1
|
Martin LF, Almuslim M, Ismail KA, Ibrahim MM, Moutal A, Cheng K, Stratton HJ, Price TJ, Vanderah TW, Olivera BM, Khanna R, Patwardhan A. The conotoxin Contulakin-G reverses hypersensitivity observed in rodent models of cancer-induced bone pain without inducing tolerance or motor disturbance. Pain 2025; 166:376-387. [PMID: 39297754 PMCID: PMC11723812 DOI: 10.1097/j.pain.0000000000003391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT As the incidence and survival rates of patients with cancer continues to grow, an increasing number of people are living with comorbidities, which often manifests as cancer-induced bone pain (CIBP). The majority of patients with CIBP report poor pain control from currently available analgesics. A conotoxin, Contulakin-G (CGX), has been demonstrated to be an antinociceptive agent in postsurgical and neuropathic pain states via a neurotensin receptor 2 (NTSR2)-mediated pathway. However, the efficacy and side effect profile of CGX have never been assessed in CIBP. Here, we evaluated CGX's antinociceptive potential in a rodent model of CIBP. We hypothesized that CGX engages the NTSR2 pathway, providing pain relief with minimal tolerance and motor side effects. Our results demonstrated that CGX intrathecal injection in mice with CIBP attenuated both spontaneous pain behaviors and evoked mechanical hypersensitivity, regardless of their sex. Furthermore, the antinociceptive effect of CGX was dependent upon expression of NTSR2 and the R-type voltage-gated calcium channel (Cav2.3); gene editing of these targets abolished CGX antinociception without affecting morphine antinociception. Examination of the side effect profile of CGX demonstrated that, unlike morphine, chronic intrathecal infusion maintained antinociception with reduced tolerance in rats with CIBP. Moreover, at antinociceptive doses, CGX had no impact on motor behavior in rodents with CIBP. Finally, RNAScope and immunoblotting analysis revealed expression of NTSR2 in both dorsal and ventral horns, while Cav2.3 was minimally expressed in the ventral horn, possibly explaining the sensory selectivity of CGX. Together, these findings support advancing CGX as a potential therapeutic for cancer pain.
Collapse
Affiliation(s)
- Laurent F. Martin
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Center for Pain and Addiction, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Moyad Almuslim
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khaled A. Ismail
- Department of Anesthesiology, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Mohab M. Ibrahim
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Center for Pain and Addiction, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, Missouri, 63104 United States of America
| | - Kevin Cheng
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Harrison J. Stratton
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, 75080 United States of America
| | - Todd W. Vanderah
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Center for Pain and Addiction, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Baldomero M. Olivera
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112 United States of America
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, FL 32610-0267
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, 1149 Newell Drive, L4-177, Gainesville, FL 32610-0267
| | - Amol Patwardhan
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas, 75390 United States of America
- Peter O’Donnell Jr. Brain Institute, Dallas, Texas, 75390 United States of America
| |
Collapse
|
2
|
Zhao Y, Lv W, Wen L, Liu W, Zhao Y, Li Y, Hou F. Relationship between GTP binding protein RAB10, toll-like receptor 4, and nuclear factor kappa-B and prognosis in patients with breast cancer. Sci Rep 2024; 14:23287. [PMID: 39375417 PMCID: PMC11458806 DOI: 10.1038/s41598-024-74501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The objective of this study was to investigate the correlation between Rab10 (GTP binding protein RAB10), TLR4 (Toll-like receptor 4), and NF-κB (nuclear factor kappa-B) levels and therapeutic effects in peripheral blood of patients with breast cancer after surgery. The study included 160 patients with stage I-III breast cancer who underwent surgical treatment at our hospital's Department of Breast Surgery and Oncology between January 2021 and June 2021. ELISA was used to assess Rab10, TLR4, and NF-κB levels in peripheral blood. Based on their levels of Rab10, TLR4, and NF-κB in peripheral blood, participants were categorized into two groups: the low marker expression group (72 participants with relatively low expression of Rab10, TLR4, and NF-κB: Rab10<2.0ng/ml; TLR4<2.75ng/ml; NF-κB<3.5ng/ml) and the high marker expression group (88 participants with relatively high expression: Rab10 ≥ 2.0 ng/ml; TLR4 ≥ 2.75ng/ml; NF-κB ≥ 3.5ng/ml). All participants provided informed consent to participate the study. The baseline data of the two groups of patients, the presence or absence of lymph node metastasis and recurrence within 3 years after surgery, as well as the survival status within 3 years after surgery (including median overall survival and median progression-free survival) were statistically analyzed. The expressions of Rab10, TLR4, and NF-κB in the peripheral blood of patients were detected through enzyme-linked immunosorbent assay (ELISA). Kendall's tau-b correlation analysis was conducted to examine the relationship between the expressions of Rab10, TLR4, and NF-κB and the therapeutic effects outcomes. The levels of Rab10, TLR4, and NF - κ B in peripheral blood of the high marker expression group were higher than those of the low marker expression group (Rab10: 1.87 ± 0.18 vs. 3.15 ± 0.24 ng/ml; TLR4: 2.17 ± 0.20 vs. 3.26 ± 0.25 ng/ml); NF-κB: 2.68 ± 0.27 vs. 