1
|
Fauchon C, Binvignat M, Berenbaum F, Conaghan PG, Peyron R, Sellam J. Brain functional imaging contributions in osteoarthritis-related pain: A viewpoint. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100554. [PMID: 39720583 PMCID: PMC11667684 DOI: 10.1016/j.ocarto.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/23/2024] [Indexed: 12/26/2024] Open
Abstract
Objective Neuroimaging investigations are critical to provide a more direct assessment of brain disturbances associated with osteoarthritis (OA)-related pain, and to better understand its pathophysiology to develop new treatment strategies. This viewpoint aims to summarize the importance of the brain in OA pain. Method A European working group on pain in osteoarthritis GO-PAIN (Going Inside Osteoarthritis-related Pain Phenotyping) has been created to work on a global assessment of the OA-related pain. Relevant scientific literature was evaluated, summarized and discussed to expose advances in functional brain alterations related-to OA pain. Results Findings of neuroimaging studies are highly heterogenous and based on small sample size, but some key brain alterations associated with OA pain can be identified across experiments. A systematic literature review conducted by Hall and colleagues (2023) found lower activity, connectivity, and grey matter volume in the right anterior insula in patients with OA than in healthy controls. Other works also pointed out that activity of specific brain regions could serve as a potential surrogate biomarker, but several limitations and confounding factors needs to be addressed. Conclusions Brain functional imaging provides opportunities to accurately address an OA-related pain endophenotype. To encompass limitations and fill the gaps from the previous studies, we propose a blueprint for the next 5 years and stimulate ideas for others working in the field.
Collapse
Affiliation(s)
- Camille Fauchon
- University of Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Marie Binvignat
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint-Antoine (CRSA) Inserm UMRS-938, Sorbonne Université, Paris, France
| | - Francis Berenbaum
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint-Antoine (CRSA) Inserm UMRS-938, Sorbonne Université, Paris, France
| | - Philip G. Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roland Peyron
- Université Jean Monnet, CHU Saint-Etienne, Inserm UMR-1028, CRNL, NeuroPain, Saint-Etienne, France
| | - Jérémie Sellam
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint-Antoine (CRSA) Inserm UMRS-938, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Mills EP, Bosma RL, Rogachov A, Cheng JC, Osborne NR, Kim JA, Besik A, El‐Sayed R, Bhatia A, Davis KD. Sex-Specific White Matter Abnormalities Across the Dynamic Pain Connectome in Neuropathic Pain: A Fixel-Based Analysis Study. Hum Brain Mapp 2025; 46:e70135. [PMID: 39803943 PMCID: PMC11726370 DOI: 10.1002/hbm.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion. However, the enigmatic white matter structural features underpinning these functional networks and the relationship between structure and function/dysfunction in NP remain poorly understood. Here we used fixel-based analysis of diffusion weighted imaging data in 80 individuals (40 with NP [21 female, 19 male] and 40 sex- and age-matched healthy controls [HCs]) to evaluate white matter microstructure (fiber density [FD]), macrostructure (fiber bundle cross section) and combined microstructure and macrostructure (fiber density and cross section) within anatomical connections that support the DPC. We additionally examined whether there are sex-specific abnormalities in NP white matter structure. We performed fixel-wise and connection-specific mean analyses and found three main ways in which individuals with NP differed from HCs: (1) people with NP exhibited abnormally low FD and FDC within the corona radiata consistent with the ascending nociceptive pathway between the sensory thalamus and primary somatosensory cortex (S1). Furthermore, the entire sensory thalamus-S1 pathway exhibited abnormally low FD and FDC in people with NP, and this effect was driven by the females with NP; (2) females, but not males, with NP had abnormally low FD within the cingulum consistent with the right medial prefrontal cortex-posterior cingulate cortex DMN pathway; and (3) individuals with NP had higher connection-specific mean FDC than HCs in the anterior insula-temporoparietal junction and sensory thalamus-posterior insula pathways. However, sex-specific analyses did not corroborate these connection-specific findings in either females or males with NP. Our findings suggest that females with NP exhibit microstructural and macrostructural white matter abnormalities within the DPC networks including the ascending nociceptive system and DMN. We propose that aberrant white matter structure contributes to or is driven by functional abnormalities associated with NP. Our sex-specific findings highlight the utility and importance of using sex-disaggregated analyses to identify white matter abnormalities in clinical conditions such as chronic pain.
Collapse
Affiliation(s)
- Emily P. Mills
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Rachael L. Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Joshua C. Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Natalie R. Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Junseok A. Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Ariana Besik
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Rima El‐Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Anuj Bhatia
- Department of Anesthesia and Pain ManagementUniversity Health NetworkTorontoOntarioCanada
- Department of AnesthesiaUniversity of TorontoTorontoOntarioCanada
| | - Karen D. Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Li JZ, Mills EP, Osborne NR, Cheng JC, Sanmugananthan VV, El-Sayed R, Besik A, Kim JA, Bosma RL, Rogachov A, Davis KD. Individual differences in conditioned pain modulation are associated with functional connectivity within the descending antinociceptive pathway. Pain 2024:00006396-990000000-00774. [PMID: 39661368 DOI: 10.1097/j.pain.0000000000003478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/12/2024]
Abstract
ABSTRACT The perception of pain and ability to cope with it varies widely amongst people, which in part could be due to the presence of inhibitory (antinociceptive) or facilitatory (pronociceptive) effects in conditioned pain modulation (CPM). This study examined whether individual differences in CPM reflect functional connectivity (FC) strengths within nodes of the descending antinociceptive pathway (DAP). A heat-based CPM paradigm and resting-state functional magnetic resonance imaging (rs-fMRI) were used to test the hypothesis that an individual's capacity to exhibit inhibitory CPM (changes in test stimuli [TS] pain due to a conditioning stimulus [CS]) reflects FC of the subgenual anterior cingulate cortex (sgACC), periaqueductal gray (PAG), and rostral ventromedial medulla (RVM). A total of 151 healthy participants (72 men, 79 women) underwent CPM testing and rs-fMRI. Three types of CPM were identified based on the effect of the CS on TS pain: (1) Antinociception: CS reduced TS pain in 45% of participants, (2) No-CPM: CS did not change TS pain in 15% of participants, and (3) Pronociception: CS increased TS pain in 40% of participants. Only the Antinociceptive subgroup exhibited FC between the left sgACC and PAG, right sgACC and PAG, and RVM and PAG. Furthermore, only the Antinociceptive subgroup exhibited a correlation of both left and right sgACC-RVM FC (medium effect sizes) with CPM effect magnitude. Women, compared with men were more likely to be categorized as pronociceptive. These data support the proposition that FC of the DAP reflects or contributes to inhibitory CPM.
