1
|
Valero-Hernandez E, Tremoleda JL, Michael-Titus AT. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients 2024; 16:4175. [PMID: 39683568 DOI: 10.3390/nu16234175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) can lead to substantial disability and health loss. Despite its importance and impact worldwide, no treatment options are currently available to help protect or preserve brain structure and function following injury. In this review, we discuss the potential benefits of using omega-3 polyunsaturated fatty acids (O3 PUFAs) as therapeutic agents in the context of TBI in the paediatric and adult populations. Methods: Preclinical and clinical research reports investigating the effects of O3 PUFA-based interventions on the consequences of TBI were retrieved and reviewed, and the evidence presented and discussed. Results: A range of animal models of TBI, types of injury, and O3 PUFA dosing regimens and administration protocols have been used in different strategies to investigate the effects of O3 PUFAs in TBI. Most evidence comes from preclinical studies, with limited clinical data available thus far. Overall, research indicates that high O3 PUFA levels help lessen the harmful effects of TBI by reducing tissue damage and cell loss, decreasing associated neuroinflammation and the immune response, which in turn moderates the severity of the associated neurological dysfunction. Conclusions: Data from the studies reviewed here indicate that O3 PUFAs could substantially alleviate the impact of traumatic injuries in the central nervous system, protect structure and help restore function in both the immature and adult brains.
Collapse
Affiliation(s)
- Ester Valero-Hernandez
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
2
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adipose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA;
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany;
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Nkiliza A, Huguenard CJ, Aldrich GJ, Ferguson S, Cseresznye A, Darcey T, Evans JE, Dretsch M, Mullan M, Crawford F, Abdullah L. Levels of Arachidonic Acid-Derived Oxylipins and Anandamide Are Elevated Among Military APOE ɛ4 Carriers With a History of Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. Neurotrauma Rep 2023; 4:643-654. [PMID: 37786567 PMCID: PMC10541938 DOI: 10.1089/neur.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Claire J.C. Huguenard
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | - Scott Ferguson
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | | | | | - Michael Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, Alabama, USA
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Laila Abdullah
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| |
Collapse
|
4
|
McReynolds C, Hammock B, Morisseau C. Regulatory lipid vicinal diols counteract the biological activity of epoxy fatty acids and can act as biomarkers and mechanisms for disease progression. Pharmacol Ther 2023; 248:108454. [PMID: 37268114 PMCID: PMC10529401 DOI: 10.1016/j.pharmthera.2023.108454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential fatty acids required for human health and are obtained primarily from food or synthesized in the body by highly regulated processes. The metabolites of these lipids, formed largely through the action of cyclooxygenase, lipoxygenase, or cytochrome P450 (CYP450) enzymes, are responsible for multiple biological functions including inflammation, tissue repair, cell proliferation, blood vessel permeability, and immune cell behavior. The role of these regulatory lipids in disease has been well studied since their discovery as druggable targets; however, the metabolites generated downstream of these pathways have only recently gained attention for regulating biology. Specifically, the biological activity of lipid vicinal diols formed from the metabolism of CYP450-generated epoxy fatty acids (EpFA) by epoxide hydrolases were previously thought to have little biological activity but increasingly are recognized as promoting inflammation and brown fat adipogenesis, and exciting neurons through the regulation of ion channel activity at low concentrations. These metabolites also appear to balance the action of the EpFA precursor. For example, EpFA demonstrate the ability to resolve inflammation and reduce pain, while some lipid diols, through opposing mechanisms, promote inflammation and pain. This review describes recent studies that highlight the role of regulatory lipids, focusing on the balance between EpFA and their diol metabolites in promoting or resolving disease.
