1
|
Namer B, Lampert A. Functional signatures of human somatosensory C fibers by microneurography. Pain 2025:00006396-990000000-00883. [PMID: 40294386 DOI: 10.1097/j.pain.0000000000003605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/23/2025] [Indexed: 04/30/2025]
Abstract
ABSTRACT Microneurography allows the recording of single C-fiber action potentials of a peripheral nerve innervating the skin in the awake, conscious human. The method is highly relevant to assess and understand the function of human peripheral nociceptors and correlate nociceptor discharges to human sensation. Given the current translational gap between preclinical and clinical research, in-depth understanding of human nerve fiber physiology becomes increasingly important. In this review, we bring together the current knowledge of afferent C-fiber types described to date and describe by which assays their function can be determined, how they react to the applied stimuli, and how this leads to the current classification(s) used in the field. We provide novel synthesis of C-fiber functions and discuss potential links between specific fiber characteristics and their physiology. The review aims to provide an in-depth overview of existing microneurography data of human dermal C fibers, which may serve as basis for efforts to bridge the gap between functional and structural studies in pain research. The knowledge presented here may help to establish a link between the functional microneurography findings in humans and other basic science research methods such as RNA sequencing techniques. This is a prerequisite for translational studies of the somatosensory system to identify biomarkers or develop well-targeted treatment for pain and itch in human.
Collapse
Affiliation(s)
- Barbara Namer
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen-SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research Within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
- Department Anaesthesiology, Intensive Care, Emergency Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen-SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Kheyrollah M, Brandt N, Bräuer AU, Schrader S, Mertsch S. The role of lysophosphatidic acid and its receptors in corneal nerve regeneration. Ocul Surf 2025; 36:10-18. [PMID: 39709127 DOI: 10.1016/j.jtos.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The integrity of corneal nerves is critical for ocular surface health, and damages can lead to Neurotrophic Keratopathy (NK). Despite the regenerative abilities of the peripheral nerve system (PNS), corneal nerve regeneration is often incomplete, and the underlying mechanisms are poorly understood. This study aims to identify potential factors that can enhance corneal nerve regeneration for NK treatment, with a focus on Lysophosphatidic acid (LPA). Thus, the effect of LPA and its underlying pathways in nerve regeneration is investigated in detail using in vitro mouse sensory neurons. To elucidate the impact of LPA as well as to reveal the responsible receptor, several functional assays as well as siRNA-based knock-down experiments were conducted. Additionally, possible changes in underlying pathways were investigated on mRNA levels. LPA-treated neurons significantly reduced fiber growth. However, LPAR2 knockdown neurons (Lpar2-KD) following LPA treatment showed a significant increase in fiber length. Additionally, LPA-treated neurons demonstrated enhanced levels of Lpar2 mRNA. On the other hand, nerve regeneration indicators such as Ngf, Gap-43, and Cdc42, along with LPA downstream signaling components like Pi3k and Ras, were elevated in Lpar2-KD neurons. In conclusion, this study elucidates the inhibitory effects of LPA on fiber outgrowth of sensory neurons. Furthermore, LPAR2 was identified as the responsible receptor for the LPA effect. Thus, Lpar2 knockdown might be a promising therapeutic approach to enhance neuronal regeneration in patients with NK.
Collapse
Affiliation(s)
- Maryam Kheyrollah
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany; Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany
| | - Nicola Brandt
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany.
| |
Collapse
|
3
|
Wu C, Sun M, Qile M, Zhang Y, Liu L, Cheng X, Dai X, Gross ER, Zhang Y, He S. Lysophosphatidic acid contributes to myocardial ischemia/reperfusion injury by activating TRPV1 in spinal cord. Basic Res Cardiol 2024; 119:329-348. [PMID: 38236300 PMCID: PMC11233190 DOI: 10.1007/s00395-023-01031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that plays a crucial role in cardiovascular diseases. Here, we question whether LPA contributes to myocardial ischemia/reperfusion (I/R) injury by acting on transient receptor potential vanilloid 1 (TRPV1) in spinal cord. By ligating the left coronary artery to establish an in vivo I/R mouse model, we observed a 1.57-fold increase in LPA level in the cerebrospinal fluid (CSF). The I/R-elevated CSF LPA levels were reduced by HA130, an LPA synthesis inhibitor, compared to vehicle treatment (4.74 ± 0.34 vs. 6.46 ± 0.94 μg/mL, p = 0.0014). Myocardial infarct size was reduced by HA130 treatment compared to the vehicle group (26 ± 8% vs. 46 ± 8%, p = 0.0001). To block the interaction of LPA with TRPV1 at the K710 site, we generated a K710N knock-in mouse model. The TRPV1K710N mice were resistant to LPA-induced myocardial injury, showing a smaller infarct size relative to TRPV1WT mice (28 ± 4% vs. 60 ± 7%, p < 0.0001). Additionally, a sequence-specific TRPV1 peptide targeting the K710 region produced similar protective effects against LPA-induced myocardial injury. Blocking the K710 region through K710N mutation or TRPV1 peptide resulted in reduced neuropeptides release and decreased activity of cardiac sensory neurons, leading to a decrease in cardiac norepinephrine concentration and the restoration of intramyocardial pro-survival signaling, namely protein kinase B/extracellular regulated kinase/glycogen synthase kinase-3β pathway. These findings suggest that the elevation of CSF LPA is strongly associated with myocardial I/R injury. Moreover, inhibiting the interaction of LPA with TRPV1 by blocking the K710 region uncovers a novel strategy for preventing myocardial ischemic injury.
