1
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
2
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Inhibiting acute, axonal DLK palmitoylation is neuroprotective and avoids deleterious effects of cell-wide DLK inhibition. Nat Commun 2025; 16:3031. [PMID: 40180913 PMCID: PMC11968826 DOI: 10.1038/s41467-025-58036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Inhibiting dual leucine-zipper kinase (DLK) could potentially ameliorate diverse neuropathological conditions, but a direct inhibitor of DLK's kinase domain caused unintended side effects in human patients, indicative of neuronal cytoskeletal disruption. We sought a more precise intervention and show here that axon-to-soma pro-degenerative signaling requires acute, axonal palmitoylation of DLK. To identify potential modulators of this modification, we screened >28,000 compounds using a high-content imaging readout of DLK's palmitoylation-dependent subcellular localization. Several hits alter DLK localization in non-neuronal cells, reduce DLK retrograde signaling and protect cultured dorsal root ganglion neurons from neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent DLK's stimulus-dependent palmitoylation and subsequent recruitment to axonal vesicles, but do not affect palmitoylation of other axonal proteins assessed and avoid the cytoskeletal disruption associated with direct DLK inhibition. Our hit compounds also reduce pro-degenerative retrograde signaling in vivo, revealing a previously unrecognized neuroprotective strategy.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Heykyeong Jeong
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jingwen Niu
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sabrina M Holland
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Brittany N Rotanz
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John Gordon
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wayne E Childers
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Gareth M Thomas
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Lagiakos HR, Zou Y, Igawa H, Therrien E, Lawrenz M, Kato M, Svensson M, Gray F, Jensen K, Dahlgren MK, Pelletier RD, Dingley K, Bell JA, Liu Z, Jiang Y, Zhou H, Skene RJ, Nie Z. In Silico Enabled Discovery of KAI-11101, a Preclinical DLK Inhibitor for the Treatment of Neurodegenerative Disease and Neuronal Injury. J Med Chem 2025; 68:2720-2741. [PMID: 39670820 DOI: 10.1021/acs.jmedchem.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Dual leucine zipper kinase (DLK), expressed primarily in neuronal cells, is a regulator of neuronal degeneration in response to cellular stress from chronic disease or neuronal injury. This makes it an attractive target for the treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, and neuronal injury, such as chemotherapy-induced peripheral neuropathy. Here, we describe the discovery of a potent, selective, brain-penetrant DLK inhibitor, KAI-11101 (59). Throughout the program's progression, medicinal chemistry challenges such as potency, hERG inhibition, CNS penetration, CYP3A time-dependent inhibition, and kinase selectivity were overcome through the implementation of cutting-edge in silico tools. KAI-11101 displayed an excellent in vitro safety profile and showed neuroprotective properties in an ex vivo axon fragmentation assay as well as dose-dependent activity in a mouse PD model.
Collapse
Affiliation(s)
| | - Yefen Zou
- Schrödinger Inc., San Diego, California 92122, United States
| | - Hideyuki Igawa
- Schrödinger Inc., New York, New York 10036, United States
| | - Eric Therrien
- Schrödinger Inc., New York, New York 10036, United States
| | - Morgan Lawrenz
- Schrödinger Inc., San Diego, California 92122, United States
| | - Mitsunori Kato
- Schrödinger Inc., New York, New York 10036, United States
| | - Mats Svensson
- Schrödinger Inc., New York, New York 10036, United States
| | - Felicia Gray
- Schrödinger Inc., Portland, Oregon 97204, United States
| | | | | | | | - Karen Dingley
- Schrödinger Inc., New York, New York 10036, United States
| | - Jeffrey A Bell
- Schrödinger Inc., New York, New York 10036, United States
| | - Zhijian Liu
- Schrödinger Inc., New York, New York 10036, United States
| | | | - Hua Zhou
- Viva Biotech, Shanghai 201203, China
| | - Robert J Skene
- Takeda California Inc., San Diego, California 92121, United States
| | - Zhe Nie
- Schrödinger Inc., San Diego, California 92122, United States
| |
Collapse
|
4
|
Lavoie Smith EM, Von Ah D. Neurotoxicity in Cancer Survivorship: The Significance of Cancer-Related Cognitive Impairment and Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2024; 40:151724. [PMID: 39183088 DOI: 10.1016/j.soncn.2024.151724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Ellen M Lavoie Smith
- Professor and Marie O'Koren Endowed Chair, Assistant Dean of Research and Scholarship, University of Alabama at Birmingham School of Nursing, Department of Acute, Chronic & Continuing Care, Birmingham, AL
| | - Diane Von Ah
- Mildred E. Newton Endowed Professor, Distinguished Professor of Cancer Research, The Ohio State University, College of Nursing, Columbus, OH.