Collapse
Affiliation(s)
| | - Bruce Hammock
- EicOsis, Davis, CA, United States of America; University of California, Davis, CA, United States of America
| | | |
Collapse
|
5
|
Mavroudis I, Ciobica A, Luca AC, Balmus IM. Post-Traumatic Headache: A Review of Prevalence, Clinical Features, Risk Factors, and Treatment Strategies. J Clin Med 2023; 12:4233. [PMID: 37445267 DOI: 10.3390/jcm12134233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Post-traumatic headache (PTH) is a common and debilitating consequence of mild traumatic brain injury (mTBI) that can occur over one year after the head impact event. Thus, better understanding of the underlying pathophysiology and risk factors could facilitate early identification and management of PTH. There are several factors that could influence the reporting of PTH prevalence, including the definition of concussion and PTH. The main risk factors for PTHs include a history of migraines or headaches, female gender, younger age, greater severity of the head injury, and co-occurring psychological symptoms, such as anxiety and depression. PTH clinical profiles vary based on onset, duration, and severity: tension-type headache, migraine headaches, cervicogenic headache, occipital neuralgia, and new daily persistent headache. Pharmacological treatments often consist of analgesics and non-steroidal anti-inflammatory drugs, tricyclic antidepressants, or antiepileptic medication. Cognitive behavioral therapy, relaxation techniques, biofeedback, and physical therapy could also be used for PTH treatment. Our work highlighted the need for more rigorous studies to better describe the importance of identifying risk factors and patient-centered treatments and to evaluate the effectiveness of the existing treatment options. Clinicians should consider a multidisciplinary approach to managing PTH, including pharmacotherapy, cognitive behavioral therapy, and lifestyle changes.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, B dul Carol I, No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Alina Costina Luca
- Department of Mother and Child, Medicine-Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, 700057 Iasi, Romania
| |
Collapse
|
6
|
Shen Q, Yang J, Zamora D, Horowitz M, Faurot KR, MacIntosh BA, Mann JD, Hammock BD, Ramsden CE, Taha AY. Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids. Metabolites 2023; 13:690. [PMID: 37367848 DOI: 10.3390/metabo13060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
A previous report showed that 12-week lowering of dietary omega-6 linoleic acid (LA) coupled with increased omega-3 polyunsaturated fatty acid (PUFA) intake (H3-L6 diet) reduced headache frequency and improved quality of life in patients with chronic daily headaches (CDHs) compared to dietary LA reduction alone (L6 diet). The trial also showed that targeted dietary manipulation alters PUFA-derived lipid mediators and endocannabinoids. However, several additional classes of lipid mediators associated with pain in preclinical models were not measured. The current secondary analysis investigated whether the clinical benefits of the H3-L6 diet were related to changes in plasma unesterified PUFA-derived lipid mediators known to be involved in nociception, including prostanoids. Lipid mediators were measured by ultra-high-pressure liquid chromatography coupled with tandem mass-spectrometry. Compared to baseline, dietary LA lowering with or without added omega-3 fatty acids did not alter unesterified n-6 PUFA-derived lipid mediators, although several species derived from LA, di-homo-gamma-linolenic acid, and arachidonic acid were positively associated with headache frequency and intensity, as well as mental health burden. Alpha-linolenic acid (ALA)-derived metabolites were also associated with increased headache frequency and intensity, although they did not change from the baseline in either dietary group. Compared to baseline, docosahexaenoic acid (DHA)-derived epoxides were more elevated in the H3-L6 group compared to the L6 group. Diet-induced elevations in plasma DHA-epoxides were associated with reduced headache frequency, better physical and mental health, and improved quality of life (p < 0.05). Prostanoids were not detected, except for PGF2-alpha, which was not associated with any outcomes. This study demonstrates that diet-induced changes in DHA-epoxides were associated with pain reduction in patients with chronic headaches, whereas n-6 PUFA and ALA metabolites were associated with nociception. Lipid mediator associations with mental health and quality of life paralleled pain management outcomes in this population. The findings point to a network of multiple diet-modifiable lipid mediator targets for pain management in individuals with CDHs.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beth A MacIntosh