Collapse
Affiliation(s)
- Janet Z Li
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Emily P Mills
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vaidhehi V Sanmugananthan
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ariana Besik
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Chen W, Zhan L, Jia T. Sex Differences in Hierarchical and Modular Organization of Functional Brain Networks: Insights from Hierarchical Entropy and Modularity Analysis. ENTROPY (BASEL, SWITZERLAND) 2024; 26:864. [PMID: 39451941 PMCID: PMC11507829 DOI: 10.3390/e26100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Existing studies have demonstrated significant sex differences in the neural mechanisms of daily life and neuropsychiatric disorders. The hierarchical organization of the functional brain network is a critical feature for assessing these neural mechanisms. But the sex differences in hierarchical organization have not been fully investigated. Here, we explore whether the hierarchical structure of the brain network differs between females and males using resting-state fMRI data. We measure the hierarchical entropy and the maximum modularity of each individual, and identify a significant negative correlation between the complexity of hierarchy and modularity in brain networks. At the mean level, females show higher modularity, whereas males exhibit a more complex hierarchy. At the consensus level, we use a co-classification matrix to perform a detailed investigation of the differences in the hierarchical organization between sexes and observe that the female group and the male group exhibit different interaction patterns of brain regions in the dorsal attention network (DAN) and visual network (VIN). Our findings suggest that the brains of females and males employ different network topologies to carry out brain functions. In addition, the negative correlation between hierarchy and modularity implies a need to balance the complexity in the hierarchical organization of the brain network, which sheds light on future studies of brain functions.
Collapse
Affiliation(s)
| | | | - Tao Jia
- College of Computer and Information Science, Southwest University, Chongqing 400715, China; (W.C.); (L.Z.)
| |
Collapse
|
5
|
Li Y, Jiang Z, Zuo W, Huang C, Zhao J, Liu P, Wang J, Guo J, Zhang X, Wang M, Lu Y, Hou W, Wang Q. Sexual dimorphic distribution of G protein-coupled receptor 30 in pain-related regions of the mouse brain. J Neurochem 2024; 168:2423-2442. [PMID: 37924265 DOI: 10.1111/jnc.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Sex differences in pain sensitivity have contributed to the fact that medications for curing chronic pain are unsatisfactory. However, the underlying mechanism remains to be elucidated. Brain-derived estrogen participates in modulation of sex differences in pain and related emotion. G protein-coupled receptor 30 (GPR30), identified as a novel estrogen receptor with a different distribution than traditional receptors, has been proved to play a vital role in regulating pain affected by estrogen. However, the contribution of its distribution to sexually dimorphic pain-related behaviors has not been fully explored. In the current study, immunofluorescence assays were applied to mark the neurons expressing GPR30 in male and female mice (in metestrus and proestrus phase) in pain-related brain regions. The neurons that express CaMKIIα or VGAT were also labeled to observe overlap with GPR30. We found that females had more GPR30-positive (GPR30+) neurons in the primary somatosensory (S1) and insular cortex (IC) than males. In the lateral habenula (LHb) and the nucleus tractus solitarius (NTS), males had more GPR30+ neurons than females. Moreover, within the LHb, the expression of GPR30 varied with estrous cycle phase; females in metestrus had fewer GPR30+ neurons than those in proestrus. In addition, females had more GPR30+ neurons, which co-expressed CaMKIIα in the medial preoptic nucleus (mPOA) than males, while males had more than females in the basolateral complex of the amygdala (BLA). These findings may partly explain the different modulatory effects of GPR30 in pain and related emotional phenotypes between sexes and provide a basis for comprehension of sexual dimorphism in pain related to estrogen and GPR30, and finally provide new targets for exploiting new treatments of sex-specific pain.
Collapse
Affiliation(s)
- You Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chenchen Huang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peizheng Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jingzhi Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Temkin SM, Clayton JA. Inclusion of Sex and Gender to Improve the State of the Science in Women's Health. J Bone Joint Surg Am 2024; 106:1423-1428. [PMID: 38954641 DOI: 10.2106/jbjs.24.00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
ABSTRACT The influence of sex and gender-related factors on health and disease at all levels of scale, across all health conditions, and throughout the entire life course is increasingly clear. A series of policies instituted by the National Institutes of Health (NIH) that require researchers to include appropriate populations and to analyze the data accordingly have strengthened the evidence base around the health of women. Translating these advances to the entire research ecosystem can catalyze rigorous biomedical discovery that can improve health. We encourage journals, publishers, and funders to align their policies and expectations regarding sex and gender considerations in research with those of the NIH and other international funding agencies.
Collapse
Affiliation(s)
- Sarah M Temkin
- Office of Research on Women's Health, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
7
|
Templeton K. Sex and Gender in Orthopaedic Research: How Do We Continue to Move the Needle? J Bone Joint Surg Am 2024; 106:1419-1422. [PMID: 38905354 PMCID: PMC11662080 DOI: 10.2106/jbjs.24.00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Affiliation(s)
- Kimberly Templeton
- Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
8
|
Amajjar I, Vergauwen K, Willigenburg NW, Ham SJ, Smeets RJEM. Pain and fatigue in adult patients with multiple osteochondromas: The Netherlands. PLoS One 2024; 19:e0305640. [PMID: 39018287 PMCID: PMC11253920 DOI: 10.1371/journal.pone.0305640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Multiple Osteochondromas (MO) is a rare genetic disorder characterised by the presence of numerous benign bone tumours, known as osteochondromas. Within the spectrum of debilitating symptoms associated with MO, pain is recognized as a major problem. Interestingly, our clinical observations suggest that fatigue is also a significant concern but has merely been touched upon in MO literature. This study aims to (1) assess the level of pain and fatigue in adult patients with MO; (2) compare fatigue in MO to healthy subjects and patients with Rheumatoid Arthritis (RA); (3) identify associated variables for pain and fatigue in patients with MO. METHODS In this cross-sectional study, 353 adult MO patients completed a survey with validated questionnaires on pain, fatigue and psychosocial factors. Pain and fatigue were assessed with the Numeric Rating Scale (NRS), and fatigue was also measured with the Checklist Individual Strength (CIS). Fatigue (CIS) was compared with reference scores of healthy subjects and patients with RA, using a one-sample t-test. Multiple linear regression models for pain and fatigue were developed using a-priori selected independent variables based on a theoretical framework (ICF-model). RESULTS Pain was reported by 87.8% (NRS = 3.19±2.6) and fatigue by 90.4% (NRS = 4.1±2.6) of patients with MO. Fatigue scores for MO (CIS = 84.1±15.3) were significantly higher (p<0.001) compared to reference scores of healthy subjects and patients with RA. The multivariable analysis for pain provided a final regression model with six variables (R2 = 0.445, p<0.001) of which fear avoidance beliefs and fatigue had the strongest association. For the fatigue models NRS (R2 = 0.455, p<0.001) and CIS (R2 = 0.233, p<0.001), the strongest associations were found with anxiety and depression respectively. CONCLUSIONS Pain and fatigue are highly prevalent in patients with MO. Fatigue is significantly higher compared to healthy subjects and patients with RA. Several variables associated with pain and fatigue have been identified that could help improve multidisciplinary treatment plans.
