1
|
Aguilera-Lizarraga J, Lim TK, Pattison LA, Paine LW, Bulmer DC, Smith ESJ. Pro-inflammatory mediators sensitise transient receptor potential melastatin 3 cation channel (TRPM3) function in mouse sensory neurons. Neuropharmacology 2025; 271:110391. [PMID: 40024472 DOI: 10.1016/j.neuropharm.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Pro-inflammatory mediators can directly activate pain-sensing neurons, known as nociceptors. Additionally, these mediators can sensitise ion channels and receptors expressed by these cells through transcriptional and post-translational modulation, leading to nociceptor hypersensitivity. A well-characterised group of ion channels that subserve nociceptor sensitisation is the transient receptor potential (TRP) superfamily of cation channels. For example, the roles of TRP channels vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in nociceptor sensitisation and inflammatory pain have been extensively documented. In the case of TRP melastatin 3 (TRPM3), however, despite the increasing recognition of this channel's role in inflammatory pain, the mediators driving its sensitisation during inflammation remain poorly characterised. Here, using Ca2+ imaging, we found that an inflammatory soup of bradykinin, interleukin 1β (IL-1β) and tumour necrosis factor α (TNFα) sensitised TRPM3 function in isolated mouse sensory neurons; IL-1β and TNFα, but not bradykinin, independently potentiated TRPM3 function. TRPM3 expression and translocation to the membrane remained unchanged upon individual or combined exposure to these inflammatory mediators, which suggests that post-translational modification might occur. Finally, using the complete Freund's adjuvant-induced model of knee inflammation, we found that systemic pharmacological blockade of TRPM3 does not alleviate inflammatory pain (as assessed through evaluation of digging behaviour and dynamic weight bearing), which contrasts with previous reports using different pain models. We propose that the nuances of the immune response may determine the relative contribution of TRPM3 to nociceptive signalling in different neuro-immune contexts. Collectively, our findings improve insight into the role of TRPM3 sensitisation in inflammatory pain.
Collapse
Affiliation(s)
| | - Tony K Lim
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke W Paine
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
2
|
Tominaga M, Iwata M. TRPA1 and thermosensitivity. J Physiol Sci 2025; 75:100010. [PMID: 39951922 PMCID: PMC11875151 DOI: 10.1016/j.jphyss.2025.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
TRPA1 was first identified as a noxious cold receptor in mice in 2003. Multiple TRPA1 genes have since been isolated, indicating that TRPA1 emerged early in evolution and showing the existence of TRPA1 variants in a range of species, including insects. Although TRPA1 channels in insects to birds (endotherms) show heat-dependent activation that indicates the importance of TRPA1 for detecting ambient warm to hot temperatures, in mammals TRPA1 temperature sensitivity remains controversial. Analyses of insect TRPA1 highlighted several important structural motifs, but the structural basis of heat-evoked activation is still unclear. Furthermore, atomic-level structures of TRPA1 solved using single particle analysis with cryo-electron microscopy did not reveal a basis for TRPA1 thermosensitivity. Recent studies did demonstrate that human TRPA1 has bimodal thermosensitivity and mouse TRPA1 is involved in noxious heat sensitivity, but additional systematic analyses are needed to determine the general mechanism of mammalian TRPA1 thermosensitivity.
Collapse
Affiliation(s)
- Makoto Tominaga
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya 467-8601, Japan.