- Nutrition Research and Metabolism Core, North Carolina Translational Clinical Sciences Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Douglas Mann
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Domenichiello AF, Wilhite BC, Nara P, Pitcher MH, Keyes GS, Mannes AJ, Bushnell MC, Ramsden CE. Biochemical and behavioral effects of decreasing dietary linoleic acid and increasing eicosapentaenoic acid and docosahexaenoic acid in a rat chronic monoarthrits model. Prostaglandins Leukot Essent Fatty Acids 2022; 187:102512. [PMID: 36347090 PMCID: PMC9729441 DOI: 10.1016/j.plefa.2022.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Clinical studies have demonstrated that decreasing linoleic acid (LA) while increasing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in diets evokes an analgesic effect in headache sufferers. We utilized a rat chronic monoarthritis model to determine if these analgesic effects can be reproduced in rats and to and further probe potential analgesic mechanisms. We fed 8 rats a control diet (with fatty acid levels similar to standard US diets) and 8 rats a low LA diet with added EPA and DHA (H3L6 diet) and after 10 weeks, performed a unilateral intraarticular injection of Complete's Freund Adjuvant (CFA). We evaluated thermal and mechanical sensitivity as well as hind paw weight bearing prior to and at 4 and 20 days post CFA injection. At 28 days post CFA injection rats were euthanized and tissue collected. H3L6 diet fed rats had higher concentrations of EPA and DHA, as well as higher concentrations of oxidized lipids derived from these fatty acids, in hind paw and plasma, compared to control fed rats. LA and oxidized LA metabolites were lower in the plasma and hind paw of H3L6 compared to control fed rats. Diet did not affect thermal or mechanical sensitivity, nor did it affect hind paw weight bearing. In conclusion, the H3L6 diet evoked biochemical changes in rats but did not impact pain related behavioral measures in this chronic monoarthritis model.
Collapse
Affiliation(s)
- Anthony F Domenichiello
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), 10 Center Drive, 3D57, Bethesda, Baltimore, MD 20892, USA.
| | - Breanne C Wilhite
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Pranavi Nara
- Department of Perioperative Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Mark H Pitcher
- National Center for Complimentary and Integrative Health, NIH, Bethesda, MD, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), 10 Center Drive, 3D57, Bethesda, Baltimore, MD 20892, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - M Catherine Bushnell
- National Center for Complimentary and Integrative Health, NIH, Bethesda, MD, USA
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), 10 Center Drive, 3D57, Bethesda, Baltimore, MD 20892, USA; National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Birkic N, Azar T, Maddipati KR, Minic Z, Reynolds CA. Excessive dietary linoleic acid promotes plasma accumulation of pronociceptive fatty acyl lipid mediators. Sci Rep 2022; 12:17832. [PMID: 36284115 PMCID: PMC9596689 DOI: 10.1038/s41598-022-21823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 01/20/2023] Open
Abstract
Various fatty acyl lipid mediators are derived from dietary polyunsaturated fatty acids (PUFAs) and modulate nociception. The modern diet is rich in linoleic acid, which is associated with nociceptive hypersensitivities and may present a risk factor for developing pain conditions. Although recommendations about fatty acid intake exist for some diseases (e.g. cardiovascular disease), the role of dietary fatty acids in promoting pain disorders is not completely understood. To determine how dietary linoleic acid content influences the accumulation of pro- and anti-nociceptive fatty acyl lipid mediators, we created novel rodent diets using custom triglyceride blends rich in either linoleic acid or oleic acid. We quantified the fatty acyl lipidome in plasma of male and female rats fed these custom diets from the time of weaning through nine weeks of age. Dietary fatty acid composition determined circulating plasma fatty acyl lipidome content. Exposure to a diet rich in linoleic acid was associated with accumulation of linoleic and arachidonic acid-derived pro-nociceptive lipid mediators and reduction of anti-nociceptive lipid mediators derived from the omega-3 PUFAs. Our findings provide mechanistic insights into exaggerated nociceptive hypersensitivity associated with excessive dietary linoleic acid intake and highlight potential biomarkers for pain risk stratification.