| |
Collapse
|
5
|
Chen J, Li H. Characterization of Novel SARM1 Inhibitors for the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Biomedicines 2024; 12:2123. [PMID: 39335636 PMCID: PMC11428815 DOI: 10.3390/biomedicines12092123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sterile α and Toll/IL-1 receptor motif-containing 1 (SARM1) is a central regulator of programmed axon death and a crucial nicotinamide adenine dinucleotide (NAD+) hydrolase (NADase) in mammalian tissues, hydrolyzing NAD+ and playing an important role in cellular NAD+ recycling. Abnormal SARM1 expression is linked to axon degeneration, which causes disability and disease progression in many neurodegenerative disorders of the peripheral and central nervous systems. METHODS In this study, we use PC6 assay of hydrolase activity, DRG axon regeneration and CIPN model to screen for potent SARM1 Inhibitors. RESULTS Two novel SARM1 inhibitors (compound 174 and 331P1) are charcterized for its high potency for SARM1 NADase. In a chemotherapy-induced peripheral neuropathy (CIPN) myopathy model, compound 331P1 treatment prevented the decline in neurofilament light chain (NfL) levels caused by axonal injury in a dose-dependent manner, associated with elevated intraepidermal nerve fiber (IENF) intensity in mouse foot paw tissue, suggesting its functionality in reversing axon degeneration. CONCLUSIONS The newly designed SARM1 inhibitor 331P1 is a promising candidate due to its excellent in vivo efficacy, favorable CYP inhibition properties, and attractive safety profiles. The 331P1 compound possesses the potential to be developed as a novel neuroprotective therapy that can prevent or halt the neurodegenerative process in CIPN.
Collapse
Affiliation(s)
- Jiayu Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
7
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Novel inhibitors of acute, axonal DLK palmitoylation are neuroprotective and avoid the deleterious side effects of cell-wide DLK inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590310. [PMID: 38712276 PMCID: PMC11071345 DOI: 10.1101/2024.04.19.590310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dual leucine-zipper kinase (DLK) drives acute and chronic forms of neurodegeneration, suggesting that inhibiting DLK signaling could ameliorate diverse neuropathological conditions. However, direct inhibition of DLK's kinase domain in human patients and conditional knockout of DLK in mice both cause unintended side effects, including elevated plasma neurofilament levels, indicative of neuronal cytoskeletal disruption. Indeed, we found that a DLK kinase domain inhibitor acutely disrupted the axonal cytoskeleton and caused vesicle aggregation in cultured dorsal root ganglion (DRG) neurons, further cautioning against this therapeutic strategy. In seeking a more precise intervention, we found that retrograde (axon-to-soma) pro-degenerative signaling requires acute, axonal palmitoylation of DLK and hypothesized that modulating this post-translational modification might be more specifically neuroprotective than cell-wide DLK inhibition. To address this possibility, we screened >28,000 compounds using a high-content imaging assay that quantitatively evaluates DLK's palmitoylation-dependent subcellular localization. Of the 33 hits that significantly altered DLK localization in non-neuronal cells, several reduced DLK retrograde signaling and protected cultured DRG neurons from DLK-dependent neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent stimulus-dependent palmitoylation of axonal pools of DLK, a process crucial for DLK's recruitment to axonal vesicles. In contrast, these compounds minimally impact DLK localization and signaling in healthy neurons and avoid the cytoskeletal disruption associated with direct DLK inhibition. Importantly, our hit compounds also reduce pro-degenerative retrograde signaling in vivo, suggesting that modulating DLK's palmitoylation-dependent localization could be a novel neuroprotective strategy.
