) treatment. Recent Findings Although the more invasive deep brain stimulation (DBS) is effective in chronic cluster headache (CCH), it should be reserved for extremely difficult-to-treat patients. Percutaneous occipital nerve stimulation has shown similar efficacy to DBS and is less risky in both CCH and chronic migraine (CM). Non-invasive transcutaneous vagus nerve stimulation is a promising add-on treatment for CCH but not for CM. Transcutaneous external trigeminal nerve stimulation may be effective in treating CM; however, it has not yet been tested for cluster headache. Transcranial magnetic and electric stimulations have promising preventive effects against CM and CCH. Summary Although the precise mode of action of non-invasive neuromodulation techniques remains largely unknown and there is a paucity of controlled trials, they should be preferred to more invasive techniques for treating CDH.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.
| | - Delphine Magis
- Headache and Pain Multimodal Treatment Centre (CMTCD), Department of Neurology, Neuromodulation Centre, CHR East Belgium, Verviers, Belgium
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
26
|
Liu TT, Morais A, Takizawa T, Mulder I, Simon BJ, Chen SP, Wang SJ, Ayata C, Yen JC. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J Headache Pain 2022; 23:12. [PMID: 35062860 PMCID: PMC8903561 DOI: 10.1186/s10194-022-01384-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Noninvasive vagus nerve stimulation (nVNS) has recently emerged as a promising therapy for migraine. We previously demonstrated that vagus nerve stimulation inhibits cortical spreading depression (CSD), the electrophysiological event underlying migraine aura and triggering headache; however, the optimal nVNS paradigm has not been defined. Methods Various intensities and doses of nVNS were tested to improve efficacy on KCl-evoked CSD frequency and electrical threshold of CSD in a validated rat model. Chronic efficacy was evaluated by daily nVNS delivery for four weeks. We also examined the effects of nVNS on neuroinflammation and trigeminovascular activation by western blot and immunohistochemistry. Results nVNS suppressed susceptibility to CSD in an intensity-dependent manner. Two 2-minute nVNS 5 min apart afforded the highest efficacy on electrical CSD threshold and frequency of KCl-evoked CSD. Daily nVNS for four weeks did not further enhance efficacy over a single nVNS 20 min prior to CSD. The optimal nVNS also attenuated CSD-induced upregulation of cortical cyclooxygenase-2, calcitonin gene-related peptide in trigeminal ganglia, and c-Fos expression in trigeminal nucleus caudalis. Conclusions Our study provides insight on optimal nVNS parameters to suppress CSD and suggests its benefit on CSD-induced neuroinflammation and trigeminovascular activation in migraine treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01384-1.
Collapse
|
27
|
Powell K, White TG, Nash C, Rebeiz T, Woo HH, Narayan RK, Li C. The Potential Role of Neuromodulation in Subarachnoid Hemorrhage. Neuromodulation 2022; 25:1215-1226. [PMID: 35088724 DOI: 10.1016/j.neurom.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Aneurysmal subarachnoid hemorrhage (SAH) continues to be a difficult cerebrovascular disease with limited pharmacologic treatment options. Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are leading causes of morbidity and mortality after SAH. Despite the advances in the understanding of its pathophysiology and tremendous efforts to date, nimodipine is currently the sole Food and Drug Administration-approved treatment for patients with SAH, with benefits that are marginal at best. The neuromodulation therapies are promising, especially those that target CV and DCI to improve functional outcomes. The aim of this review is therefore to summarize the available evidence for each type of neuromodulation for CV and DCI, with a special focus on its pathophysiological mechanisms, in addition to their clinical utility and drawbacks, which we hope will lead to future translational therapy options after SAH. MATERIALS AND METHODS We conducted a comprehensive review of preclinical and clinical studies demonstrating the use of neuromodulation for SAH. The literature search was performed using PubMed, Embase, and ClinicalTrials.gov. A total of 21 articles published from 1992 to 2021 and eight clinical trials were chosen. RESULTS The studies reviewed provide a compelling demonstration that