Collapse
Affiliation(s)
- Nada Birkic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Toni Azar
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zeljka Minic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christian A Reynolds
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
9
|
Sanders AE, Weatherspoon ED, Ehrmann BM, Soma PS, Shaikh SR, Preisser JS, Ohrbach R, Fillingim RB, Slade GD. Circulating polyunsaturated fatty acids, pressure pain thresholds, and nociplastic pain conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102476. [PMID: 35908377 PMCID: PMC10363286 DOI: 10.1016/j.plefa.2022.102476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Polyunsaturated fatty acids (PUFAs) play a role in pain regulation. This study sought to determine whether free PUFAs found in red blood cells also play a role in nociceptive processing. We examined associations between circulating PUFAs and nociceptive thresholds to noxious mechanical stimuli. We also determined whether nociceptive thresholds were associated with nociplastic pain conditions. METHODS This cross-sectional study used stored red bloods cells and data from 605 adult participants in the OPPERA-2 study of chronic overlapping pain conditions. In OPPERA-2 adults completed quantitative sensory testing in which pressure algometry measured deep muscular tissue sensitivity at six anatomical sites. Standardized protocols classified adults for presence or absence of five nociplastic pain conditions: temporomandibular disorder, headache, low back pain, irritable bowel syndrome and fibromyalgia. Liquid chromatography tandem mass spectroscopy quantified erythrocyte PUFAs. We conducted three sets of analyses. First, a multivariable linear regression model assessed the association between n-6/n-3 PUFA ratio and the number of overlapping nociplastic pain conditions. Second, a series of 36 multivariable linear regression models assessed covariate-adjusted associations between PUFAs and nociceptive thresholds at each of six anatomical sites. Third, a series of 30 multivariable linear regression models assessed covariate-adjusted associations between nociceptive thresholds at six anatomical sites and each of five pain conditions. RESULTS In multiple linear regression, each unit increase in n-6/n-3 PUFA ratio was associated with more pain conditions (β = 0.30, 95% confidence limits: 0.07, 0.53, p = 0.012). Omega-6 linoleic acid and arachidonic acid were negatively associated with lower nociceptive thresholds at three and at five, respectively, anatomical sites. In contrast, omega-3 alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid and the n-6/n-3 PUFA ratio were not associated with nociceptive thresholds at any site. Pain cases had significantly lower nociceptive thresholds than non-case controls at all anatomical sites. CONCLUSION A higher n-6/n-3 PUFA ratio was associated with more pain conditions. Omega-6 PUFAs may promote a generalized upregulation of nociceptive processing.
Collapse
Affiliation(s)
- Anne E Sanders
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| | - E Diane Weatherspoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul S Soma
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Saame R Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - John S Preisser
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Richard Ohrbach
- Department of Oral Diagnostic Sciences, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32611, United States of America; Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32611, United States of America
| | - Gary D Slade
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
10
|
Pflieger FJ, Wolf J, Feldotto M, Nockher A, Wenderoth T, Hernandez J, Roth J, Ott D, Rummel C. Norepinephrine Inhibits Lipopolysaccharide-Stimulated TNF-α but Not Oxylipin Induction in n-3/n-6 PUFA-Enriched Cultures of Circumventricular Organs. Int J Mol Sci 2022; 23:ijms23158745. [PMID: 35955879 PMCID: PMC9368774 DOI: 10.3390/ijms23158745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sensory circumventricular organs (sCVOs) are pivotal brain structures involved in immune-to-brain communication with a leaky blood-brain barrier that detect circulating mediators such as lipopolysaccharide (LPS). Here, we aimed to investigate the potential of sCVOs to produce n-3 and n-6 oxylipins after LPS-stimulation. Moreover, we investigated if norepinephrine (NE) co-treatment can alter cytokine- and oxylipin-release. Thus, we stimulated rat primary neuroglial sCVO cultures under n-3- or n-6-enriched conditions with LPS or saline combined with NE or vehicle. Supernatants were assessed for cytokines by bioassays and oxylipins by HPLC-MS/MS. Expression of signaling pathways and enzymes were analyzed by RT-PCR. Tumor necrosis factor (TNF)α bioactivity and signaling, IL-10 expression, and cyclooxygenase (COX)2 were increased, epoxide hydroxylase (Ephx)2 was reduced, and lipoxygenase 15-(LOX) was not changed by LPS stimulation. Moreover, LPS induced increased levels of several n-6-derived oxylipins, including the COX-2 metabolite 15d-prostaglandin-J2 or the Ephx2 metabolite 14,15-DHET. For n-3-derived oxylipins, some were down- and some were upregulated, including 15-LOX-derived neuroprotectin D1 and 18-HEPE, known for their anti-inflammatory potential. While the LPS-induced increase in TNFα levels was significantly reduced by NE, oxylipins were not significantly altered by NE or changes in TNFα levels. In conclusion, LPS-induced oxylipins may play an important functional role in sCVOs for immune-to-brain communication.
