1
|
Wu K, Shao S, Dong YT, Liu YY, Chen XH, Cheng P, Qin X, Peng XH, Zhang YM. Spinal astrocyte-derived M-CSF mediates microglial reaction and drives visceral hypersensitivity following DSS-induced colitis. Neuropharmacology 2025; 270:110373. [PMID: 39978590 DOI: 10.1016/j.neuropharm.2025.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Visceral hypersensitivity is one of the most prevalent symptoms of inflammatory bowel disease (IBD), and it can be difficult to cure despite achieving endoscopic remission. Accumulating studies have described that macrophage colony-stimulating factor (M-CSF) modulates neuroinflammation in the central nervous system (CNS) and the development of chronic pain, while the underlying mechanism for whether and how M-CSF/CSF1R signaling pathway regulates visceral hypersensitivity following colitis remains unknown. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we determined that microglial accumulation occurred in the spinal dorsal horn during remission phase. The reactive microglia released inflammatory factor, increased neuronal excitability in the dorsal horn, and produced chronic visceral pain behaviors in DSS-treated adult male mice. In addition, we also found significantly increased signaling mediated by astrocytic M-CSF and microglial CSF1R in dorsal horn in the mice with colitis. Exogenous M-CSF induced microglial activation, neuronal hyperactivity and behavioral hypersensitivity in the control group, inhibition of astrocyte/microglia by fluorocitrate/minocycline significantly suppressed microglial and neuronal activity, and relieved the visceral hypersensitivity in the model mice. Overall, our experimental study uncovers the critical involvement of spinal astrocyte-derived M-CSF and reactive microglia in the initiation and maintenance of visceral hypersensitivity following colitis, thereby identifying spinal M-CSF as a target for treating chronic visceral pain. This may provide more accurate theoretical guidance for clinical patients with IBD.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xia Qin
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Morales-Soto W, Smith-Edwards KM. Unique properties of proximal and distal colon reflect distinct motor functions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G448-G454. [PMID: 40095602 DOI: 10.1152/ajpgi.00215.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
The gastrointestinal tract is made up of specialized organs that work in tandem to facilitate digestion. The colon regulates the final steps in this process where complex motor patterns in proximal regions facilitate the formation of fecal pellets that are propelled along the distal colon via self-sustaining neural peristalsis and temporarily stored before defecation. Historically, our understanding of colonic motility has focused primarily on distal regions, and the intrinsic reflex circuits of the enteric nervous system involved in neural peristalsis have been defined, but we do not yet have a clear grasp on the mechanisms orchestrating motor function in proximal regions. New approaches have brought to the forefront the unique structural, neurochemical, and functional characteristics that exist in distinct regions of the mouse and human colon. In this mini-review, we highlight key differences along the proximal-distal colonic axis and discuss how these differences relate to region-specific motor function.
Collapse
Affiliation(s)
- Wilmarie Morales-Soto
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Kristen M Smith-Edwards
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2025; 22:206-221. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wiese JJ, Manna S, Kühl AA, Fascì A, Elezkurtaj S, Sonnenberg E, Bubeck M, Atreya R, Becker C, Weixler B, Siegmund B, Patankar JV, Prüß MS, Schumann M. Myenteric Plexus Immune Cell Infiltrations and Neurotransmitter Expression in Crohn's Disease and Ulcerative Colitis. J Crohns Colitis 2024; 18:121-133. [PMID: 37565754 PMCID: PMC10821712 DOI: 10.1093/ecco-jcc/jjad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND AIMS Pain is a cardinal symptom in inflammatory bowel disease [IBD]. An important structure in the transduction of pain signalling is the myenteric plexus [MP]. Nevertheless, IBD-associated infiltration of the MP by immune cells lacks in-depth characterisation. Herein, we decipher intra- and periganglionic immune cell infiltrations in Crohn´s disease [CD] and ulcerative colitis [UC] and provide a comparison with murine models of colitis. METHODS Full wall specimens of surgical colon resections served to examine immune cell populations by either conventional immuno-histochemistry or immunofluorescence followed by either bright field or confocal microscopy. Results were compared with equivalent examinations in various murine models of intestinal inflammation. RESULTS Whereas the MP morphology was not significantly altered in IBD, we identified intraganglionic IBD-specific B cell- and monocyte-dominant cell infiltrations in CD. In contrast, UC-MPs were infiltrated by CD8+ T cells and revealed a higher extent of ganglionic cell apoptosis. With regard to the murine models of intestinal inflammation, the chronic dextran sulphate sodium [DSS]-induced colitis model reflected CD [and to a lesser extent UC] best, as it also showed increased monocytic infiltration as well as a modest B cell and CD8+ T cell infiltration. CONCLUSIONS In CD, MPs were infiltrated by B cells and monocytes. In UC, mostly CD8+ cytotoxic T cells were found. The chronic DSS-induced colitis in the mouse model reflected best the MP-immune cell infiltrations representative for IBD.