| | - Moe Iwata
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya 467-8601, Japan
| |
Collapse
|
3
|
Marynissen H, Pinto S, Van Ranst N, Van Cutsem E, Voets T, de Hoon J. Increased TRPA1 functionality in the skin of rats and cancer patients following oxaliplatin treatment. THE JOURNAL OF PAIN 2025; 28:104794. [PMID: 39892485 DOI: 10.1016/j.jpain.2025.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Chemotherapy-induced peripheral neuropathy is a debilitating pathology affecting a majority of patients who are being treated with specific cytostatic compounds including oxaliplatin. Various in vitro, ex vivo and in vivo preclinical experiments indicate that transient receptor potential ankyrin 1 (TRPA1) plays a crucial role in the symptomatology of chemotherapy-induced peripheral neuropathy. However, it is unclear whether oxaliplatin also modulates the TRPA1 functionality in the skin of rodents or patients. Here, we quantified the vasodilation after topical application of the TRPA1 agonist cinnamaldehyde in a rodent model of chemotherapy-induced peripheral neuropathy (male Sprague Dawley rats, aged 6 weeks) as well as on fingers of patients suffering from chronic chemotherapy-induced peripheral neuropathy after oxaliplatin treatment. Compared to vehicle-treated rats, a cumulative dose of oxaliplatin 32 mg/kg enhanced the vasodilation after cinnamaldehyde application on rat abdominal skin. Likewise, also in patients with chronic chemotherapy-induced peripheral neuropathy after oxaliplatin, the response to cinnamaldehyde was significantly higher compared to sex- and age-matched healthy controls. Thereby, this study is the first to translate the evidence of increased TRPA1 functionality in vitro or ex vivo in rodents to in vivo conditions in human. The increased TRPA1 functionality in patients with chronic chemotherapy-induced peripheral neuropathy does not only confirm the potential of TRPA1 as target to hit to provide efficacious analgesia, it also paves the way for additional patient stratification on a molecular level and possible treatment response prediction. PERSPECTIVE: The cinnamaldehyde-induced, TRPA1-mediated vasodilation was enhanced in patients with oxaliplatin-induced peripheral neuropathy versus healthy controls, confirming the potential of TRPA1 as target-to-hit for this indication.
Collapse
Affiliation(s)
- Heleen Marynissen
- Center for Clinical Pharmacology, University Hospitals Leuven/KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Sílvia Pinto
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eric Van Cutsem
- Digestieve Oncologie, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, University Hospitals Leuven/KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Krivoshein G, Rivera-Mancilla E, MaassenVanDenBrink A, Giniatullin R, van den Maagdenberg AMJM. Sex difference in TRPM3 channel functioning in nociceptive and vascular systems: an emerging target for migraine therapy in females? J Headache Pain 2025; 26:40. [PMID: 39994546 PMCID: PMC11853570 DOI: 10.1186/s10194-025-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Transient Receptor Potential Melastatin 3 (TRPM3) channels are Ca2+ permeable ion channels that act as polymodal sensors of mechanical, thermal, and various chemical stimuli. TRPM3 channels are highly expressed in the trigeminovascular system, including trigeminal neurons and the vasculature. Their presence in dural afferents suggests that they are potential triggers of migraine pain, which is originating from the meningeal area. This area is densely innervated by autonomous and trigeminal nerves that contain the major migraine mediator calcitonin gene-related peptide (CGRP) in peptidergic nerve fibers. Co-expression of TRPM3 channels and CGRP receptors in meningeal nerves suggests a potential interplay between both signalling systems. Compared to other members of the TRP family, TRPM3 channels have a high sensitivity to sex hormones and to the endogenous neurosteroid pregnenolone sulfate (PregS). The predominantly female sex hormones estrogen and progesterone, of which the levels drop during menses, act as natural inhibitors of TRPM3 channels, while PregS is a known endogenous agonist of these channels. A decrease in sex hormone levels has also been suggested as trigger for attacks of menstrually-related migraine. Notably, there is a remarkable sex difference in TRPM3-mediated effects in trigeminal nociceptive signalling and the vasculature. In line with this, the relaxation of human isolated meningeal arteries induced by the activation of TRPM3 channels is greater in females. Additionally, the sex-dependent vasodilatory responses to CGRP in meningeal arteries seem to be influenced by age-related hormonal changes, which could contribute to sex differences in migraine pathology. Consistent with these observations, activation of TRPM3 channels triggers nociceptive sensory firing much more prominently in female than male mouse meninges, suggesting that pain processing in female patients with migraine may differ. Overall, the combined TRPM3-related neuronal and vascular mechanisms could provide a possible explanation for the higher prevalence and even the more severe quality of migraine attacks in females. This narrative review summarizes recent data on the sex-dependent roles of TRPM3 channels in migraine pathophysiology, the potential interplay between TRPM3 and CGRP signalling, and highlights the prospects for translational therapies targeting TRPM3 channels, which may be of particular relevance for women with migraine.