Collapse
|
8
|
Ollodart J, Steele LR, Romero-Sandoval EA, Strowd RE, Shiozawa Y. Contributions of neuroimmune interactions to chemotherapy-induced peripheral neuropathy development and its prevention/therapy. Biochem Pharmacol 2024; 222:116070. [PMID: 38387528 PMCID: PMC10964384 DOI: 10.1016/j.bcp.2024.116070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating sequela that is difficult for both clinicians and cancer patients to manage. Precise mechanisms of CIPN remain elusive and current clinically prescribed therapies for CIPN have limited efficacy. Recent studies have begun investigating the interactions between the peripheral and central nervous systems and the immune system. Understanding these neuroimmune interactions may shift the paradigm of elucidating CIPN mechanisms. Although the contribution of immune cells to CIPN pathogenesis represents a promising area of research, its fully defined mechanisms have not yet been established. Therefore, in this review, we will discuss (i) current shortcoming of CIPN treatments, (ii) the roles of neuroimmune interactions in CIPN development and (iii) potential neuroimmune interaction-targeting treatment strategies for CIPN. Interestingly, monocytes/macrophages in dorsal root ganglia; microglia and astrocytes in spinal cord; mast cells in skin; and Schwann cell near peripheral nerves have been identified as inducers of CIPN behaviors, whereas T cells have been found to contribute to CIPN resolution. Additionally, nerve-resident immune cells have been targeted as prevention and/or therapy for CIPN using traditional herbal medicines, small molecule inhibitors, and intravenous immunoglobulins in a preclinical setting. Overall, unveiling neuroimmune interactions associated with CIPN may ultimately reduce cancer mortality and improve cancer patients' quality of life.
Collapse
Affiliation(s)
- Jenna Ollodart
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | - Laiton R Steele
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | | | - Roy E Strowd
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Köster KA, Dethlefs M, Duque Escobar J, Oetjen E. Regulation of the Activity of the Dual Leucine Zipper Kinase by Distinct Mechanisms. Cells 2024; 13:333. [PMID: 38391946 PMCID: PMC10886912 DOI: 10.3390/cells13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been implicated in many diseases, including several neurodegenerative diseases, glaucoma, and diabetes mellitus. As a MAP3K, it is generally assumed that DLK becomes phosphorylated and activated by upstream signals and phosphorylates and activates itself, the downstream serine/threonine MAP2K, and, ultimately, MAPK. In addition, other mechanisms such as protein-protein interactions, proteasomal degradation, dephosphorylation by various phosphatases, palmitoylation, and subcellular localization have been shown to be involved in the regulation of DLK activity or its fine-tuning. In the present review, the diverse mechanisms regulating DLK activity will be summarized to provide better insights into DLK action and, possibly, new targets to modulate DLK function.