Collapse
Affiliation(s)
- Jakob J Wiese
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Subhakankha Manna
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Alberto Fascì
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elena Sonnenberg
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marvin Bubeck
- Department of Internal Medicine 1, University Hospital Erlangen, Faculty of Medicine, Erlangen, Germany
| | - Raja Atreya
- Department of Internal Medicine 1, University Hospital Erlangen, Faculty of Medicine, Erlangen, Germany
| | - Christoph Becker
- Department of Internal Medicine 1, University Hospital Erlangen, Faculty of Medicine, Erlangen, Germany
| | - Benjamin Weixler
- Klinik für Allgemein- und Viszeralchirurgie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jay V Patankar
- Department of Internal Medicine 1, University Hospital Erlangen, Faculty of Medicine, Erlangen, Germany
| | - Magdalena S Prüß
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin, – Berlin, BIH Biomedical Innovation Academy, BIH, Charité Clinician Scientist Program, 10178 Berlin, Germany
| | - Michael Schumann
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin, – Berlin, BIH Biomedical Innovation Academy, BIH, Charité Clinician Scientist Program, 10178 Berlin, Germany
| |
Collapse
|
5
|
Londregan A, Alexander TD, Covarrubias M, Waldman SA. Fundamental Neurochemistry Review: The role of enteroendocrine cells in visceral pain. J Neurochem 2023; 167:719-732. [PMID: 38037432 PMCID: PMC10917140 DOI: 10.1111/jnc.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
While visceral pain is commonly associated with disorders of the gut-brain axis, underlying mechanisms are not fully understood. Dorsal root ganglion (DRG) neurons innervate visceral structures and undergo hypersensitization in inflammatory models. The characterization of peripheral DRG neuron terminals is an active area of research, but recent work suggests that they communicate with enteroendocrine cells (EECs) in the gut. EECs sense stimuli in the intestinal lumen and communicate information to the brain through hormonal and electrical signaling. In that context, EECs are a target for developing therapeutics to treat visceral pain. Linaclotide is an FDA-approved treatment for chronic constipation that activates the intestinal membrane receptor guanylyl cyclase C (GUCY2C). Clinical trials revealed that linaclotide relieves both constipation and visceral pain. We recently demonstrated that the analgesic effect of linaclotide reflects the overexpression of GUCY2C on neuropod cells, a specialized subtype of EECs. While this brings some clarity to the relationship between linaclotide and visceral analgesia, questions remain about the intracellular signaling mechanisms and neurotransmitters mediating this communication. In this Fundamental Neurochemistry Review, we discuss what is currently known about visceral nociceptors, enteroendocrine cells, and the gut-brain axis, and ongoing areas of research regarding that axis and visceral pain.