Collapse
Affiliation(s)
- Georgii Krivoshein
- Departments of Human Genetics and Neurology, Leiden University Medical Center, PO Box 9600 2300 RC, Leiden, The Netherlands
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rashid Giniatullin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arn M J M van den Maagdenberg
- Departments of Human Genetics and Neurology, Leiden University Medical Center, PO Box 9600 2300 RC, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Kumar S, Jin F, Park SJ, Choi W, Keuning SI, Massimino RP, Vu S, Lü W, Du J. Convergent Agonist and Heat Activation of Nociceptor TRPM3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634542. [PMID: 39896661 PMCID: PMC11785169 DOI: 10.1101/2025.01.23.634542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Detecting noxious heat is vital for survival, triggering pain responses that protect against harm1,2. The TRPM3 channel is a key nociceptor for sensing noxious heat and a promising therapeutic target for pain treatment and neurological disorders such as epilepsy3-11. Here, we functionally and structurally characterized TRPM3 in response to diverse stimuli: the synthetic superagonist CIM0216 Ref12, the anticonvulsant antagonist primidone13,14, and heat1,10,15. Our findings reveal that TRPM3 is intrinsically dynamic, with its intracellular domain (ICD) sampling both resting and activated states, though strongly favoring the resting state without stimulation. CIM0216 binds to the S1-S4 domain, inducing conformational changes in the ICD and shifting the equilibrium toward activation. Remarkably, heat induces similar ICD rearrangements, revealing a converged activation mechanism driven by chemical compounds and temperature. This mechanism is supported by functional data showing that mutations facilitating the ICD movement markedly increase the sensitivity of TRPM3 to both chemical and thermal signals. These findings establish a critical role of the ICD in temperature sensing in TRPM3, a mechanism likely conserved across the TRPM family. Finally, we show that primidone binds to the same site as CIM0216 but acts as an antagonist. This study provides a framework for understanding the thermal sensing mechanisms of temperature-sensitive ion channels and offers a structural foundation for developing TRPM3-target therapeutics for pain and neurological disorders.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Sung Jin Park
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Sarah I. Keuning
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | | | - Wei Lü
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Juan Du
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Yin Y, Park CG, Feng S, Guan Z, Lee HJ, Zhang F, Sharma K, Borgnia MJ, Im W, Lee SY. Molecular basis of neurosteroid and anticonvulsant regulation of TRPM3. Nat Struct Mol Biol 2025:10.1038/s41594-024-01463-8. [PMID: 39809942 DOI: 10.1038/s41594-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca2+-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception. However, our understanding of neurosteroids, inhibitors and disease mutations on TRPM3 is limited. Here we present cryogenic electron microscopy structures of the mouse TRPM3 in complex with cholesteryl hemisuccinate, primidone and PregS with the synthetic agonist CIM 0216. Our studies identify the binding sites for the neurosteroid, synthetic agonist and inhibitor and offer insights into their effects and disease mutations on TRPM3 gating, aiding future drug development.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Cheon-Gyu Park
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Shasha Feng
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hyuk-Joon Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Mario J Borgnia
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Aizawa F, Kajimoto H, Okabayashi A, Moriyama D, Yagi K, Takahashi S, Sonoda Y, Shibata T, Goda M, Niimura T, Izawa-Ishizawa Y, Hamano H, Kawada K, Zamami Y, Ishizawa K. Statins ameliorate oxaliplatin- and paclitaxel-induced peripheral neuropathy via glutathione S-transferase. Neurochem Int 2024; 180:105863. [PMID: 39307458 DOI: 10.1016/j.neuint.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Some therapeutic agents have been found to have effects beyond their primary indications. Peripheral neuropathy, a common side effect of chemotherapy, remains inadequately treated. Identifying additional properties of existing medications could thus uncover novel therapeutic avenues. Previous studies have identified an additional effect of simvastatin in reducing neuropathy; however, the mechanism underlying this effect remains unclear. We investigated the novel effects of statins on chemotherapy-induced peripheral neuropathy in mice. Mice treated with oxaliplatin or paclitaxel did not show exacerbation or improvement in cold sensations upon acetone testing with statin administration. However, concurrent oral statin treatment mitigated the nociceptive response to mechanical stimuli induced by each anti-tumor agent. Co-administration of a glutathione S-transferase inhibitor, which modulates redox reactions, abolished the ameliorative effect of statins on mechanical nociceptive behavior. Additionally, the glutathione S-transferase inhibitor did not affect normal sensory perception or impair the anti-tumor effect of chemotherapy agents. A search for GST-associated molecules and pathways using artificial intelligence revealed that GST regulates inflammatory cytokines as a regulatory or causative gene. Our findings suggest that statins have class effects that ameliorate cytotoxic anti-cancer drug-induced mechanical allodynia via GST pathway activation.