neuromodulation is a potentially useful strategy to target multiple mechanisms of DCI and thus to potentially improve functional outcomes from SAH. There are several types of neuromodulation that have been tested to treat CV and DCI, including the trigeminal/vagus/facial nerve stimulation, sphenopalatine ganglion and spinal cord stimulation, transcranial direct electrical stimulation, transcutaneous electrical neurostimulation, and electroacupuncture. Most of them are in the preclinical or early phases of clinical application; however, they show promising results. CONCLUSIONS DCI has a complex pathogenesis, making the unique anatomical distribution and pleiotropic capabilities of various types of neuromodulation a promising field of study. We may be at the cusp of a breakthrough in the use of these techniques for the treatment of this stubbornly difficult disease.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tania Rebeiz
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Henry H Woo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
28
|
Najib U, Smith T, Hindiyeh N, Saper J, Nye B, Ashina S, McClure CK, Marmura MJ, Chase S, Liebler E, Lipton RB. Non-invasive vagus nerve stimulation for prevention of migraine: The multicenter, randomized, double-blind, sham-controlled PREMIUM II trial. Cephalalgia 2022; 42:560-569. [PMID: 35001643 DOI: 10.1177/03331024211068813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Evaluate the efficacy and safety of non-invasive vagus nerve stimulation for migraine prevention. METHODS After completing a 4-week diary run-in period, adults who had migraine with or without aura were randomly assigned to receive active non-invasive vagus nerve stimulation or sham therapy during a 12-week double-blind period. RESULTS Of 336 enrolled participants, 113 (active, n = 56; sham, n = 57) completed ≥70 days of the double-blind period and were ≥66% adherent with treatment, comprising the prespecified modified intention-to-treat population. The COVID-19 pandemic led to early trial termination, and the population was ∼60% smaller than the statistical target for full power. Mean reduction in monthly migraine days (primary endpoint) was 3.12 for the active group and 2.29 days for the sham group (difference, -0.83; p = 0.2329). Responder rate (i.e. the percentage of participants with a ≥50% reduction in migraine days) was greater in the active group (44.87%) than the sham group (26.81%; p = 0.0481). Prespecified subgroup analysis suggested that participants with aura responded preferentially. No serious device-related adverse events were reported. CONCLUSIONS These results suggest clinical utility of non-invasive vagus nerve stimulation for migraine prevention, particularly for patients who have migraine with aura, and reinforce the well-established safety and tolerability profile of this therapy.Trial Registration: ClinicalTrials.gov (NCT03716505).
Collapse
Affiliation(s)
- Umer Najib
- WVU Headache Center, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | | | - Nada Hindiyeh
- Stanford University Medical Center, Palo Alto, CA, USA
| | - Joel Saper
- Michigan Head Pain and Neurological Institute, Ann Arbor, MI, USA
| | - Barbara Nye
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sait Ashina
- Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Michael J Marmura
- Thomas Jefferson University, Department of Neurology, Jefferson Headache Center, Philadelphia, PA, USA
| | - Serena Chase
- Chase Advocate Consulting, LLC, Cocoa Beach, FL, USA
| | | | | |
Collapse
|
29
|
Crawford J, Liu S, Tao F. Gut microbiota and migraine. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100090. [PMID: 35464185 PMCID: PMC9018445 DOI: 10.1016/j.ynpai.2022.100090] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Migraine is a leading cause of disability among the adult population and is a significant burden on the economies of the world. Studies into the underlying causes of migraine have spanned centuries but its underlying mechanisms are still not fully understood. In recent years, accumulating evidence implicates that microbiota-mediated gut-brain crosstalk may contribute to the pathogenesis of migraine. This review provides a brief account of the history of migraine theories and summarizes the recent studies showing how gut microbiota is involved in the pathophysiology of migraine. Future research perspectives for better understanding the role of the gut microbiota in migraine are also discussed.
