1
|
Zhang L, Zhao F, Li Y, Song Z, Hu L, Li Y, Zhang R, Yu Y, Wang G, Wang C. Molecular hydrogen reduces dermatitis-induced itch, diabetic itch and cholestatic itch by inhibiting spinal oxidative stress and synaptic plasticity via SIRT1-β-catenin pathway in mice. Redox Biol 2025; 79:103472. [PMID: 39752998 PMCID: PMC11754494 DOI: 10.1016/j.redox.2024.103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested. Herein, we strikingly report that both hydrogen gas (2 %) inhalation and hydrogen-rich saline (5 mL/kg, intraperitoneal) injection prevent and alleviate persistent dermatitis-induced itch, diabetic itch and cholestatic itch. Hydrogen therapy reverses the decrease of spinal SIRT1 expression and antioxidant enzymes (SOD, GPx and CAT) activity after dermatitis, diabetes and cholestasis. Furthermore, hydrogen reduces spinal ROS generation, oxidation products (MDA, 8-OHdG and 3-NT) accumulation, β-catenin acetylation and dendritic spine density in persistent itch models. Spinal SIRT1 inhibition eliminates antipruritic and antioxidative effects of hydrogen, while SIRT1 agonism attenuates chronic itch phenotype, spinal β-catenin acetylation and mitochondrial damage. β-catenin inhibitors are effective against chronic itch via reducing β-catenin acetylation, blocking ERK phosphorylation and elevating antioxidant enzymes activity. Hydrogen treatment suppressed dermatitis and cholestasis mediated spontaneous excitatory postsynaptic currents in vitro. Additionally, hydrogen impairs cholestasis-induced the enhancement of cerebral functional connectivity between the right primary cingulate cortex and bilateral sensorimotor cortex, as well as bilateral striatum. Taken together, this study uncovers that molecular hydrogen protects against chronic pruritus and spinal pruriceptive sensitization by reducing oxidative damage via up-regulation of SIRT1-dependent β-catenin deacetylation in mice, implying a promising strategy in translational development for itch control.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| | - Fangshi Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Department of Medical Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Zhenhua Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Lingyue Hu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yuanjie Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Rui Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|
2
|
Wright NJ, Matsuoka Y, Park H, He W, Webster CG, Furutani K, Fedor JG, McGinnis A, Zhao Y, Chen O, Bang S, Fan P, Spasojevic I, Hong J, Ji RR, Lee SY. Design of an equilibrative nucleoside transporter subtype 1 inhibitor for pain relief. Nat Commun 2024; 15:10738. [PMID: 39737929 DOI: 10.1038/s41467-024-54914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R). However, efforts to develop A1R agonists have faced obstacles. The equilibrative nucleoside transporter subtype 1 (ENT1) plays a crucial role in regulating adenosine levels across cell membranes. We postulate that ENT1 inhibition may enhance extracellular adenosine levels, potentiating endogenous adenosine action at A1R and leading to analgesic effects. Here, we modify the ENT1 inhibitor dilazep based on its complex X-ray structure and show that this modified inhibitor reduces neuropathic and inflammatory pain in animal models while dilazep does not. Notably, our ENT1 inhibitor surpasses gabapentin in analgesic efficacy in a neuropathic pain model. Additionally, our inhibitor exhibits less cardiac side effect than dilazep via systemic administration and shows no side effects via local/intrathecal administration. ENT1 is colocalized with A1R in mouse and human dorsal root ganglia, and the analgesic effect of our inhibitor is linked to A1R. Our studies reveal ENT1 as a therapeutic target for analgesia, highlighting the promise of rationally designed ENT1 inhibitors for non-opioid pain medications.