Collapse
Affiliation(s)
- Chao Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Meiyan Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Muge Qile
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yu Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Liu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xueying Cheng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xiaoxiao Dai
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China.
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China.
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Schwarzenauer M, Rukwied RM, Lampert A, Rolke R, Namer B. Electrical matrix stimulation suppresses acute itch independently of activation of sleeping nociceptors. Eur J Pain 2024; 28:285-296. [PMID: 37715607 DOI: 10.1002/ejp.2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Itch can be reduced by pain. Activation of sleeping nociceptors (CMi) is a crucial mechanism for the peripheral component of intense and long-lasting pain. Thus, activation of CMi might be especially effective in itch reduction. Electrical stimulation using sinusoidal pulses activates CMi with tolerable pain intensity, whereas short rectangular pulses with low intensity do not. In humans, histaminergic itch is mediated by histamine-sensitive CMi, whereas other pruritogens activate polymodal nociceptors (CM). METHODS In a psychophysical approach in a balanced crossover repeated-measures design in healthy volunteers, we activated nociceptors by two different electrical stimulation paradigms via a matrix electrode: 4 Hz sinusoidal pulses that activate C-nociceptors including CMi or 4 Hz rectangular stimuli to activate nociceptors excluding CMi. After 5-min stimulation, itch was induced by either histamine iontophoresis or application of cowhage spicules. Itch ratings were assessed via a numerical rating scale (NRS). RESULTS Electrical 4 Hz sine wave stimulation (0.1 mA) with low pain ratings of 1.5 (NRS; 0-10) induced an axon reflex erythema (3 cm2 ), indicating activation of CMi, whereas rectangular 0.2 ms pulses (average 0.91 mA) with the same pain rating did not. Both electrical stimulation paradigms reduced itch magnitude over time evoked by either histamine or cowhage to a similar extent. Peak maximum itch evoked by histamine was reduced by both stimulation paradigms, but not cowhage maximum itch. DISCUSSION Since electrical stimulation with the rectangular pulse paradigm reduces itch to a similar extent as the sine wave stimulation paradigm, the input of CMi is not necessarily required for itch suppression. The input of A-fibres and polymodal nociceptors, similarly, as also achieved by scratching, seems to be sufficient for both forms of chemically evoked itch. SIGNIFICANCE Since activation of CMi does not provide additional benefit for itch suppression, spinal pain pathways transmitted via CM versus CMi have differential effects on itch-processing circuits. This is important knowledge for using electrical matrix stimulation as itch suppressor since activation of sleeping nociceptors either requires significantly painful stimulation paradigms or specialized stimulation paradigms as sinusoidal pulses. An alternative approach using half-sine wave pulses with low pain intensity activating specifically polymodal nociceptors to suppress itch via matrix electrode stimulation may be considered.