Collapse
Affiliation(s)
- Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
30
|
Liu XK, Chen SL, Huang DL, Jiang ZS, Jiang YT, Liang LJ, Qin LL. The Influence of Personality and Demographic Characteristics on Aggressive Driving Behaviors in Eastern Chinese Drivers. Psychol Res Behav Manag 2022; 15:193-212. [PMID: 35115851 PMCID: PMC8802409 DOI: 10.2147/prbm.s323431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Road safety research is important due to the large number of road traffic fatalities globally. This study investigated the influences of age, driving experience and other covariates on aggressive driving behavior. Methods A cross-sectional survey was conducted in Yixing City, Wuxi City, Jiangsu Province, China. Regression analysis was applied to explore the influences of age and driving experience and their interactions with other covariates on aggressive driving behavior. Two analyses methodologies were used to assess the simple effect of the interactions. Firstly, the Jamovi automatic analysis classification program was used to calculate the simple slope test. Second, the SPSS macro program was also used to calculate the simple slope test also. Results A total of 570 drivers (247 males, 282 females) participated in the survey. A negative correlation was found between age and aggressive driving behaviors, and a positive correlation was found between neuroticism and aggressive driving behaviors in the multiple regression analysis. Significant associations were also found between age, driving experience, and depression, as well as age, driving experience, and neuroticism. Simple slope tests showed that depressive symptoms could increase aggressive behaviors in the elderly and experienced drivers. When experiencing neuroticism, individuals with higher driving experience were more aggressive in driving than shorter experienced drivers. Conclusion Age and neuroticism influenced aggressive driving behaviors. Veteran drivers could be aggressive drivers when experiencing depressive symptoms or neuroticism. Mobile intervention could be sent to the potentially risky drivers, which would be safe and broadly feasible to prevent aggressive driving behavior in the background of COVID-19.
Collapse
Affiliation(s)
- Xiao-kun Liu
- The First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
- Correspondence: Xiao-kun Liu The First Affiliated Hospital of Hainan Medical University, 3 Xueyuan Road, Haikou, 571199, Hainan, People’s Republic of China Email
| | - Shan-lin Chen
- The First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Dan-ling Huang
- The First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Zi-shang Jiang
- The First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Yu-ting Jiang
- The First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Li-juan Liang
- The First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Lu-lu Qin
- Department of Social Medicine and Health Management, School of Medicine, Hunan Normal University, Changsha, People’s Republic of China
| |
Collapse
|
31
|
Kim AG, Kim TW, Kwon WK, Lee KH, Jeong S, Hwang MH, Choi H. Microfluidic Chip with Low Constant-Current Stimulation (LCCS) Platform: Human Nucleus Pulposus Degeneration In Vitro Model for Symptomatic Intervertebral Disc. MICROMACHINES 2021; 12:1291. [PMID: 34832700 PMCID: PMC8621874 DOI: 10.3390/mi12111291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP) in the lumbar spine. This phenomenon is caused by several processes, including matrix degradation in IVD tissues, which is mediated by matrix metalloproteinases (MMPs) and inflammatory responses, which can be mediated by interactions among immune cells, such as macrophages and IVD cells. In particular, interleukin (IL)-1 beta (β), which is a master regulator secreted by macrophages, mediates the inflammatory response in nucleus pulposus cells (NP) and plays a significant role in the development or progression of diseases. In this study, we developed a custom electrical stimulation (ES) platform that can apply low-constant-current stimulation (LCCS) signals to microfluidic chips. Using this platform, we examined the effects of LCCS on IL-1β-mediated inflammatory NP cells, administered at various currents (5, 10, 20, 50, and 100 μA at 200 Hz). Our results showed that the inflammatory response, induced by IL-1β in human NP cells, was successfully established. Furthermore, 5, 10, 20, and 100 μA LCCS positively modulated inflamed human NP cells' morphological phenotype and kinetic properties. LCCS could affect the treatment of degenerative diseases, revealing the applicability of the LCCS platform for basic research of electroceuticals.