Collapse
Affiliation(s)
- Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Marten Dethlefs
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Jorge Duque Escobar
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- University Center of Cardiovascular Science, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
10
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Kesler SR, Henneghan AM, Prinsloo S, Palesh O, Wintermark M. Neuroimaging based biotypes for precision diagnosis and prognosis in cancer-related cognitive impairment. Front Med (Lausanne) 2023; 10:1199605. [PMID: 37720513 PMCID: PMC10499624 DOI: 10.3389/fmed.2023.1199605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer related cognitive impairment (CRCI) is commonly associated with cancer and its treatments, yet the present binary diagnostic approach fails to capture the full spectrum of this syndrome. Cognitive function is highly complex and exists on a continuum that is poorly characterized by dichotomous categories. Advanced statistical methodologies applied to symptom assessments have demonstrated that there are multiple subclasses of CRCI. However, studies suggest that relying on symptom assessments alone may fail to account for significant differences in the neural mechanisms that underlie a specific cognitive phenotype. Treatment plans that address the specific physiologic mechanisms involved in an individual patient's condition is the heart of precision medicine. In this narrative review, we discuss how biotyping, a precision medicine framework being utilized in other mental disorders, could be applied to CRCI. Specifically, we discuss how neuroimaging can be used to determine biotypes of CRCI, which allow for increased precision in prediction and diagnosis of CRCI via biologic mechanistic data. Biotypes may also provide more precise clinical endpoints for intervention trials. Biotyping could be made more feasible with proxy imaging technologies or liquid biomarkers. Large cross-sectional phenotyping studies are needed in addition to evaluation of longitudinal trajectories, and data sharing/pooling is highly feasible with currently available digital infrastructures.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Ashley M. Henneghan
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Oxana Palesh
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer, Houston, TX, United States
| |
Collapse
|
12
|
Le K, Soth MJ, Cross JB, Liu G, Ray WJ, Ma J, Goodwani SG, Acton PJ, Buggia-Prevot V, Akkermans O, Barker J, Conner ML, Jiang Y, Liu Z, McEwan P, Warner-Schmidt J, Xu A, Zebisch M, Heijnen CJ, Abrahams B, Jones P. Discovery of IACS-52825, a Potent and Selective DLK Inhibitor for Treatment of Chemotherapy-Induced Peripheral Neuropathy. J Med Chem 2023. [PMID: 37436942 DOI: 10.1021/acs.jmedchem.3c00788] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.
Collapse
Affiliation(s)
- Kang Le
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Michael J Soth
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jason B Cross
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Gang Liu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - William J Ray
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jiacheng Ma
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sunil G Goodwani
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Paul J Acton
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Virginie Buggia-Prevot
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | | | - Michael L Conner
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Zhen Liu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | - Jennifer Warner-Schmidt
- Alexandria Center for Life Science, Magnolia Neurosciences Corporation, New York, New York 10016, United States
| | - Alan Xu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, United States
| | - Brett Abrahams
- Alexandria Center for Life Science, Magnolia Neurosciences Corporation, New York, New York 10016, United States
| | - Philip Jones
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
13
|
Singh M, Ye B, Kim JH. Dual Leucine Zipper Kinase Regulates Dscam Expression through a Noncanonical Function of the Cytoplasmic Poly(A)-Binding Protein. J Neurosci 2022; 42:6007-6019. [PMID: 35764381 PMCID: PMC9351639 DOI: 10.1523/jneurosci.0543-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Dual leucine zipper kinase (DLK) plays a pivotal role in the development, degeneration, and regeneration of neurons. DLK can regulate gene expression post-transcriptionally, but the underlying mechanism remains poorly understood. The Drosophila DLK, Wallenda (Wnd), regulates the expression of Down syndrome cell adhesion molecule (Dscam) to control presynaptic arbor growth. This regulation is mediated by the 3' untranslated region (3'UTR) of Dscam mRNA, which suggests that RNA binding proteins (RBPs) mediate DLK function. We performed a genome-wide cell-based RNAi screen of RBPs and identified the cytoplasmic poly(A)-binding protein, pAbp, as an RBP that mediates Wnd-induced increase in Dscam expression. Genetic analysis shows that Wnd requires pAbp for promoting presynaptic arbor growth and for enhancing Dscam expression. Our analysis revealed that Dscam mRNAs harbor short poly(A) tails. We identified a region in Dscam 3'UTR that specifically interacts with pAbp. Removing this region significantly reduced Wnd-induced increase in Dscam expression. These suggest that a noncanonical interaction of PABP with the 3'UTR of target transcripts is essential for DLK functions.SIGNIFICANCE STATEMENT The kinase DLK plays key roles in a multitude of neuronal responses, including axon development, neurodegeneration, and nerve injury. Previous studies show that DLK acts via mRNAs to regulate protein synthesis, but how DLK does so is poorly understood. This study demonstrates that DLK regulates the synthesis of Dscam through the poly(A)-binding protein PABP-C. Whereas PABP-C is known as a general translational activator, our study shows that DLK-mediated Dscam expression involves a noncanonical interaction between PABP-C and the Dscam mRNA, which leads to a selective regulation of Dscam translation by PABP-C. Thus, our study provides novel insights into the mechanisms that underlie the function of DLK and regulation of gene expression of PABP-C.