Collapse
Affiliation(s)
- M Schwarzenauer
- IZKF Research Group Neuroscience, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - R M Rukwied
- Department of Experimental Pain Research, Mannheim Center for Translation Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - A Lampert
- Department for Neurophysiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - R Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - B Namer
- IZKF Research Group Neuroscience, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department for Neurophysiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Fiebig A, Leibl V, Oostendorf D, Lukaschek S, Frömbgen J, Masoudi M, Kremer AE, Strupf M, Reeh P, Düll M, Namer B. Peripheral signaling pathways contributing to non-histaminergic itch in humans. J Transl Med 2023; 21:908. [PMID: 38087354 PMCID: PMC10717026 DOI: 10.1186/s12967-023-04698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Chronic itch (chronic pruritus) is a major therapeutic challenge that remains poorly understood despite the extensive recent analysis of human pruriceptors. It is unclear how the peripheral nervous system differentiates the signaling of non-histaminergic itch and pain. METHODS Here we used psychophysical analysis and microneurography (single nerve fiber recordings) in healthy human volunteers to explore the distinct signaling mechanisms of itch, using the pruritogens β-alanine, BAM 8-22 and cowhage extract. RESULTS The mode of application (injection or focal application using inactivated cowhage spicules) influenced the itch/pain ratio in sensations induced by BAM 8-22 and cowhage but not β-alanine. We found that sensitizing pre-injections of prostaglandin E2 increased the pain component of BAM 8-22 but not the other pruritogens. A-fibers contributed only to itch induced by β-alanine. TRPV1 and TRPA1 were necessary for itch signaling induced by all three pruritogens. In single-fiber recordings, we found that BAM 8-22 and β-alanine injection activated nearly all CM-fibers (to different extents) but not CMi-fibers, whereas cowhage extract injection activated only 56% of CM-fibers but also 25% of CMi-fibers. A "slow bursting discharge pattern" was evoked in 25% of CM-fibers by β-alanine, in 35% by BAM 8-22, but in only 10% by cowhage extract. CONCLUSION Our results indicate that no labeled line exists for these pruritogens in humans. A combination of different mechanisms, specific for each pruritogen, leads to itching sensations rather than pain. Notably, non-receptor-based mechanisms such as spatial contrast or discharge pattern coding seem to be important processes. These findings will facilitate the discovery of therapeutic targets for chronic pruritus, which are unlikely to be treated effectively by single receptor blockade.
Collapse
Affiliation(s)
- Andrea Fiebig
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Victoria Leibl
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - David Oostendorf
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Saskia Lukaschek
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Jens Frömbgen
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Maral Masoudi
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Marion Strupf
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Miriam Düll
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Namer
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
6
|
Khasabova IA, Khasabov SG, Johns M, Juliette J, Zheng A, Morgan H, Flippen A, Allen K, Golovko MY, Golovko SA, Zhang W, Marti J, Cain D, Seybold VS, Simone DA. Exosome-associated lysophosphatidic acid signaling contributes to cancer pain. Pain 2023; 164:2684-2695. [PMID: 37278638 PMCID: PMC10652716 DOI: 10.1097/j.pain.0000000000002967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/07/2023]
Abstract
ABSTRACT Pain associated with bone cancer remains poorly managed, and chemotherapeutic drugs used to treat cancer usually increase pain. The discovery of dual-acting drugs that reduce cancer and produce analgesia is an optimal approach. The mechanisms underlying bone cancer pain involve interactions between cancer cells and nociceptive neurons. We demonstrated that fibrosarcoma cells express high levels of autotaxin (ATX), the enzyme synthetizing lysophosphatidic acid (LPA). Lysophosphatidic acid increased proliferation of fibrosarcoma cells in vitro. Lysophosphatidic acid is also a pain-signaling molecule, which activates LPA receptors (LPARs) located on nociceptive neurons and satellite cells in dorsal root ganglia. We therefore investigated the contribution of the ATX-LPA-LPAR signaling to pain in a mouse model of bone cancer pain in which fibrosarcoma cells are implanted into and around the calcaneus bone, resulting in tumor growth and hypersensitivity. LPA was elevated in serum of tumor-bearing mice, and blockade of ATX or LPAR reduced tumor-evoked hypersensitivity. Because cancer cell-secreted exosomes contribute to hypersensitivity and ATX is bound to exosomes, we determined the role of exosome-associated ATX-LPA-LPAR signaling in hypersensitivity produced by cancer exosomes. Intraplantar injection of cancer exosomes into naive mice produced hypersensitivity by sensitizing C-fiber nociceptors. Inhibition of ATX or blockade of LPAR attenuated cancer exosome-evoked hypersensitivity in an ATX-LPA-LPAR-dependent manner. Parallel in vitro studies revealed the involvement of ATX-LPA-LPAR signaling in direct sensitization of dorsal root ganglion neurons by cancer exosomes. Thus, our study identified a cancer exosome-mediated pathway, which may represent a therapeutic target for treating tumor growth and pain in patients with bone cancer.