Collapse
Affiliation(s)
- An-Gi Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Tae-Won Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Woo-Keun Kwon
- Department of Neurosurgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Kwang-Ho Lee
- Division of Mechanical and Biomedical, Mechatronics, and Materials Science and Engineering, College of Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae 50834, Korea;
| | - Min-Ho Hwang
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| |
Collapse
|
32
|
Potential roles of vagus nerve stimulation on traumatic brain injury: Evidence from in vivo and clinical studies. Exp Neurol 2021; 347:113887. [PMID: 34624329 DOI: 10.1016/j.expneurol.2021.113887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 01/08/2023]
Abstract
Traumatic Brain Injury (TBI) is a one of the leading causes of death and disability worldwide. The consequences of TBI can be divided into two stages: 1) the immediate neuronal destruction during the initial trauma, resulting in the primary brain injury and pathophysiologic sequelae, and 2) the secondary brain injury, encompassing mitochondrial dysfunction, inflammation, cellular excitotoxicity, oxidative stress, and cortical edema, resulting in increased intracranial pressure (ICP) with exacerbated brain damage. Although the pathophysiology in TBI has been thoroughly investigated, the effectivity of therapeutic approaches for TBI is still lacking. Vagus nerve stimulation (VNS) has been used for treating medical refractory epilepsy and chronic drug-resistant depression. Several previous studies also demonstrated that VNS has beneficial effects for TBI in animal models and patients. The neuroprotective effects of VNS on TBI are possibly explained through several mechanisms, including a noradrenergic mechanism, anti-inflammatory effects, regulation of neurotransmitters, and attenuation of blood brain barrier breakdown, and brain edema. The aims of this review are to summarize and discuss the current evidence pertinent to the effect of VNS on both primary and secondary brain injury following TBI from both in vivo and clinical studies.
Collapse
|
33
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, Olczak KP, Maurer AP, Lamb DG, Otto KJ, Burke SN, Bumanglag AV, Setlow B, Bizon JL. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 2021; 184:107498. [PMID: 34332068 DOI: 10.1016/j.nlm.2021.107498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.
Collapse
Affiliation(s)
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Tyler S Garman
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Saúl Ramirez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaitlynn P Olczak
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA.
| |
Collapse
|
35
|
Vuralli D, Karatas H, Yemisci M, Bolay H. Updated review on the link between cortical spreading depression and headache disorders. Expert Rev Neurother 2021; 21:1069-1084. [PMID: 34162288 DOI: 10.1080/14737175.2021.1947797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Experimental animal studies have revealed mechanisms that link cortical spreading depression (CSD) to the trigeminal activation mediating lateralized headache. However, conventional CSD as seen in lissencephalic brain is insufficient to explain some clinical features of aura and migraine headache. AREAS COVERED The importance of CSD in headache development including dysfunction of the thalamocortical network, neuroinflammation, calcitonin gene-related peptide, transgenic models, and the role of CSD in migraine triggers, treatment options, neuromodulation and future directions are reviewed. EXPERT OPINION The conventional understanding of CSD marching across the hemisphere is invalid in gyrencephalic brains. Thalamocortical dysfunction and interruption of functional cortical network systems by CSD, may provide alternative explanations for clinical manifestations of migraine phases including aura. Not all drugs showing CSD blocking properties in lissencephalic brains, have efficacy in migraine headache and monoclonal antibodies against CGRP ligand/receptors which are effective in migraine treatment, have no impact on aura in humans or CSD properties in rodents. Functional networks and molecular mechanisms mediating and amplifying the effects of limited CSD in migraine brain remain to be investigated to define new targets.
Collapse
Affiliation(s)
- Doga Vuralli
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| | - Hulya Karatas
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Muge Yemisci
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
36
|
Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H. Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain 2021; 22:55. [PMID: 34112082 PMCID: PMC8192049 DOI: 10.1186/s10194-021-01271-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroinflammation has an important role in the pathophysiology of migraine, which is a complex neuro-glio-vascular disorder. The main aim of this review is to highlight findings of cortical spreading depolarization (CSD)-induced neuroinflammatory signaling in brain parenchyma from the inflammasome perspective. In addition, we discuss the limited data of the contribution of inflammasomes to other aspects of migraine pathophysiology, foremost the activation of the trigeminovascular system and thereby the generation of migraine pain. MAIN BODY Inflammasomes are signaling multiprotein complexes and key components of the innate immune system. Their activation causes the production of inflammatory cytokines that can stimulate trigeminal neurons and are thus relevant to the generation of migraine pain. The contribution of inflammasome activation to pain signaling has attracted considerable attention in recent years. Nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome and there is emerging evidence of its role in a variety of inflammatory pain conditions, including migraine. In this review, we discuss, from an inflammasome point of view, cortical spreading depolarization (CSD)-induced neuroinflammatory signaling in brain parenchyma, the connection with genetic factors that make the brain vulnerable to CSD, and the relation of the inflammasome with diseases that are co-morbid with migraine, including stroke, epilepsy, and the possible links with COVID-19 infection. CONCLUSION Neuroinflammatory pathways, specifically those involving inflammasome proteins, seem promising candidates as treatment targets, and perhaps even biomarkers, in migraine.