Collapse
Affiliation(s)
- Fuka Aizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Haruna Kajimoto
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ami Okabayashi
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Daishi Moriyama
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan; Clinical Research Centre for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Shimon Takahashi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuhei Sonoda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takahiro Shibata
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan; Clinical Research Centre for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan; Department of General Medicine, Taoka Hospital, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Kei Kawada
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan; Department of Clinical Pharmacy Practice Pedagogy, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan; Clinical Research Centre for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
8
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
9
|
Behrendt M. Implications of TRPM3 and TRPM8 for sensory neuron sensitisation. Biol Chem 2024; 405:583-599. [PMID: 39417661 DOI: 10.1515/hsz-2024-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Marc Behrendt
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, MCTN, Tridomus, Building C, Ludolf-Krehl-Straße 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
10
|
Gandini MA, Zamponi GW. Navigating the Controversies: Role of TRPM Channels in Pain States. Int J Mol Sci 2024; 25:10284. [PMID: 39408620 PMCID: PMC11476983 DOI: 10.3390/ijms251910284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic pain is a debilitating condition that affects up to 1.5 billion people worldwide and bears a tremendous socioeconomic burden. The success of pain medicine relies on our understanding of the type of pain experienced by patients and the mechanisms that give rise to it. Ion channels are among the key targets for pharmacological intervention in chronic pain conditions. Therefore, it is important to understand how changes in channel properties, trafficking, and molecular interactions contribute to pain sensation. In this review, we discuss studies that have demonstrated the involvement of transient receptor potential M2, M3, and M8 channels in pain generation and transduction, as well as the controversies surrounding these findings.
Collapse
Affiliation(s)
- Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Uchida K. TRPM3, TRPM4, and TRPM5 as thermo-sensitive channels. J Physiol Sci 2024; 74:43. [PMID: 39294615 PMCID: PMC11409758 DOI: 10.1186/s12576-024-00937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Temperature detection is essential for the survival and perpetuation of any species. Thermoreceptors in the skin sense body temperature as well as the temperatures of ambient air and objects. Since Dr. David Julius and his colleagues discovered that TRPV1 is expressed in small-diameter primary sensory neurons, and activated by temperatures above 42 °C, 11 of thermo-sensitive TRP channels have been identified. TRPM3 expressed in sensory neurons acts as a sensor for noxious heat. TRPM4 and TRPM5 are Ca2⁺-activated monovalent cation channels, and their activity is drastically potentiated by temperature increase. This review aims to summarize the expression patterns, electrophysiological properties, and physiological roles of TRPM3, TRPM4, and TRPM5 associated with thermosensation.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Laboratory of Functional Physiology, Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Suruga-Ku, Shizuoka, Shizuoka, 422-8526, Japan.