Collapse
Affiliation(s)
- Ihsane Amajjar
- Department of Orthopaedic Surgery, OLVG, Amsterdam, The Netherlands
- Department of Rehabilitation Medicine, CAPHRI, Maastricht University, Maastricht, The Netherlands
| | - Kuni Vergauwen
- Department of Rehabilitation Medicine, CAPHRI, Maastricht University, Maastricht, The Netherlands
- Department of Health Care, AP University College, Antwerp, Belgium
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| | | | - S. John Ham
- Department of Orthopaedic Surgery, OLVG, Amsterdam, The Netherlands
| | - Rob J. E. M. Smeets
- Department of Health Care, AP University College, Antwerp, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
- Clinics in Rehabilitation, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Mease PJ. Navigating the complexity of pain in psoriatic arthritis and axial spondyloarthritis. Curr Opin Rheumatol 2024; 36:282-288. [PMID: 38690783 DOI: 10.1097/bor.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW Pain is the most common and often most troublesome feature of chronic autoimmune diseases such as psoriatic arthritis (PsA) and axial spondyloarthritis (AxSpA). A predominant concept is that the main source of pain is from disease-induced tissue inflammation and structural damage, activating peripheral nerve fibers which relay to the central nervous system. This mechanism is nociceptive pain and the presumption has been that controlling inflammation will be sufficient to reduce this form of pain. However, despite control of inflammation, patients may still have significant residual pain. RECENT FINDINGS We are learning that there are additional pain mechanisms, neuropathic and nociplastic, that are often operative in patients with rheumatologic conditions, that can significantly influence pain experience, quantitation of disease activity, and may benefit from therapeutic approaches distinct from immunotherapy. Neuropathic pain arises from diseased or damaged nerve tissue and nociplastic pain reflects sensitization of the central nervous system due to multiple genetic, neurobiologic, neural network dysregulation, and psychosocial factors. Pain arising from these mechanisms influence assessment of disease activity and thus needs to be factored into decision-making about immunotherapy efficacy. SUMMARY This review addresses the importance of accurately assessing the complex mechanisms of pain experience in patients with PsA and AxSpA to more appropriately manage immunomodulatory, neuromodulatory, and nonpharmacologic therapies.
Collapse
Affiliation(s)
- Philip J Mease
- Rheumatology Research, Providence Swedish Medical Center, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
10
|
Sabater-Gárriz Á, Montoya P, Riquelme I. Enhanced EEG power density during painful stretching in individuals with cerebral palsy. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 150:104760. [PMID: 38795555 DOI: 10.1016/j.ridd.2024.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Pain perception mechanisms in cerebral palsy remain largely unclear. AIMS This study investigates brain activity in adults with cerebral palsy during painful and non-painful stretching to elucidate their pain processing characteristics. METHODS AND PROCEDURES Twenty adults with cerebral palsy and 20 controls underwent EEG in three conditions: rest, non-painful stretching, and painful stretching. Time-frequency power density of theta, alpha, and beta waves in somatosensory and frontal cortices was analyzed, alongside baseline pressure pain thresholds. OUTCOMES AND RESULTS Cerebral palsy individuals exhibited higher theta, alpha, and beta power density in both cortices during painful stretching compared to rest, and lower during non-painful stretching. Controls showed higher power density during non-painful stretching but lower during painful stretching. Cerebral palsy individuals had higher pain sensitivity, with those more sensitive experiencing greater alpha power density. CONCLUSIONS AND IMPLICATIONS These findings confirm alterations in the cerebral processing of pain in individuals with cerebral palsy. This knowledge could enhance future approaches to the diagnosis and treatment of pain in this vulnerable population.
Collapse
Affiliation(s)
- Álvaro Sabater-Gárriz
- Balearic ASPACE Foundation, Marratxí, Spain; Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Pedro Montoya
- Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Inmaculada Riquelme
- Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma de Mallorca, Spain.
| |
Collapse
|
11
|
Quesada C, Fauchon C, Pommier B, Bergandi F, Peyron R, Mertens P, Garcia-Larrea L. Field recordings of transcranial magnetic stimulation in human brain postmortem models. Pain Rep 2024; 9:e1134. [PMID: 38375090 PMCID: PMC10876241 DOI: 10.1097/pr9.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction The ability of repetitive transcranial magnetic stimulation (rTMS) to deliver a magnetic field (MF) in deep brain targets is debated and poorly documented. Objective To quantify the decay of MF in the human brain. Methods Magnetic field was generated by single pulses of TMS delivered at maximum intensity using a flat or angulated coil. Magnetic field was recorded by a 3D-magnetic probe. Decay was measured in the air using both coils and in the head of 10 postmortem human heads with the flat coil being positioned tangential to the scalp. Magnetic field decay was interpreted as a function of distance to the coil for 6 potential brain targets of noninvasive brain stimulation: the primary motor cortex (M1, mean depth: 28.5 mm), dorsolateral prefrontal cortex (DLPFC: 28 mm), secondary somatosensory cortex (S2: 35.5 mm), posterior and anterior insulae (PI: 38.5 mm; AI: 43.5 mm), and midcingulate cortex (MCC: 57.5 mm). Results In air, the maximal MF intensities at coil center were 0.88 and 0.77 T for the flat and angulated coils, respectively. The maximal intracranial MF intensity in the cadaver model was 0.34 T, with a ∼50% decay at 15 mm and a ∼75% MF decay at 30 mm. The decay of the MF in air was similar for the flat coil and significantly less attenuated with the angulated coil (a ∼50% decay at 20 mm and a ∼75% MF decay at 45 mm). Conclusions Transcranial magnetic stimulation coil MFs decay in brain structures similarly as in air, attenuation with distance being significantly lower with angulated coils. Reaching brain targets deeper than 20 mm such as the insula or Antérior Cingulate Cortex seems feasible only when using angulated coils. The abacus of MF attenuation provided here can be used to adjust modalities of deep brain stimulation with rTMS in future research protocols.