Collapse
Affiliation(s)
- Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jacqueline Wolf
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Nockher
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
| | - Daniela Ott
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
- Correspondence:
| |
Collapse
|
11
|
Saunders EFH, Mukherjee D, Myers T, Wasserman E, Hameed A, Krishnamurthy VB, MacIntosh B, Domenichiello A, Ramsden CE, Wang M. Adjunctive dietary intervention for bipolar disorder: a randomized, controlled, parallel-group, modified double-blinded trial of a high n-3 plus low n-6 diet. Bipolar Disord 2022; 24:171-184. [PMID: 34218509 PMCID: PMC9157563 DOI: 10.1111/bdi.13112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the preliminary efficacy of a high n-3 plus low n-6 (H3-L6) dietary intervention in improving mood stability in Bipolar Disorder (BD) when compared to dietary intervention with usual U.S. levels of n-6 and n-3 polyunsaturated fatty acid (PUFA) intakes (control diet, CD). METHODS This 2-arm, parallel-group, randomized, modified double-blind, controlled 48-week study of 12-week intensive diet intervention in subjects with BD was conducted at a single suburban-rural site in the mid-Atlantic region. Participants with DSM-IV TR BD I or II with hypomanic or depressive symptoms were randomized, stratified on gender (N = 82). The intervention included the provision of group-specific study foods and dietary counseling. Variability of mood symptoms was measured by a twice-daily, 12-week ecological momentary analysis (EMA) paradigm, and group differences were analyzed using multilevel models. Circulating n-3 and n-6 fatty acids were measured at baseline and after 4, 8, and 12 weeks of diet exposure. RESULTS All 82 randomized participants were included in biochemical analyses. Seventy participants completed at least 2 EMA surveys and were included in primary EMA analyses. Variability in mood, energy, irritability, and pain as measured using EMA was reduced in the H3-L6 group compared to the CD group. No significant differences in mean ratings of mood symptoms, or any other symptom measures, were detected. The dietary intervention effect on target PUFAs significantly differed by the group over time. CONCLUSIONS A dietary intervention adjunctive to usual care showed preliminary efficacy in improving variability in mood symptoms in participants with BD. TRIAL REGISTRATION ClinicalTrials.Gov NCT02272010.