Collapse
Affiliation(s)
- Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hyeri Park
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Wei He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yiquan Zhao
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ping Fan
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Zhang ZX, Peng J, Ding WW. Lipocalin-2 and intestinal diseases. World J Gastroenterol 2024; 30:4864-4879. [PMID: 39679305 PMCID: PMC11612708 DOI: 10.3748/wjg.v30.i46.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Dysfunction of the intestinal barrier is a prevalent phenomenon observed across a spectrum of diseases, encompassing conditions such as mesenteric artery dissection, inflammatory bowel disease, cirrhosis, and sepsis. In these pathological states, the integrity of the intestinal barrier, which normally serves to regulate the selective passage of substances between the gut lumen and the bloodstream, becomes compromised. This compromised barrier function can lead to a range of adverse consequences, including increased permeability to harmful substances, the translocation of bacteria and their products into systemic circulation, and heightened inflammatory responses within the gut and beyond. Understanding the mechanisms underlying intestinal barrier dysfunction in these diverse disease contexts is crucial for the development of targeted therapeutic interventions aimed at restoring barrier integrity and ameliorating disease progression. Lipocalin-2 (LCN2) expression is significantly upregulated during episodes of intestinal inflammation, making it a pivotal indicator for gauging the extent of such inflammatory processes. Notably, however, LCN2 derived from distinct cellular sources, whether intestinal epithelial cells or immune cells, exhibits notably divergent functional characteristics. Furthermore, the multifaceted nature of LCN2 is underscored by its varying roles across different diseases, sometimes even demonstrating contradictory effects.
Collapse
Affiliation(s)
- Zhong-Xu Zhang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian Peng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
4
|
Frątczak A, Łupicka-Słowik A, Sieñczyk M, Polak K, Bergler-Czop B, Miziołek B. Is there still a place for neutrophil gelatinase-associated lipocalin to serve as a biomarker in psoriasis? Postepy Dermatol Alergol 2024; 41:571-576. [PMID: 39877113 PMCID: PMC11770581 DOI: 10.5114/ada.2024.142572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Neutrophil gelatinase-associated lipocalin (NGAL) is believed to be involved in the pathogenesis of psoriasis, and its serum level was previously found to decline after administration of biologics, UV, and cyclosporine therapy. Aim To investigate whether NGAL may serve as a biomarker of disease activity in psoriasis vulgaris. Material and methods To measure the level of NGAL in serum, 36 patients with psoriasis vulgaris and 33 healthy controls were enrolled. Measurements were correlated to patients' and disease characteristics, including the Psoriasis Activity and Severity Index (PASI), Body Surface Area (BSA), itch and its intensity measured with the Peak Pruritus Numerical Rating Scale (PP-NRS), and involvement of special regions (scalp, genitals, hands, nails). Results A significantly higher level of NGAL in serum was found in patients with psoriasis than in healthy controls. It showed a moderate correlation with PASI but none with BSA. The genital involvement was associated with significantly greater serum level of NGAL. Itch corresponded to higher concentration of NGAL, and PP-NRS corelated moderately with the level of circulating NGAL. Conclusions An elevated level of circulating NGAL indicates its participation in the pathogenesis of psoriasis and the development of the itch. The serum level of NGAL does not allow for the evaluation of disease severity because it shows only moderate correlation with PASI. Determination of the circulating NGAL level may help to identify patients with greater risk for involvement of the genital region.
Collapse
Affiliation(s)
- Aleksandra Frątczak
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Łupicka-Słowik
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Marcin Sieñczyk
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Karina Polak
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Beata Bergler-Czop
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bartosz Miziołek
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
6
|
Reinertsen AF, Vik A, Hansen TV. Biology and Total Synthesis of n-3 Docosapentaenoic Acid-Derived Specialized Pro-Resolving Mediators. Molecules 2024; 29:2833. [PMID: 38930898 PMCID: PMC11206527 DOI: 10.3390/molecules29122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Research over the last 25 years related to structural elucidations and biological investigations of the specialized pro-resolving mediators has spurred great interest in targeting these endogenous products in total synthesis. These lipid mediators govern the resolution of inflammation as potent and stereoselective agonists toward individual G-protein-coupled receptors, resulting in potent anti-inflammatory activities demonstrated in many human disease models. Specialized pro-resolving mediators are oxygenated polyunsaturated products formed in stereoselective and distinct biosynthetic pathways initiated by various lipoxygenase and cyclooxygenase enzymes. In this review, the reported stereoselective total synthesis and biological activities of the specialized pro-resolving mediators biosynthesized from the polyunsaturated fatty acid n-3 docosapentaenoic acid are presented.