Collapse
Affiliation(s)
- Monika Singh
- Department of Biology, University of Nevada, Reno, Nevada 89557
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jung Hwan Kim
- Department of Biology, University of Nevada, Reno, Nevada 89557,
| |
Collapse
|
14
|
Grape-Seed-Derived Procyanidin Attenuates Chemotherapy-Induced Cognitive Impairment by Suppressing MMP-9 Activity and Related Blood–Brain-Barrier Damage. Brain Sci 2022; 12:brainsci12050571. [PMID: 35624958 PMCID: PMC9139059 DOI: 10.3390/brainsci12050571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Chemotherapy-induced cognitive impairment (CICI) is often observed in cancer patients and impairs their life quality. Grape-seed-orientated procyanidin has been shown to have anti-inflammatory and neuroprotective effects, yet its effects in preventing CICI have not been investigated. (2) Method: Adult male mice received 2.3 mg/kg cisplatin or saline injections for three cycles consisting of five daily injections followed by 5 days of rest. Procyanidin or saline was administered 1 h prior to cisplatin treatment. Cognitive testing, gelatin zymography, and blood–brain-barrier (BBB) penetration tests were performed after treatment cessation. RAW264.7 cells were treated by stimulated supernatant of SHSY5Y cells. In addition, high-mobility group protein B1 (HMGB1) expression and MMP-9 activity were tested. (3) Results: Repeated cisplatin treatment increased BBB penetration, MMP-9 activity, impaired performance in contextual fear conditioning, and novel object recognition tasks. The knockout of MMP-9 rescues cognitive impairment and cisplatin-induced upregulation of HMGB1 in SHSY5Y cells. HMGB1/TLR4/IP3K/AKT signaling contributes to the increased MMP-9 activity in RAW264.7 cells. Procyanidin treatment attenuates MMP-9 activity, BBB damage, and CICI. (4) Conclusions: The results indicated that MMP-9 activation and BBB disruption is involved in CICI. Procyanidin may effectively alleviate the harmful effects of cisplatin.
Collapse
|
15
|
Mapuskar KA, Steinbach EJ, Zaher A, Riley DP, Beardsley RA, Keene JL, Holmlund JT, Anderson CM, Zepeda-Orozco D, Buatti JM, Spitz DR, Allen BG. Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2021; 10:antiox10091329. [PMID: 34572961 PMCID: PMC8469643 DOI: 10.3390/antiox10091329] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a chemotherapy agent commonly used to treat a wide variety of cancers. Despite the potential for both severe acute and chronic side effects, it remains a preferred therapeutic option for many malignancies due to its potent anti-tumor activity. Common cisplatin-associated side-effects include acute kidney injury (AKI) and chronic kidney disease (CKD). These renal injuries may cause delays and potentially cessation of cisplatin therapy and have long-term effects on renal function reserve. Thus, developing mechanism-based interventional strategies that minimize cisplatin-associated kidney injury without reducing efficacy would be of great benefit. In addition to its action of cross-linking DNA, cisplatin has been shown to affect mitochondrial metabolism, resulting in mitochondrially derived reactive oxygen species (ROS). Increased ROS formation in renal proximal convoluted tubule cells is associated with cisplatin-induced AKI and CKD. We review the mechanisms by which cisplatin may induce AKI and CKD and discuss the potential of mitochondrial superoxide dismutase mimetics to prevent platinum-associated nephrotoxicity.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Emily J. Steinbach
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Amira Zaher
- Biomedical Science Program, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
| | - Dennis P. Riley
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Robert A. Beardsley
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Jeffery L. Keene
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Jon T. Holmlund
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Carryn M. Anderson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Diana Zepeda-Orozco
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Nephrology, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - John M. Buatti
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
- Correspondence: ; Tel.: +1-319-335-8019; Fax: +1-319-335-8039
| |
Collapse
|