Collapse
Affiliation(s)
- Charles Quesada
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- Physiotherapy Department, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Lyon, France
| | - Camille Fauchon
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
| | - Benjamin Pommier
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
| | - Florian Bergandi
- University of Medecine Jacques Lisfranc, Anatomy Laboratory, UJM, Saint-Etienne, France
| | - Roland Peyron
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- Neurological Department & CETD, University Hospital, CHU Saint-Etienne, Saint-Etienne, France
| | - Patrick Mertens
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- Laboratory of Anatomy, Faculté de Médecine Lyon-est, Université Claude Bernard Lyon 1, Saint-Etienne and Lyon, France
- CETD Neurological Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| | - Luis Garcia-Larrea
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- CETD Neurological Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
12
|
Failla MD, Beach PA, Atalla S, Dietrich MS, Bruehl S, Cowan RL, Monroe TB. Gender Differences in Pain Threshold, Unpleasantness, and Descending Pain Modulatory Activation Across the Adult Life Span: A Cross Sectional Study. THE JOURNAL OF PAIN 2024; 25:1059-1069. [PMID: 37956742 PMCID: PMC10960699 DOI: 10.1016/j.jpain.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
The neurobiological underpinnings of gender differences in pain perception, and how these differences may be modified by age, are incompletely understood, placing patients at risk of suboptimal pain management. Using functional magnetic resonance imaging, we examined brain responses in the descending pain modulatory system (DPMS, specifically, dorsolateral prefrontal cortex, anterior cingulate cortex, insula, hypothalamus, amygdala, and periaqueductal gray, during an evoked pain task. We investigated the interaction of age and gender in our sample of healthy adults (27 females, 32 males, 30-86 years) on DPMS response. In a perceptually matched thermal pain paradigm, we investigated pain unpleasantness and neural responses for 3 heat pain percepts: just noticeable pain, weak pain, and moderate pain (MP). Females reported just noticeable pain at a lower temperature, but reported less unpleasantness at weak pain and MP percepts, compared to males. There was a significant age-by-gender interaction during moderate pain in the right anterior cingulate cortex and bilateral insula, such that, males had a stronger positive relationship between DPMS response and age compared to females in these regions. Our results indicate that differences in DPMS responses may explain some gender differences in pain perception and that this effect may change across the adult lifespan. PERSPECTIVE: Gender differences in pain have been well-documented but the brain mechanisms for these differences are still unclear. This article describes potential differences in brain functioning during different levels of pain that could explain differences in pain responses between men and women across the adult lifespan.
Collapse
Affiliation(s)
- Michelle D. Failla
- College of Nursing, The Ohio State University, Columbus, OH
- Nisonger Center, The Ohio State University, Columbus, OH
| | - Paul A. Beach
- Department of Neurology, Emory University, Atlanta, GA
| | | | | | - Stephen Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Ronald L. Cowan
- Departments of Psychiatry and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN
| | - Todd B. Monroe
- College of Nursing, The Ohio State University, Columbus, OH
| |
Collapse
|
13
|
Reyes N, Huang JJ, Choudhury A, Pondelis N, Locatelli EVT, Hollinger R, Felix ER, Pattany PM, Galor A, Moulton EA. FL-41 Tint Reduces Activation of Neural Pathways of Photophobia in Patients with Chronic Ocular Pain. Am J Ophthalmol 2024; 259:172-184. [PMID: 38101593 PMCID: PMC10939838 DOI: 10.1016/j.ajo.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE To assess the therapeutic effect of tinted lenses (FL-41) on photophobia and light-evoked brain activity using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular surface pain. DESIGN Prospective case series. METHODS 25 subjects from the Miami veterans affairs (VA) eye clinic were recruited based on the presence of chronic ocular pain, dry eye symptoms, and photophobia. Using a 3T MRI scanner, subjects underwent 2 fMRI scans using an event-related design based on light stimuli: one scan while wearing FL-41 lenses and one without. Unpleasantness ratings evoked by the light stimuli were collected after each scan. RESULTS With FL-41 lenses, subjects reported decreased (n = 19), maintained (n = 2), or increased (n = 4) light-evoked unpleasantness ratings. Group analysis at baseline (no lens) revealed significant light evoked responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral insula, bilateral frontal pole, visual, precuneus, paracingulate, and anterior cingulate cortices (ACC) as well as cerebellar vermis, bilateral cerebellar hemispheric lobule VI, and bilateral cerebellar crus I and II. With FL-41 lenses, light-evoked responses were significantly decreased in bilateral S1, bilateral S2, bilateral insular, right temporal pole, precuneus, ACC, and paracingulate cortices as well as bilateral cerebellar hemispheric lobule VI. CONCLUSION FL-41 lenses modulated photophobia symptoms in some individuals with chronic ocular pain. In conjunction, FL-41 lenses decreased activation in cortical areas involved in processing affective and sensory-discriminative dimensions of pain. Further research into these relationships will advance the ability to provide precision therapy for individuals with ocular pain.
Collapse
Affiliation(s)
- Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Jaxon J Huang
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Anjalee Choudhury
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Nicholas Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia (N.P., E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Massachusetts, USA
| | - Elyana V T Locatelli
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Ruby Hollinger
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA
| | - Elizabeth R Felix
- Research Service, Miami Veterans Administration Medical Center (E.R.F.), Miami, Florida, USA; Physical Medicine and Rehabilitation (E.R.F.), University of Miami, Miami, Florida, USA
| | - Pradip M Pattany
- Department of Radiology (P.M.P.), University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia (N.P., E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Massachusetts, USA; Department of Ophthalmology (E.A.M.), Boston Children's Hospital, Harvard Medical School, Massachusetts, USA.
| |
Collapse
|
14
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
15
|
Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal Similarity of Pain Brain Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:639-657. [PMID: 38468056 DOI: 10.1007/978-3-031-47606-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.
Collapse
Affiliation(s)
- Camille Fauchon
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France.