Collapse
Affiliation(s)
| | | | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway; (A.F.R.); (A.V.)
| |
Collapse
|
7
|
Li T, Hu L, Qin C, Li Y, Song Z, Jiao Y, Wang C, Cui W, Zhang L. Annexin 1 Reduces Dermatitis-Induced Itch and Cholestatic Itch through Inhibiting Neuroinflammation and Iron Overload in the Spinal Dorsal Horn of Mice. Brain Sci 2024; 14:440. [PMID: 38790419 PMCID: PMC11118431 DOI: 10.3390/brainsci14050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The unclear pathogenesis of chronic itch originating from several systemic disorders poses challenges to clinical intervention. Recent studies recapitulate the spinal neurocircuits associated with neuroinflammation and synaptic plasticity responsible for pruriceptive sensations. The resolution of nociception and inflammation by Annexin 1 (ANXA1) has been identified. Given that pain and itch share many neural mechanisms, we employed two mice models of chronic itch to study the underlying targets and therapeutic potential of ANXA1, comprising allergic contact dermatitis-induced itch and cholestatic itch. Herein, we report that spinal expression of ANXA1 is down-regulated in mice with dermatitis-induced itch and cholestatic itch. Repetitive injections of ANXA1-derived peptide Ac2-26 (intrathecal, 10 μg) reduce itch-like scratching behaviors following dermatitis and cholestasis. Single exposure to Ac2-26 (intrathecal, 10 μg) alleviates the established itch phenotypes. Moreover, systemic delivery of Ac2-26 (intravenous, 100 μg) is effective against chronic dermatitis-induced itch and cholestatic itch. Strikingly, Ac2-26 therapy inhibits transferrin receptor 1 over-expression, iron accumulation, cytokine IL-17 release and the production of its receptor IL-17R, as well as astrocyte activation in the dorsal horn of spinal cord in mouse with dermatitis and cholestasis. Pharmacological intervention with iron chelator deferoxamine impairs chronic itch behaviors and spinal iron accumulation after dermatitis and cholestasis. Also, spinal IL-17/IL-17R neutralization attenuates chronic itch. Taken together, this current research indicates that ANXA1 protects against the beginning and maintenance of long-term dermatitis-induced itch and cholestatic itch, which may occur via the spinal suppression of IL-17-mediated neuroinflammation, astrocyte activation and iron overload.
Collapse
Affiliation(s)
- Tang Li
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lingyue Hu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuanjie Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenhua Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Jiao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Cui
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
8
|
Luo Y, de Gruijl FR, Vermeer MH, Tensen CP. "Next top" mouse models advancing CTCL research. Front Cell Dev Biol 2024; 12:1372881. [PMID: 38665428 PMCID: PMC11044687 DOI: 10.3389/fcell.2024.1372881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This review systematically describes the application of in vivo mouse models in studying cutaneous T-cell lymphoma (CTCL), a complex hematological neoplasm. It highlights the diverse research approaches essential for understanding CTCL's intricate pathogenesis and evaluating potential treatments. The review categorizes various mouse models, including xenograft, syngeneic transplantation, and genetically engineered mouse models (GEMMs), emphasizing their contributions to understanding tumor-host interactions, gene functions, and studies on drug efficacy in CTCL. It acknowledges the limitations of these models, particularly in fully replicating human immune responses and early stages of CTCL. The review also highlights novel developments focusing on the potential of skin-targeted GEMMs in studying natural skin lymphoma progression and interactions with the immune system from onset. In conclusion, a balanced understanding of these models' strengths and weaknesses are essential for accelerating the deciphering of CTCL pathogenesis and developing treatment methods. The GEMMs engineered to target specifically skin-homing CD4+ T cells can be the next top mouse models that pave the way for exploring the effects of CTCL-related genes.