Collapse
Affiliation(s)
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
37
|
Staats PS, Poree L. Vagus nerve stimulation in rheumatoid arthritis. THE LANCET. RHEUMATOLOGY 2021; 3:e14. [PMID: 38273634 DOI: 10.1016/s2665-9913(20)30360-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2024]
Affiliation(s)
- Peter S Staats
- National Spine and Pain Centers, Atlantic Beach, FL 32233, USA.
| | - Lawrence Poree
- Department of Anesthesiology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
38
|
Schoenen J, Ambrosini A. Update on noninvasive neuromodulation for migraine treatment-Vagus nerve stimulation. PROGRESS IN BRAIN RESEARCH 2020; 255:249-274. [PMID: 33008508 DOI: 10.1016/bs.pbr.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Noninvasive neurostimulation methods are particularly suited for migraine treatment thanks to their most favorable adverse event profile. Among them, noninvasive vagus nerve stimulation (nVNS) has raised great hope because of the role the vagus nerve is known to play in pain modulation, inflammation and brain excitability. We will critically review the clinical studies performed for migraine attack treatment and migraine prevention with the GammaCore® device, which allows cervical vagus nerve stimulation. nVNS is effective for the abortive treatment of migraine attacks, although the effect size is modest and numbers-to-treat appear not superior to those of other noninvasive neurostimulation methods, and inferior to those of oral triptans. The effect of nVNS with the GammaCore® in migraine prevention is not superior to sham stimulation, except possibly in patients with high adherence to the treatment. Both in acute and preventive trials, nVNS was characterized by an outstanding tolerance and safety profile, like the other noninvasive neurostimulation techniques. In physiological animal and human studies, cervical nVNS was shown to generate somatosensory evoked responses, to modulate pain perception and several areas of the cerebral pain network, and to inhibit experimental cortical spreading depression, which are relevant effects for migraine therapy.
Collapse
Affiliation(s)
- Jean Schoenen
- Department of Neurology, Headache Research Unit, University of Liège, Citadelle Hospital, Liege, Belgium.
| | | |
Collapse
|
39
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
40
|
N Williford N, Statz G, L Mann D, Olshansky B. Device Autonomic Regulation Therapy in Patients with Heart Failure with Reduced Ejection Fraction. J Atr Fibrillation 2020; 13:2409. [PMID: 33024509 PMCID: PMC7533145 DOI: 10.4022/jafib.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 08/03/2024]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a common, incompletely treatable, complex, progressive, and severe medical problem despite guideline-directed medical therapy. HFrEF is associated with sympathetic activation and parasympathetic inhibition; these reflexive processes may ultimately be maladaptive and exacerbate or even perpetuate the problem. Attempts to regulate autonomic tone during HFrEF in animal models and in humans has shown promise with beneficial effects that include improvement in symptoms, mitigation of arrhythmic events, reduction in mortality, and correction in hemodynamics. Several modalities to regulate autonomic tone such as unilateral parasympathetic nerve activation, baroreceptor activation, renal nerve ablation and spinal cord stimulation have been investigated. Although they demonstrated some benefit, the long-term efficacy in HFrEF has not been proven. Considering specific limitations of each modality, to draw definitive conclusions is impossible at this time. Here, we review the present state-of-the-art hiterature? of device of autonomic regulation therapy to affect outcomes in HFrEF.
Collapse
Affiliation(s)
- Noah N Williford
- The University of Iowa Hospitals
- Washington University School of Medicine in St. Louis
| | | | | | | |
Collapse
|