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France.
| | - Hélène Bastuji
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| | - Roland Peyron
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France
- CHU, centre de la douleur, Saint-Etienne, France
| | - Luis Garcia-Larrea
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| |
Collapse
|
16
|
Hector MS, Cheng JC, Hemington KS, Rogachov A, Kim JA, Osborne NR, Bosma RL, Fauchon C, Ayoub LJ, Inman R, Oh J, Anastakis DJ, Davis KD. Resilience is associated with cortical gray matter of the antinociceptive pathway in people with chronic pain. Biol Psychol 2023; 183:108658. [PMID: 37567549 DOI: 10.1016/j.biopsycho.2023.108658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Resilience is an important personal characteristic that influences health and recovery. Previous studies of chronic pain suggest that highly resilient people may be more effective at modulating their pain. Since brain gray matter in the antinociceptive pathway has also been shown to be abnormal in people with chronic pain, we examined whether resilience is related to gray matter in regions of interest (ROIs) of the antinociceptive pathway (rostral and subgenual anterior cingulate cortex (rACC, sgACC), anterior insula (aINS), dorsolateral prefrontal cortex (dlPFC)) normally and in people who are experiencing chronic pain. We extracted gray matter volume (GMV) and cortical thickness (CT) from 3T MRIs of 88 people with chronic pain (half males/females) and 86 healthy controls (HCs), who completed The Resilience Scale and Brief Pain Inventory. We found that resilience scores were significantly lower in people with chronic pain compared to HCs, whereas ROI GMV and CT were not different between groups. Resilience negatively correlated with average pain scores and positively correlated with GMV in the bilateral rACC, sgACC, and left dlPFC of people with chronic pain. Mediation analyses revealed that GMV in the right rACC and left sgACC partially co-mediated the relationship between resilience and average pain in people with chronic pain. The resilience-pain and some resilience-GMV relationships were sex-dependent. These findings suggest that the antinociceptive pathway may play a role in the impact of resilience on one's ability to modulate chronic pain. A better understanding of the brain-resilience relationship may help advance evidence-based approaches to pain management.
Collapse
Affiliation(s)
- Melinda S Hector
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Robert Inman
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Dimitri J Anastakis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Choudhury A, Reyes N, Galor A, Mehra D, Felix E, Moulton EA. Clinical Neuroimaging of Photophobia in Individuals With Chronic Ocular Surface Pain. Am J Ophthalmol 2023; 246:20-30. [PMID: 36223850 PMCID: PMC10964268 DOI: 10.1016/j.ajo.2022.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To examine neural mechanisms underlying photophobia in individuals with chronic ocular surface pain by using functional magnetic resonance imaging (fMRI). DESIGN Cross-sectional case/control analysis. METHODS A total of 16 individuals from the Miami Veterans Affairs eye clinic underwent comprehensive ocular surface evaluations and were surveyed for ocular surface symptoms. Case patients included patients who reported chronic ocular surface pain symptoms and light sensitivity at least most of the time over 1 week. Controls included persons without chronic ocular surface pain who reported no or minimal light sensitivity. All patients viewed light stimuli during 2 fMRI scans, one before and one after topical anesthetic instillation, and rated their level of pain intensity to the stimulus at the end of each scan. Areas of brain activation in response to light stimuli presentation were correlated with pain responses and examined post- vs pre-anesthesia. RESULTS Case patients (n = 8) reported higher pain intensity ratings than controls (n = 8) in response to light stimuli during fMRI. Case patient ratings correlated more with light-evoked activation in pain-related areas within the trigeminal brainstem, primary somatosensory cortex (S1), anterior mid-cingulate cortex (aMCC), and insula than in controls. Topical anesthesia led to varying responses in pain ratings among case patients as well as decreased light-evoked activation in S1 and aMCC. CONCLUSIONS The trigeminal nociceptive system may contribute to photophobia in individuals with chronic ocular surface pain. We demonstrate modulation of cortical structures in this pathway with topically applied anesthetic to the eyes. Further understanding of modulatory interactions that govern ocular surface pain and photophobia is critical for developing effective, precision-based therapies.
Collapse
Affiliation(s)
- Anjalee Choudhury
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Nicholas Reyes
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Divy Mehra
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Elizabeth Felix
- Research Service (E.F.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Physical Medicine and Rehabilitation (E.F.), University of Miami, Miami, Florida, USA
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab (E.A.M.), Pain and Affective Neuroscience Center, Department of Anesthesia (E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Ophthalmology (E.A.M.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
Ruschak I, Montesó-Curto P, Rosselló L, Aguilar Martín C, Sánchez-Montesó L, Toussaint L. Fibromyalgia Syndrome Pain in Men and Women: A Scoping Review. Healthcare (Basel) 2023; 11:223. [PMID: 36673591 PMCID: PMC9859454 DOI: 10.3390/healthcare11020223] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Fibromyalgia syndrome (FMS) is a chronic musculoskeletal disorder of unknown etiology that affects up to 5.0% of the world population. It has a high female predominance, between 80 and 96%. Due to the low number of diagnosed men, research work has focused mainly on women. The extensive body of literature on sex differences in pain in the general population suggests that men and women differ in their responses to pain, with greater sensitivity to pain and a higher risk of clinical pain commonly observed among women. This review aims to: (1) determine how pain is assessed or what types of questionnaires are used, (2) examine whether there are differences in pain characteristics between men and women with FMS and (3) describe how pain is conceptualized or manifested in patients at a qualitative level. In this study, the scoping review method of articles published in the last 5 years (2016-2022) was used. Ten articles were included. The most used questionnaires and scales to assess pain were the PVAS (Pain Visual Analogue Scale) and the FIQ (Fibromyalgia Impact Questionnaire). On the other hand, five categories were obtained: (1) qualities of pain, (2) uncertainty and chaos, (3) pain as an aggravating factor, (4) adaptation to the new reality and (5) the communication of pain. It has been observed that both subjective perception and widespread pain are higher in women. Men, on the other hand, have a worse impact of the pathology, more painful experiences and more catastrophic thoughts about pain. An updated knowledge of pain in FMS and whether it differs according to sex would be beneficial for clinicians to make an earlier diagnosis and treatment and, in turn, benefit patients suffering from this chronic disease.