Collapse
Affiliation(s)
- Iryna A. Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Malcolm Johns
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Joe Juliette
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Aunika Zheng
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Hannah Morgan
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Alyssa Flippen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Kaje Allen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Svetlana A. Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
- MNC, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - James Marti
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - David Cain
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Virginia S. Seybold
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Ciotu CI, Kistner K, Kaindl U, Millesi F, Weiss T, Radtke C, Kremer A, Schmidt K, Fischer MJM. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia 2023; 71:945-956. [PMID: 36495059 DOI: 10.1002/glia.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Signal propagation is the essential function of nerves. Lysophosphatidic acid 18:1 (LPA) allows the selective stimulation of calcium signaling in Schwann cells but not neurons. Here, the time course of slowing and amplitude reduction on compound action potentials due to LPA exposure was observed in myelinated and unmyelinated fibers of the mouse, indicating a clear change of axonal function. Teased nerve fiber imaging showed that Schwann cell activation is also present in axon-attached Schwann cells in freshly isolated peripheral rat nerves. The LPA receptor 1 was primarily localized at the cell extensions in isolated rat Schwann cells, suggesting a role in cell migration. Structural investigation of rat C-fibers demonstrated that LPA leads to an evagination of the axons from their Schwann cells. In A-fibers, the nodes of Ranvier appeared unchanged, but the Schmidt-Lanterman incisures were shortened and myelination reduced. The latter might increase leak current, reducing the potential spread to the next node of Ranvier and explain the changes in conduction velocity. The observed structural changes provide a plausible explanation for the functional changes in myelinated and unmyelinated axons of peripheral nerves and the reported sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kaindl
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katy Schmidt
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Li Q, Qiao W, Hao J, Wei S, Li X, Liu T, Qiu C, Hu W. Potentiation of ASIC currents by lysophosphatidic acid in rat dorsal root ganglion neurons. J Neurochem 2022; 163:327-337. [DOI: 10.1111/jnc.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Qing Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Wen‐Long Qiao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Jia‐Wei Hao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Shuang Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Xue‐Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Ting‐Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Chun‐Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Wang‐Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- Hubei College of Chinese Medicine Jingzhou Hubei China
| |
Collapse
|
10
|
Agelopoulos K, Wiegmann H, Schmelz M, Ständer S. [Neurobiology of pruritus: new concepts]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:593-599. [PMID: 35925233 DOI: 10.1007/s00105-022-05017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The underlying mechanisms of pruritus and chronic pruritus (CP) in particular, remain poorly understood; however, current research has revealed promising new concepts in which the importance of the interaction of neuronal cells of different classes, immune cells and keratinocytes is becoming increasingly clearer. RESEARCH QUESTION In this review article the current concepts in pruritus research are presented and summarized. MATERIAL AND METHOD This is a review article based on the current literature. RESULTS Different classes of sensory afferents, such as mechano-insensitive C‑fibers (histaminergic pruritus) and non-histaminergic pruriceptive C‑fibers and Aδ-fibers are involved in CP. The central sensitization in CP manifests as hyperknesis and alloknesis, the latter triggered by Aβ-fibers and Merkel cells. In recent years, the importance of inflammatory cells, such as Th1 and Th2 cells but also basophilic, eosinophilic granulocytes and mast cells has become clear. In CP there appears to be close communication between neuronal cells, immune cells and keratinocytes. Recent studies have focused on proinflammatory interleukins, such as IL-31, IL‑4 and IL-13 and their receptors. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway also plays an important role in the triggered signaling cascades that ultimately lead to pruritus perception. Therefore, in current treatment studies not only the interleukins and their receptors but also the JAK/STAT signaling pathway are directly targeted. CONCLUSION The discovery of new mechanisms and interactions in CP highlights the complexity of this disease. Even if this and the treatment options derived from this are already very promising, a much better understanding of the mechanisms of CP is urgently needed in order to enable further options for an optimized treatment.
Collapse
Affiliation(s)
- Konstantin Agelopoulos
- Kompetenzzentrum chronischer Pruritus, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Deutschland
| | - Henning Wiegmann
- Kompetenzzentrum chronischer Pruritus, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Deutschland
| | - Martin Schmelz
- Abteilung Experimentelle Schmerzforschung, CBTM, Med. Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Sonja Ständer
- Kompetenzzentrum chronischer Pruritus, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Deutschland.
| |
Collapse
|
11
|
New agents for immunosuppression. Best Pract Res Clin Gastroenterol 2021; 54-55:101763. [PMID: 34874846 DOI: 10.1016/j.bpg.2021.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023]
Abstract
The human abdomen harbors organs that the host's immune system can attack easily. This immunological storm front leads to diseases like Crohn's Disease, Ulcerative Colitis or Autoimmune Hepatitis. Serious symptoms like pain, diarrhea, fatigue, or malnutrition accompany these diseases. Moreover, many patients have an increased risk for developing special kind of malignancies and some autoimmune disease can show a high mortality. The key to treat them consists of a deep understanding of their pathophysiology. In vitro and especially in vivo basic research laid the foundation for our increasing knowledge about it during the past years. This enabled the development of new therapeutic approaches that interact directly with cytokines or immune cells instead of building the treatment on a total immunosuppression. Different kind of antibodies, kinase inhibitors, and regulatory T cells build the base for these approaches. This review shows new therapeutical approaches in gastrointestinal autoimmune diseases in context to their pathophysiological basis.
Collapse
|