Collapse
Affiliation(s)
- Annie Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tyler D. Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
6
|
Zhang S, Chen L, Feng B. An anesthesia protocol for robust and repeatable measurement of behavioral visceromotor responses to colorectal distension in mice. FRONTIERS IN PAIN RESEARCH 2023; 4:1202590. [PMID: 37305203 PMCID: PMC10250638 DOI: 10.3389/fpain.2023.1202590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Visceral motor responses (VMR) to graded colorectal distension (CRD) have been extensively implemented to assess the level of visceral pain in awake rodents, which are inevitably confounded by movement artifacts and cannot be conveniently implemented to assess invasive neuromodulation protocols for treating visceral pain. In this report, we present an optimized protocol with prolonged urethane infusion that enables robust and repeatable recordings of VMR to CRD in mice under deep anesthesia, providing a two-hour window to objectively assess the efficacy of visceral pain management strategies. Methods During all surgical procedures, C57BL/6 mice of both sexes (8-12 weeks, 25-35 g) were anesthetized with 2% isoflurane inhalation. An abdominal incision was made to allow Teflon-coated stainless steel wire electrodes to be sutured to the oblique abdominal musculature. A thin polyethylene catheter (Φ 0.2 mm) was placed intraperitoneally and externalized from the abdominal incision for delivering the prolonged urethane infusion. A cylindric plastic-film balloon (Φ 8 mm x 15 mm when distended) was inserted intra-anally, and its depth into the colorectum was precisely controlled by measuring the distance between the end of the balloon and the anus. Subsequently, the mouse was switched from isoflurane anesthesia to the new urethane anesthesia protocol, which consisted of a bout of infusion (0.6 g urethane per kg weight, g/kg) administered intraperitoneally via the catheter and continuous low-dose infusion throughout the experiment at 0.15-0.23 g per kg weight per hour (g/kg/h). Results Using this new anesthesia protocol, we systematically investigated the significant impact of balloon depth into the colorectum on evoked VMR, which showed a progressive reduction with increased balloon insertion depth from the rectal region into the distal colonic region. Intracolonic TNBS treatment induced enhanced VMR to CRD of the colonic region (>10 mm from the anus) only in male mice, whereas colonic VMR was not significantly altered by TNBS in female mice. Discussion Conducting VMR to CRD in anesthetized mice using the current protocol will enable future objective assessments of various invasive neuromodulatory strategies for alleviating visceral pain.
Collapse
Affiliation(s)
| | | | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Bayrer JR, Castro J, Venkataraman A, Touhara KK, Rossen ND, Morrie RD, Maddern J, Hendry A, Braverman KN, Garcia-Caraballo S, Schober G, Brizuela M, Castro Navarro FM, Bueno-Silva C, Ingraham HA, Brierley SM, Julius D. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 2023; 616:137-142. [PMID: 36949192 PMCID: PMC10827380 DOI: 10.1038/s41586-023-05829-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain1. For the growing population afflicted by irritable bowel syndrome, GI hypersensitivity and pain persist long after tissue injury has resolved2. Irritable bowel syndrome also exhibits a strong sex bias, afflicting women three times more than men1. Here, we focus on enterochromaffin (EC) cells, which are rare excitable, serotonergic neuroendocrine cells in the gut epithelium3-5. EC cells detect and transduce noxious stimuli to nearby mucosal nerve endings3,6 but involvement of this signalling pathway in visceral pain and attendant sex differences has not been assessed. By enhancing or suppressing EC cell function in vivo, we show that these cells are sufficient to elicit hypersensitivity to gut distension and necessary for the sensitizing actions of isovalerate, a bacterial short-chain fatty acid associated with GI inflammation7,8. Remarkably, prolonged EC cell activation produced persistent visceral hypersensitivity, even in the absence of an instigating inflammatory episode. Furthermore, perturbing EC cell activity promoted anxiety-like behaviours which normalized after blockade of serotonergic signalling. Sex differences were noted across a range of paradigms, indicating that the EC cell-mucosal afferent circuit is tonically engaged in females. Our findings validate a critical role for EC cell-mucosal afferent signalling in acute and persistent GI pain, in addition to highlighting genetic models for studying visceral hypersensitivity and the sex bias of gut pain.