Collapse
Affiliation(s)
- Ilga Ruschak
- Internal Medicine Unit, Sant Pau i Santa Tecla Hospital, 43003 Tarragona, Spain
- Faculty and Department of Nursing, Rovira i Virgili University, 43003 Tarragona, Spain
| | - Pilar Montesó-Curto
- Primary Care in Institut Català de la Salut (ICS), 43500 Tortosa, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, 43201 Reus, Spain
| | - Lluís Rosselló
- Rheumatology Unit, Fibromyalgia and Chronic Fatigue Syndrome Unit Coordinator, Santa Maria Hospital, 25198 Lleida, Spain
| | - Carina Aguilar Martín
- Research Support Unit, University Institute for Primary Care Research (IDIAP Jordi Gol), 43500 Tortosa, Spain
- Evaluation Unit, Primary Health Care Terres de l’Ebre Department, Institut Català de la Salut, 43500 Tortosa, Spain
| | - Laura Sánchez-Montesó
- Physical Medicine and Rehabilitation, Università di Roma Tor Vergata, Policlinco Tor Vergata, 00133 Rome, Italy
| | - Loren Toussaint
- Department of Psychology, Luther College, Decorah, IA 52101, USA
| |
Collapse
|
19
|
Sanmugananthan VV, Cheng JC, Hemington KS, Rogachov A, Osborne NR, Bosma RL, Kim JA, Inman RD, Davis KD. Can we characterize A-P/IAP behavioural phenotypes in people with chronic pain? FRONTIERS IN PAIN RESEARCH 2023; 4:1057659. [PMID: 36874441 PMCID: PMC9975728 DOI: 10.3389/fpain.2023.1057659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Two behavioural phenotypes in healthy people have been delineated based on their intrinsic attention to pain (IAP) and whether their reaction times (RT) during a cognitively-demanding task are slower (P-type) or faster (A-type) during experimental pain. These behavioural phenotypes were not previously studied in chronic pain populations to avoid using experimental pain in a chronic pain context. Since pain rumination (PR) may serve as a supplement to IAP without needing noxious stimuli, we attempted to delineate A-P/IAP behavioural phenotypes in people with chronic pain and determined if PR can supplement IAP. Behavioural data acquired in 43 healthy controls (HCs) and 43 age-/sex-matched people with chronic pain associated with ankylosing spondylitis (AS) was retrospectively analyzed. A-P behavioural phenotypes were based on RT differences between pain and no-pain trials of a numeric interference task. IAP was quantified based on scores representing reported attention towards or mind-wandering away from experimental pain. PR was quantified using the pain catastrophizing scale, rumination subscale. The variability in RT was higher during no-pain trials in the AS group than HCs but was not significantly different in pain trials. There were no group differences in task RTs in no-pain and pain trials, IAP or PR scores. IAP and PR scores were marginally significantly positively correlated in the AS group. RT differences and variability were not significantly correlated with IAP or PR scores. Thus, we propose that experimental pain in the A-P/IAP protocols can confound testing in chronic pain populations, but that PR could be a supplement to IAP to quantify attention to pain.
Collapse
Affiliation(s)
- Vaidhehi Veena Sanmugananthan
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Natalie Rae Osborne
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok Andrew Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Robert D Inman
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Zacharoff KL. Sex Differences in Pain and Its Treatment. Handb Exp Pharmacol 2023; 282:107-125. [PMID: 37528322 DOI: 10.1007/164_2023_686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Pain is a highly personal experience. Pain is often considered to be a purely neurologic phenomenon, but in actuality, it is a combination of both sensory and emotional experiences. This has sometimes been translated clinically toward a more mechanistic approach to the assessment and treatment of pain instead of one that does not discount pain mechanisms, but also is more inclusive of the need for humanism - considering the individual. In today's medical environment, more than ever before there is a significant amount of attention being paid to educating clinicians to better understand that several physiological, neurophysiological, and psychosocial factors can significantly impact responses to pain. The composition of these factors will be unique to that individual's life narrative, context, sex, and prior life experiences. Thus, the concept that a templated approach to pain assessment and pharmacotherapeutic treatment planning should not be expected to provide optimal patient satisfaction and treatment outcomes in the majority. The hypotheses that there may be sex-based differences in the pain experience in a variety of ways including pain sensitivity, tolerance to pain, threshold at which something becomes painful, and the effectiveness of endogenous pain modulation systems are not new and have been well represented in the literature. This chapter reviews important key findings in the scientific literature with respect to sex-based differences in pain and pain responses to experimentally induced painful stimuli, pain experienced in commonly occurring painful medical conditions, and variations in responses to pain treatments. Possible explanations to account for observed differences or similarities will also be discussed.
Collapse
Affiliation(s)
- Kevin L Zacharoff
- Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Anesthetic and Analgesic Drug Products Advisory Committee to the U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
21
|
Age and Sex in Back Pain Intensity—Retrospective Study of Conservatory vs. Surgical Discopathy Treatment. Life (Basel) 2022; 12:life12111808. [DOI: 10.3390/life12111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
(1) Background: The frequency of back pain diagnosis and treatment has markedly increased in recent years. Back pain may be caused by many factors and discopathy is one of them. The aim of the study was to assess the impact of age and sex on back pain intensity in rehabilitated patients with discopathy treated conservatively and surgically; (2) Methods: The study included 137 patients: 96 undergoing conservative therapy and 41 after back surgery due to discopathy. VAS and the Laitinen scale were used for pain assessment. All patients underwent a multidirectional rehabilitation program at the Department of Rehabilitation and Physical Medicine of the Medical University in Łódź; (3) Results: No statistically significant effect of age and sex was observed on the level of pain intensity on VAS and the Laitinen scale; (4) Conclusions: Age and sex do not seem to affect back pain intensity in rehabilitated patients treated conservatively and surgically for discopathy. The problem requires further research on a larger group of patients.
Collapse
|
22
|
Sex-related differences in experimental pain sensitivity in subjects with painful or painless neuropathy after surgical repair of traumatic nerve injuries. Pain Rep 2022; 7:e1033. [PMID: 36284797 PMCID: PMC9586924 DOI: 10.1097/pr9.0000000000001033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 12/01/2022] Open
Abstract
Higher pain intensities at all experimental stimuli but a tendency to faster recovery after cold conditioning stimuli were seen in women with neuropathy in comparison with men. Introduction: Sex-related influences represent a contributor to greater pain sensitivity and have a higher prevalence of many chronic pain conditions, including neuropathic pain (NP), among women. Objectives: The aim was to analyze how differences in ongoing pain, experimental pain intensity, and conditioned pain modulation (CPM) relate to sex in subjects with neuropathy after traumatic nerve injuries. Methods: Endogenous pain modulation was compared between male (n = 77) and female (n = 55) subjects and between subjects with NP (female = 31, male = 39) and pain-free subjects with posttraumatic neuropathy (female = 24, male = 38). Conditioned pain modulation was assessed by pain ratings to pressure stimuli before and after a noxious conditioning stimulus (CS) conducted with one arm submerged in cold water (4°C) for 1 minute. Time of recovery (Time off) of pain intensity from peak VASmaxc after CS was recorded and compared between male and female patients. Results: Greater ongoing pain intensity was found among female patients compared with male patients and more experimental pain after pressure and cold induced pain. Summing all groups together, women had 0.8 times higher odds (20%) of recovering sooner than men after CS (95% CI = 0.65–2.9). No differences in CPM, time off, and psychosocial variables were seen between female and male patients (P < 0.05). Conclusion: Our hypothesis for sex differences in endogenous pain modulation was only supported by a shorter after-sensation time after cold CS in female patients. No sex differences in the magnitude of CPM effect were identified. Increased pain intensity for experimental pain, in both neuropathic pain and neuropathy without pain, was found in female patients.