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
12
|
Liu L, Liu H, Zhao M, Wen J, Liu J, Lv G, Xiao Z, Wang W, Zu S, Sun W, Zhang X, Gong L. Functional Upregulation of TRPM3 Channels Contributes to Acute Pancreatitis-associated Pain and Inflammation. Inflammation 2024:10.1007/s10753-024-02138-8. [PMID: 39259394 DOI: 10.1007/s10753-024-02138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Transient receptor potential melastatin M3 (TRPM3) channels have been recognized as a pain transducer in dorsal root ganglion (DRG) neurons in recent years. TRPM3 activation initiates neurogenic inflammation and is required for the development of inflammatory hyperalgesia. We aimed to evaluate the role of TRPM3 in pancreas sensory afferents in pancreatic nociception, neurogenic inflammation, and acute pancreatitis (AP)-associated pain. AP was induced by intraperitoneal (i.p.) injection of L-arginine in rats. TRPM3 expression in pancreatic DRG neurons, spontaneous or mechanical-stimulation-evoked pain behaviors, and the extent of inflammation were evaluated. We found that TRPM3 channels were expressed on pancreatic primary afferent nerve terminals containing calcitonin gene-related peptide (CGRP). Activation of TRPM3 in the pancreas by injection of its specific agonist CIM0216 (10 μM) induced pain, CGRP and substance P release, and neurogenic inflammation, as evidenced by edema, plasma extravasation, and inflammatory cell accumulation in the pancreas. Increased TRPM3 functional expression was detected in pancreatic DRG neurons from AP rats, and blocking TRPM3 activity with its antagonist (Primidone, 5 mg/kg, i.p.) attenuated AP-associated pain behaviors and pancreatic inflammation. Pre-incubation of pancreatic DRG neurons with nerve growth factor (NGF) enhanced the increase in intracellular Ca2+ induced by the TRPM3 agonist (CIM0216, 1 μM). Our findings indicate that, in addition to TRPV1 and TRPA1 channels, TRPM3 is another pain channel that has a critical role in pancreatic nociception, neurogenic inflammation, and AP-associated pain behaviors. TRPM3 may be a promising pharmaceutical target for AP pain treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Guangda Lv
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Zhiying Xiao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Liping Gong
- Department of Academic Research, The Second Hospital of Shandong University, Shandong, PR, China.
| |
Collapse
|
13
|
Roelens R, Peigneur ANF, Voets T, Vriens J. Neurodevelopmental disorders caused by variants in TRPM3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119709. [PMID: 38522727 DOI: 10.1016/j.bbamcr.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Developmental and epileptic encephalopathies (DEE) are a broad and varied group of disorders that affect the brain and are characterized by epilepsy and comorbid intellectual disability (ID). These conditions have a broad spectrum of symptoms and can be caused by various underlying factors, including genetic mutations, infections, and other medical conditions. The exact cause of DEE remains largely unknown in the majority of cases. However, in around 25 % of patients, rare nonsynonymous coding variants in genes encoding ion channels, cell-surface receptors, and other neuronally expressed proteins are identified. This review focuses on a subgroup of DEE patients carrying variations in the gene encoding the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel, where recent data indicate that gain-of-function of TRPM3 channel activity underlies a spectrum of dominant neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robbe Roelens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Ana Nogueira Freitas Peigneur
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Koivisto AP, Voets T, Iadarola MJ, Szallasi A. Targeting TRP channels for pain relief: A review of current evidence from bench to bedside. Curr Opin Pharmacol 2024; 75:102447. [PMID: 38471384 DOI: 10.1016/j.coph.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.
Collapse
Affiliation(s)
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
15
|
Xu S, Wang Y. Transient Receptor Potential Channels: Multiple Modulators of Peripheral Neuropathic Pain in Several Rodent Models. Neurochem Res 2024; 49:872-886. [PMID: 38281247 DOI: 10.1007/s11064-023-04087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Neuropathic pain, a prevalent chronic condition in clinical settings, has attracted widespread societal attention. This condition is characterized by a persistent pain state accompanied by affective and cognitive disruptions, significantly impacting patients' quality of life. However, current clinical therapies fall short of addressing its complexity. Thus, exploring the underlying molecular mechanism of neuropathic pain and identifying potential targets for intervention is highly warranted. The transient receptor potential (TRP) receptors, a class of widely distributed channel proteins, in the nervous system, play a crucial role in sensory signaling, cellular calcium regulation, and developmental influences. TRP ion channels are also responsible for various sensory responses including heat, cold, pain, and stress. This review highlights recent advances in understanding TRPs in various rodent models of neuropathic pain, aiming to uncover potential therapeutic targets for clinical management.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
16
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|