Collapse
Affiliation(s)
- James R Bayrer
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Joel Castro
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Archana Venkataraman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Nathan D Rossen
- Department of Physiology, University of California, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Ryan D Morrie
- Department of Physiology, University of California, San Francisco, CA, USA
- Maze Therapeutics, San Francisco, CA, USA
| | - Jessica Maddern
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Aenea Hendry
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Kristina N Braverman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Jansen, Johnson & Johnson, San Diego, CA, USA
| | - Sonia Garcia-Caraballo
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Gudrun Schober
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Mariana Brizuela
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | | | - Carla Bueno-Silva
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Stuart M Brierley
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Bar-Ad S, Cheng L, Lepore AC, Snook AE, Covarrubias M, Waldman SA. Intestinal neuropod cell GUCY2C regulates visceral pain. J Clin Invest 2023; 133:e165578. [PMID: 36548082 PMCID: PMC9927949 DOI: 10.1172/jci165578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.
Collapse
Affiliation(s)
| | | | | | | | - Shely Bar-Ad
- Department of Pharmacology, Physiology, & Cancer Biology
| | | | | | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology
- Department of Microbiology & Immunology, and
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Ramsay S, Keightley L, Brookes S, Zagorodnyuk V. TRPV1 and TRPM8 antagonists reduce cystitis-induced bladder hypersensitivity via inhibition of different sensitised classes of bladder afferents in guinea pigs. Br J Pharmacol 2022; 180:1482-1499. [PMID: 36549668 DOI: 10.1111/bph.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Interstitial cystitis (=painful bladder syndrome) is a chronic bladder syndrome characterised by pelvic and bladder pain, urinary frequency and urgency, and nocturia. Transient receptor potential (TRP) channels are an attractive target in reducing the pain associated with interstitial cystitis. The current study aims to determine the efficacy of combination of TRP vanilloid 1 (TRPV1) and TRP melastatin 8 (TRPM8) channel inhibition in reducing the pain associated with experimental cystitis in guinea pigs. EXPERIMENTAL APPROACH A novel animal model of non-ulcerative interstitial cystitis has been developed using protamine sulfate/zymosan in female guinea pigs. Continuous voiding cystometry was performed in conscious guinea pigs. Ex vivo "close-to-target" single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder. Visceromotor responses in vivo were used to determine the effects of TRP channel antagonists on cystitis-induced bladder hypersensitivity. KEY RESULTS Protamine sulfate/zymosan treatment evoked mild inflammation in the bladder and increased micturition frequency in conscious animals. In cystitis, high threshold muscular afferents were sensitised via up-regulation of TRPV1 channels, high threshold muscular-mucosal afferents were sensitised via TRPM8 channels, and mucosal afferents by both. Visceromotor responses evoked by noxious bladder distension were significantly enhanced in cystitis and were returned to control levels upon administration of combination of low doses of TRPV1 and TRPM8 antagonists. CONCLUSIONS AND IMPLICATIONS The data demonstrate the therapeutic promises of combination of TRPV1 and TRPM8 antagonists for the treatment of bladder hypersensitivity in cystitis.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren Keightley
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon Brookes
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Loeza-Alcocer E, Gold MS. Peripheral GABAA receptor signaling contributes to visceral hypersensitivity in a mouse model of colitis. Pain 2022; 163:1402-1413. [PMID: 34726659 PMCID: PMC9056586 DOI: 10.1097/j.pain.0000000000002526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain is a common and debilitating symptom of inflammatory bowel disease (IBD). Based on evidence that peripheral GABAA receptor (GAR) inhibition plays an important role in establishing colonic afferent excitability and nociceptive threshold, we hypothesized that the increase in pain associated with IBD is due to, at least in part, a decrease in peripheral GAR-mediated inhibition. Acute colitis was induced with 5 days of dextran sodium sulfate (DSS, 3%) in the drinking water. Visceral sensitivity was assessed with the visceromotor response (VMR) evoked with balloon distention of the colon in control and DSS-treated mice before and after intracolonic administration of GAR agonist muscimol, the high-affinity GAR preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol (THIP), the GAR positive allosteric modulator diazepam, or the GAR antagonists gabazine and bicuculline. Low concentrations of muscimol or THIP increased the VMR in DSS-treated mice but not in control mice. However, high concentrations of muscimol decreased the VMR in both control and DSS-treated mice. Diazepam decreased the VMR in both DSS-treated and control mice. By contrast, at a concentration of gabazine that blocks only low-affinity GAR, there was no effect on the VMR in either DSS-treated or control mice, but at concentrations of the antagonist that block low-affinity and high-affinity GAR, the VMR was increased in control mice and decreased in DSS-treated mice. Furthermore, bicuculline increased the VMR in control mice but decreased it in DSS-treated mice. These data suggest that activating of low-affinity GAR or blocking high-affinity GAR may be effective therapeutic strategies for the management of pain in IBD.