Collapse
|
23
|
Fauchon C, Kim JA, El-Sayed R, Osborne NR, Rogachov A, Cheng JC, Hemington KS, Bosma RL, Dunkley BT, Oh J, Bhatia A, Inman RD, Davis KD. A Hidden Markov Model reveals magnetoencephalography spectral frequency-specific abnormalities of brain state power and phase-coupling in neuropathic pain. Commun Biol 2022; 5:1000. [PMID: 36131088 PMCID: PMC9492713 DOI: 10.1038/s42003-022-03967-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.
Collapse
Affiliation(s)
- Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, M5T 1W7, Canada
| | - Jiwon Oh
- Div of Neurology, Dept of Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Anuj Bhatia
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Department of Anesthesia and Pain Medicine, Toronto Western Hospital, and University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
24
|
Benavent D, Capelusnik D, Ramiro S, Molto A, López-Medina C, Dougados M, Navarro-Compán V. Does gender influence outcome measures similarly in patients with spondyloarthritis? Results from the ASAS-perSpA study. RMD Open 2022; 8:rmdopen-2022-002514. [PMID: 36096523 PMCID: PMC9472201 DOI: 10.1136/rmdopen-2022-002514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the influence of gender on disease outcomes in patients with spondyloarthritis (SpA), including across SpA subtypes. METHODS Data from 4185 patients of 23 countries with a diagnosis of axial SpA (axSpA), peripheral SpA (pSpA) or psoriatic arthritis (PsA) from the Assessment of SpondyloArthritis International Society (ASAS)-perSpA study were analysed. Associations between gender and disease activity (Ankylosing Spondylitis Disease Activity Score (ASDAS), Bath Ankylosing Spondylitis Disease Activity Score (BASDAI), C-reactive protein (CRP)), function (Bath Ankylosing Spondylitis Functional Index (BASFI)) and overall health (ASAS Health Index (ASAS HI), European Quality of Life Five Dimension (EQ-5D)) outcomes were investigated. Multilevel multivariable linear mixed models adjusted for relevant confounders (and stratified by disease subtype in case of a relevant interaction) were used. RESULTS In total, 65%, 10% and 25% of patients had axSpA, pSpA and PsA, respectively. axSpA was more frequent in males (68%), whereas pSpA and PsA were more frequent in females (53% and 52%, respectively). A significant interaction between gender and disease subtype was found for ASDAS, BASDAI and BASFI. While being female independently contributed to higher BASDAI across the three disease subtypes (with varying magnitude), female gender was only associated with higher ASDAS in pSpA (β (95% CI): 0.36 (0.15 to 0.58)) and PsA (0.25 (0.12 to 0.38)) but not in axSpA (0.016 (-0.07 to 0.11)). No associations were observed between gender and CRP levels. Female gender was associated with higher ASAS HI and EQ-5D, without differences across disease subtype. CONCLUSION Female gender is associated with less favourable outcome measures across the SpA spectrum. However, while female gender influences BASDAI across the three subtypes, ASDAS is associated with gender only in pSpA and PsA but not in axSpA. Therefore, ASDAS is an appropriate instrument both for females and males with axSpA.
Collapse
Affiliation(s)
- Diego Benavent
- Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | - Dafne Capelusnik
- Maastricht University Faculty of Health Medicine and Life Sciences, Care and Public Health Research Institute CAPHRI, Maastricht, The Netherlands.,Rheumatology, Instituto de rehabilitación psicofísica, Ciudad de Buenos Aires, Argentina
| | - Sofia Ramiro
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.,Rheumatology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Anna Molto
- Clinical Epidemiology and Biostatistics, INSERM U1153, Université Paris-Cité, Paris, France.,Rheumatology, Hospital Cochin, Université Paris Descartes Faculté de Médecine, Paris, France
| | - Clementina López-Medina
- Rheumatology, Reina Sofia University Hospital, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba, University of Cordoba, Cordoba, Spain
| | - Maxime Dougados
- Rheumatology, Hospital Cochin, Université Paris Descartes Faculté de Médecine, Paris, France
| | | |
Collapse
|
25
|
Baran TM, Lin FV, Geha P. Functional brain mapping in patients with chronic back pain shows age-related differences. Pain 2022; 163:e917-e926. [PMID: 34799532 DOI: 10.1097/j.pain.0000000000002534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Low back pain is the most common pain condition and cause for disability in older adults. Older adults suffering from low back pain are more disabled than their healthy peers, are more predisposed to frailty, and tend to be undertreated. The cause of increased prevalence and severity of this chronic pain condition in older adults is unknown. Here, we draw on accumulating data demonstrating a critical role for brain limbic and sensory circuitries in the emergence and experience of chronic low back pain (CLBP) and the availability of resting-state brain activity data collected at different sites to study how brain activity patterns predictive of CLBP differ between age groups. We apply a data-driven multivariate searchlight analysis to amplitude of low-frequency fluctuation brain maps to classify patients with CLBP with >70% accuracy. We observe that the brain activity pattern including the paracingulate gyrus, insula/secondary somatosensory area, inferior frontal, temporal, and fusiform gyrus predicted CLBP. When separated by age groups, brain patterns predictive of older patients with CLBP showed extensive involvement of limbic brain areas including the ventromedial prefrontal cortex, the nucleus accumbens, and hippocampus, whereas only anterior insula paracingulate and fusiform gyrus predicted CLBP in the younger patients. In addition, we validated the relationships between back pain intensity ratings and CLBP brain activity patterns in an independent data set not included in our initial patterns' identification. Our results are the first to directly address how aging affects the neural signature of CLBP and point to an increased role of limbic brain areas in older patients with CLBP.