Collapse
Affiliation(s)
- Erika F. H. Saunders
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Dahlia Mukherjee
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Tiffany Myers
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily Wasserman
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Ahmad Hameed
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | | | - Beth MacIntosh
- Metabolic and Nutrition Research Core, University of North Carolina, Chapel Hill, NC, USA
| | | | - Christopher E. Ramsden
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
12
|
Ramsden CE, Zamora D, Faurot KR, MacIntosh B, Horowitz M, Keyes GS, Yuan ZX, Miller V, Lynch C, Honvoh G, Park J, Levy R, Domenichiello AF, Johnston A, Majchrzak-Hong S, Hibbeln JR, Barrow DA, Loewke J, Davis JM, Mannes A, Palsson OS, Suchindran CM, Gaylord SA, Mann JD. Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: randomized controlled trial. BMJ 2021; 374:n1448. [PMID: 34526307 PMCID: PMC8244542 DOI: 10.1136/bmj.n1448] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine whether dietary interventions that increase n-3 fatty acids with and without reduction in n-6 linoleic acid can alter circulating lipid mediators implicated in headache pathogenesis, and decrease headache in adults with migraine. DESIGN Three arm, parallel group, randomized, modified double blind, controlled trial. SETTING Ambulatory, academic medical center in the United States over 16 weeks. PARTICIPANTS 182 participants (88% women, mean age 38 years) with migraines on 5-20 days per month (67% met criteria for chronic migraine). INTERVENTIONS Three diets designed with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid altered as controlled variables: H3 diet (n=61)-increase EPA+DHA to 1.5 g/day and maintain linoleic acid at around 7% of energy; H3-L6 diet (n=61)-increase n-3 EPA+DHA to 1.5 g/day and decrease linoleic acid to ≤1.8% of energy; control diet (n=60)-maintain EPA+DHA at <150 mg/day and linoleic acid at around 7% of energy. All participants received foods accounting for two thirds of daily food energy and continued usual care. MAIN OUTCOME MEASURES The primary endpoints (week 16) were the antinociceptive mediator 17-hydroxydocosahexaenoic acid (17-HDHA) in blood and the headache impact test (HIT-6), a six item questionnaire assessing headache impact on quality of life. Headache frequency was assessed daily with an electronic diary. RESULTS In intention-to-treat analyses (n=182), the H3-L6 and H3 diets increased circulating 17-HDHA (log ng/mL) compared with the control diet (baseline-adjusted mean difference 0.6, 95% confidence interval 0.2 to 0.9; 0.7, 0.4 to 1.1, respectively). The observed improvement in HIT-6 scores in the H3-L6 and H3 groups was not statistically significant (-1.6, -4.2 to 1.0, and -1.5, -4.2 to 1.2, respectively). Compared with the control diet, the H3-L6 and H3 diets decreased total headache hours per day (-1.7, -2.5 to -0.9, and -1.3, -2.1 to -0.5, respectively), moderate to severe headache hours per day (-0.8, -1.2 to -0.4, and -0.7, -1.1 to -0.3, respectively), and headache days per month (-4.0, -5.2 to -2.7, and -2.0, -3.3 to -0.7, respectively). The H3-L6 diet decreased headache days per month more than the H3 diet (-2.0, -3.2 to -0.8), suggesting additional benefit from lowering dietary linoleic acid. The H3-L6 and H3 diets altered n-3 and n-6 fatty acids and several of their nociceptive oxylipin derivatives in plasma, serum, erythrocytes or immune cells, but did not alter classic headache mediators calcitonin gene related peptide and prostaglandin E2. CONCLUSIONS The H3-L6 and H3 interventions altered bioactive mediators implicated in headache pathogenesis and decreased frequency and severity of headaches, but did not significantly improve quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT02012790.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beth MacIntosh
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Metabolic and Nutrition Research Core, UNC Medical Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Zhi-Xin Yuan
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Vanessa Miller
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chanee Lynch
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gilson Honvoh
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinyoung Park
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Russell Levy
- Cytokine Analysis Core, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony F Domenichiello
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Angela Johnston
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon Majchrzak-Hong
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Joseph R Hibbeln
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - David A Barrow
- Cytokine Analysis Core, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James Loewke
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - John M Davis
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Mannes
- Department of Perioperative Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Olafur S Palsson
- Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chirayath M Suchindran
- Department of Biostatistics, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Susan A Gaylord
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Douglas Mann
- Department of Neurology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|