Collapse
Affiliation(s)
- Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
12
|
Brierley SM, Grundy L, Castro J, Harrington AM, Hannig G, Camilleri M. Guanylate cyclase-C agonists as peripherally acting treatments of chronic visceral pain. Trends Pharmacol Sci 2022; 43:110-122. [PMID: 34865885 PMCID: PMC8760167 DOI: 10.1016/j.tips.2021.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain and altered bowel habit that affects ~11% of the global population. Over the past decade, preclinical and clinical studies have revealed a variety of novel mechanisms relating to the visceral analgesic effects of guanylate cyclase-C (GC-C) agonists. Here we discuss the mechanisms by which GC-C agonists target the GC-C/cyclic guanosine-3',5'-monophosphate (cGMP) pathway, resulting in visceral analgesia as well as clinically relevant relief of abdominal pain and other sensations in IBS patients. Due to the preponderance of evidence we focus on linaclotide, a 14-amino acid GC-C agonist with very low oral bioavailability that acts within the gut. Collectively, the weight of experimental and clinical evidence supports the concept that GC-C agonists act as peripherally acting visceral analgesics.
Collapse
Affiliation(s)
- Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA.,Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5000, AUSTRALIA.,Corresponding Author: Prof. Stuart M. Brierley, Ph.D. Visceral Pain Research Group, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, AUSTRALIA.
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | - Andrea M. Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | | | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiologic Research Program, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Najjar SA, Albers KM. Pain in Inflammatory Bowel Disease: Optogenetic Strategies for Study of Neural-Epithelial Signaling. CROHN'S & COLITIS 360 2021; 3:otab040. [PMID: 34805983 PMCID: PMC8600958 DOI: 10.1093/crocol/otab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Abdominal pain is common in patients with active inflammation of the colon but can persist even in its absence, suggesting other mechanisms of pain signaling. Recent findings suggest colon epithelial cells are direct regulators of pain-sensing neurons. Optogenetic activation of epithelial cells evoked nerve firing and pain-like behaviors. Inhibition of epithelial cells caused the opposite effect, reducing responses to colon distension and inflammatory hypersensitivity. Thus, epithelial cells alone can regulate the activation of pain circuits. Future goals are to define the anatomical and cellular mechanisms that underlie epithelial-neural pain signaling and how it is altered in response to colon inflammation.
Collapse
Affiliation(s)
- Sarah A Najjar
- Department of Neurobiology and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Present address: Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Kathryn M Albers
- Department of Neurobiology and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Address correspondence to: Kathryn M. Albers, PhD, Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15216, USA ()
| |
Collapse
|
14
|
Hurtado-Lorenzo A, Honig G, Weaver SA, Larkin PB, Heller C. Chronic Abdominal Pain in IBD Research Initiative: Unraveling Biological Mechanisms and Patient Heterogeneity to Personalize Treatment and Improve Clinical Outcomes. CROHN'S & COLITIS 360 2021; 3:otab034. [PMID: 36776666 PMCID: PMC9802354 DOI: 10.1093/crocol/otab034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA,Address correspondence to: Andrés Hurtado-Lorenzo, PhD, Crohn’s & Colitis Foundation, 733 3rd Ave Suite 510, New York, NY 10017, USA ()
| | - Gerard Honig
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | | | - Paul B Larkin
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | - Caren Heller
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| |
Collapse
|