Collapse
Affiliation(s)
- Timothy M Baran
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Feng V Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Paul Geha
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
26
|
Abstract
Chronic pain affects 20% of adults and is one of the leading causes of disability worldwide. Women and girls are disproportionally affected by chronic pain. About half of chronic pain conditions are more common in women, with only 20% having a higher prevalence in men. There are also sex and gender differences in acute pain sensitivity. Pain is a subjective experience made up of sensory, cognitive, and emotional components. Consequently, there are multiple dimensions through which sex and gender can influence the pain experience. Historically, most preclinical pain research was conducted exclusively in male animals. However, recent studies that included females have revealed significant sex differences in the physiological mechanisms underlying pain, including sex specific involvement of different genes and proteins as well as distinct interactions between hormones and the immune system that influence the transmission of pain signals. Human neuroimaging has revealed sex and gender differences in the neural circuitry associated with pain, including sex specific brain alterations in chronic pain conditions. Clinical pain research suggests that gender can affect how an individual contextualizes and copes with pain. Gender may also influence the susceptibility to develop chronic pain. Sex and gender biases can impact how pain is perceived and treated clinically. Furthermore, the efficacy and side effects associated with different pain treatments can vary according to sex and gender. Therefore, preclinical and clinical research must include sex and gender analyses to understand basic mechanisms of pain and its relief, and to develop personalized pain treatment.
Collapse
Affiliation(s)
- Natalie R Osborne
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
27
|
Exploring sex differences in alpha brain activity as a potential neuromarker associated with neuropathic pain. Pain 2022; 163:1291-1302. [PMID: 34711764 DOI: 10.1097/j.pain.0000000000002491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.
Collapse
|
28
|
Gao L, Yang Y, Cai L, Xiong Y. Gender Differences in Pain Subtypes among Patients with Parkinson's Disease. J Integr Neurosci 2022; 21:120. [PMID: 35864771 DOI: 10.31083/j.jin2104120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND To determine the influence of gender on the different pain subtypes experienced by patients with Parkinson's disease (PD). METHODS Two hundred patients with PD were recruited for this research. Demographic features for all patients were recorded, as well as clinical data on age, disease duration, levodopa equivalent daily dose (LEDD), and scores for Unified Parkinson's Disease Rating Scale-III (UPDRS III), Hoehn-Yahr Scale (H&Y), King's Parkinson's disease Pain Scale (KPPS), Pittsburgh Sleep Quality Index (PSQI), Mini-mental State Examination (MMSE), activities of daily living scale (ADL), Hamilton Depression Rating Scale (HAMD), and Hamilton Anxiety Rating Scale (HAMA) scales. RESULTS Male and female patients showed no significant differences in terms of age, disease duration, LEDD, H&Y stage, and UPDRS III, HAMD, HAMA, PSQI and ADL scores. Women showed significantly lower MMSE than men, but their KPPS scores were higher (both p < 0.05). Female also showed significantly higher scores for chronic, fluctuation-related pain and oro-facial pain and more discoloration;edema/swelling than males (p < 0.05). CONCLUSIONS Female gender was associated with pain in PD patients, with stronger associations for certain subtypes of PD-related pain.
Collapse
Affiliation(s)
- Liang Gao
- Department of Neurology, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Yong Yang
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Laisheng Cai
- Department of Neurology, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Yuanping Xiong
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| |
Collapse
|
29
|
Martins D, Dipasquale O, Veronese M, Turkheimer F, Loggia ML, McMahon S, Howard MA, Williams SC. Transcriptional and cellular signatures of cortical morphometric remodelling in chronic pain. Pain 2022; 163:e759-e773. [PMID: 34561394 PMCID: PMC8940732 DOI: 10.1097/j.pain.0000000000002480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a highly debilitating and difficult to treat condition, which affects the structure of the brain. Although the development of chronic pain is moderately heritable, how disease-related alterations at the microscopic genetic architecture drive macroscopic brain abnormalities is currently largely unknown. Here, we examined alterations in morphometric similarity (MS) and applied an integrative imaging transcriptomics approach to identify transcriptional and cellular correlates of these MS changes, in 3 independent small cohorts of patients with distinct chronic pain syndromes (knee osteoarthritis, low back pain, and fibromyalgia) and age-matched and sex-matched pain-free controls. We uncover a novel pattern of cortical MS remodelling involving mostly small-to-medium MS increases in the insula and limbic cortex (none of these changes survived stringent false discovery rate correction for the number of regions tested). This pattern of changes is different from that observed in patients with major depression and cuts across the boundaries of specific pain syndromes. By leveraging transcriptomic data from Allen Human Brain Atlas, we show that cortical MS remodelling in chronic pain spatially correlates with the brain-wide expression of genes related to pain and broadly involved in the glial immune response and neuronal plasticity. Our findings bridge levels to connect genes, cell classes, and biological pathways to in vivo imaging correlates of chronic pain. Although correlational, our data suggest that cortical remodelling in chronic pain might be shaped by multiple elements of the cellular architecture of the brain and identifies several pathways that could be prioritized in future genetic association or drug development studies.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital Boston, MA, United States
| | - Stephen McMahon
- Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Steven C.R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
30
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Osborne NR, Anastakis DJ, Kim JA, El-Sayed R, Cheng JC, Rogachov A, Hemington KS, Bosma RL, Fauchon C, Davis KD. Sex-Specific Abnormalities and Treatment-Related Plasticity of Subgenual Anterior Cingulate Cortex Functional Connectivity in Chronic Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:673538. [PMID: 35295450 PMCID: PMC8915549 DOI: 10.3389/fpain.2021.673538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.
Collapse
Affiliation(s)
- Natalie R. Osborne
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dimitri J. Anastakis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Junseok Andrew Kim
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rima El-Sayed
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C. Cheng
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S. Hemington
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L. Bosma
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Camille Fauchon
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Karen D. Davis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- *Correspondence: Karen D. Davis
| |
Collapse
|
32
|
Fauchon C, Meunier D, Faillenot I, Pomares FB, Bastuji H, Garcia-Larrea L, Peyron R. The Modular Organization of Pain Brain Networks: An fMRI Graph Analysis Informed by Intracranial EEG. Cereb Cortex Commun 2020; 1:tgaa088. [PMID: 34296144 PMCID: PMC8152828 DOI: 10.1093/texcom/tgaa088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.
Collapse
Affiliation(s)
- Camille Fauchon
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France
| | - David Meunier
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,Aix Marseille Université, CNRS, INT (Institute of Neuroscience de la Timone), Marseille 13005 France
| | - Isabelle Faillenot
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France
| | - Florence B Pomares
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W6, Canada
| | - Hélène Bastuji
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Claude Bernard Lyon 1, Villeurbanne 69100, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Luis Garcia-Larrea
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Roland Peyron
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France.,Service de Neurologie et Centre de la Douleur du CHU de St-Etienne, St-Etienne 42055, France
| |
Collapse
|