Collapse
Affiliation(s)
| | | | | | - Cornelis P. Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Wang B, Wang LN, Wu B, Guo R, Zhang L, Zhang JT, Wang ZH, Wu F, Feng Y, Liu H, Jin XH, Miao XH, Liu T. Astrocyte PERK and IRE1 Signaling Contributes to Morphine Tolerance and Hyperalgesia through Upregulation of Lipocalin-2 and NLRP3 Inflammasome in the Rodent Spinal Cord. Anesthesiology 2024; 140:558-577. [PMID: 38079113 DOI: 10.1097/aln.0000000000004858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
BACKGROUND Endoplasmic reticulum stress plays a crucial role in the pathogenesis of neuroinflammation and chronic pain. This study hypothesized that PRKR-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme type 1 (IRE1) regulate lipocalin-2 (LCN2) and Nod-like receptor family pyrin domain containing 3 (NLRP3) expression in astrocytes, thereby contributing to morphine tolerance and hyperalgesia. METHODS The study was performed in Sprague-Dawley rats and C57/Bl6 mice of both sexes. The expression of LCN2 and NLRP3 was assessed by Western blotting. The tail-flick, von Frey, and Hargreaves tests were used to evaluate nociceptive behaviors. Chromatin immunoprecipitation was conducted to analyze the binding of activating transcription factor 4 (ATF4) to the promoters of LCN2 and TXNIP. Whole-cell patch-clamp recordings were used to evaluate neuronal excitability. RESULTS Pharmacologic inhibition of PERK and IRE1 attenuated the development of morphine tolerance and hyperalgesia in male (tail latency on day 7, 8.0 ± 1.13 s in the morphine + GSK2656157 [10 μg] group vs. 5.8 ± 0.65 s in the morphine group; P = 0.04; n = 6 rats/group) and female (tail latency on day 7, 6.0 ± 0.84 s in the morphine + GSK2656157 [10 μg] group vs. 3.1 ± 1.09 s in the morphine group; P = 0.0005; n = 6 rats/group) rats. Activation of PERK and IRE1 upregulated expression of LCN2 and NLRP3 in vivo and in vitro. Chromatin immunoprecipitation analysis showed that ATF4 directly bound to the promoters of the LCN2 and TXNIP. Lipocalin-2 induced neuronal hyperexcitability in the spinal cord and dorsal root ganglia via melanocortin-4 receptor. CONCLUSIONS Astrocyte endoplasmic reticulum stress sensors PERK and IRE1 facilitated morphine tolerance and hyperalgesia through upregulation of LCN2 and NLRP3 in the spinal cord. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Bing Wang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China; Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; and Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey (current position)
| | - Li-Na Wang
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, Jiangsu Province, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Feng Wu
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Hong Jin
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Hua Miao
- Department of Pain, The Affiliated Hospital of Nantong University, Nantong, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China; and College of Life Sciences, Yanan University, Yanan, China
| |
Collapse
|
10
|
Sousa AB, Barbosa JN. The Use of Specialized Pro-Resolving Mediators in Biomaterial-Based Immunomodulation. J Funct Biomater 2023; 14:jfb14040223. [PMID: 37103313 PMCID: PMC10145769 DOI: 10.3390/jfb14040223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
The implantation of a biomaterial will lead to the immediate onset of an acute inflammatory response, which is of key importance in shaping the quality of the repair process. However, the return to homeostasis is critical to prevent a chronic inflammatory response that may impair the healing process. The resolution of the inflammatory response is now recognized as an active and highly regulated process, being described as specialized immunoresolvents that have a fundamental role in the termination of the acute inflammatory response. These mediators collectively coined as specialized pro-resolving mediators (SPMs) are a family of endogenous molecules that include lipoxins (Lx), resolvins (Rv), protectins (PD), maresins (Mar), Cysteinyl-SPMs (Cys-SPMs) and n-3 docosapentaenoic acid-derived SPMs (n-3 DPA-derived SPMs). SPMs have important anti-inflammatory and pro-resolutive actions such as decreasing the recruitment of polymorphonuclear leukocytes (PMNs), inducing the recruitment of anti-inflammatory macrophages, and increasing macrophage clearance of apoptotic cells through a process known as efferocytosis. Over the last years, the trend in biomaterials research has shifted towards the engineering of materials that are able to modulate the inflammatory response and thus stimulate appropriate immune responses, the so-called immunomodulatory biomaterials. These materials should be able to modulate the host immune response with the aim of creating a pro-regenerative microenvironment. In this review, we explore the potential of using of SPMs in the development of new immunomodulatory biomaterials and we propose insights for future research in this field.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Judite N Barbosa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|