4.63 ± 0.30 ng/ml; P < 0.05). Analyzing the relationship between patient staging and Rab10, TLR4, and NF - κ B expression, the number of patients in high marker expression group III-IV increased compared to the low marker expression group (54.55% vs. 36.12%; P < 0.05), while the number of patients in high marker expression group I-II decreased compared to the low marker expression group (45.45% vs. 63.88%; P < 0.05). It was found that the number of patients with no recurrence or metastasis in the high marker expression group decreased compared to the low marker expression group (56.81% vs. 73.61%; P < 0.05), while the number of patients with recurrence or metastasis in the high marker expression group increased compared to the low marker expression group (43.19% vs. 26.39%; P < 0.05). The median overall survival and median progression free survival in the high marker expression group were shorter than those in the low marker expression group (median overall survival: 21.45 ± 2.68 months vs. 28.38 ± 3.44 months; median progression free survival: 15.25 ± 2.37 vs. 20.72 ± 2.58 months; P < 0.05). Kendall's tau-b correlation indicated a positive correlation between the expressions of Rab10, TLR4, and NF-κB and a poor therapeutic effects (P < 0.05), suggesting that elevated levels of Rab10, TLR4, and NF-κB may lead to a worsened therapeutic effects. There is a significant correlation between the presence of Rab10, TLR4, and NF-κB in the peripheral blood of breast cancer patients. Elevated levels of Rab10, TLR4, and NF-κB are linked to an increased risk of recurrence, metastasis, reduced overall survival, and progression-free survival.
Collapse
Affiliation(s)
- Yanchun Zhao
- Out-patient Department, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Weiwei Lv
- Department of Galactophore, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Lisha Wen
- Department of Nuclear Medicine, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Weiguang Liu
- Department of Galactophore, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Yanhua Zhao
- Department of Oncology, Yi County Hospital of Traditional Chinese Medicine, Baoding, Hebei, China
| | - Yanhui Li
- Department of Galactophore, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Fengyan Hou
- Cancer Center, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan, 056000, Hebei, China.
| |
Collapse
|
3
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
4
|
Flippen A, Khasabova IA, Simone DA, Khasabov SG. Systemic administration of Resolvin D1 reduces cancer-induced bone pain in mice: Lack of sex dependency in pain development and analgesia. Cancer Med 2024; 13:e70077. [PMID: 39101490 PMCID: PMC11299078 DOI: 10.1002/cam4.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
AIMS Bone cancer produces severe pain that is treated with opioids, but serious side effects limit opioid utilization. There is therefore a need to develop effective and safe non-opioid alternatives. The lipid mediator, Resolvin D1 (RvD1), could be a prospective candidate for cancer pain treatment. To assess RvD1 and other potential candidates, appropriate animal models that recapitulate clinical features must be used. Although several preclinical models of cancer pain have been developed, the influence of sex on the development of cancer pain and the effectiveness of RvD1 have not been studied. RESULTS Using a mouse model of fibrosarcoma growth in and around the calcaneus bone, we demonstrated that the mechanical hyperalgesia in the tumor-bearing hind paw develops independently of sex, except that it developed a little sooner in female mice. A single intravenous injection of RvD1 (0.001-10 μg/kg) decreased hyperalgesia in both sexes with similar potency (ED50 = 0.0015 μg/kg) and efficacy. Repeated daily administration of 10 μg/kg RvD1 prolonged the analgesic effect and completely abolished hyperalgesia. This was also independent of sex. CONCLUSION In this preclinical mouse model of bone cancer pain, the development of pain and the analgesic effectiveness of RvD1 are not influenced by sex.
Collapse
Affiliation(s)
- Alyssa Flippen
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Iryna A. Khasabova
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Delanne-Cuménal M, Lamoine S, Meleine M, Aissouni Y, Prival L, Fereyrolles M, Barbier J, Cercy C, Boudieu L, Schopp J, Lazdunski M, Eschalier A, Lolignier S, Busserolles J. The TREK-1 potassium channel is involved in both the analgesic and anti-proliferative effects of riluzole in bone cancer pain. Biomed Pharmacother 2024; 176:116887. [PMID: 38852511 DOI: 10.1016/j.biopha.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.
Collapse
Affiliation(s)
- Mélissa Delanne-Cuménal
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Youssef Aissouni
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathilde Fereyrolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Christine Cercy
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Ludivine Boudieu
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julien Schopp
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Michel Lazdunski
- Université de Nice Sophia Antipolis, Valbonne 06560, France; CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 Route des Lucioles Sophia Antipolis, Valbonne 06560, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France; Institut Analgesia, Faculté de Médecine, BP38, Clermont-Ferrand 63001, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France.
| |
Collapse
|
6
|
Costa NDSD, Lima LS, Galiciolli MEA, Ribeiro DHF, Ribeiro MM, Garica GDPJ, Marçal IS, Silva JFD, Pereira ME, Oliveira CS, Guiloski IC. Drug-induced osteoporosis and mechanisms of bone tissue regeneration through trace elements. J Trace Elem Med Biol 2024; 84:127446. [PMID: 38615498 DOI: 10.1016/j.jtemb.2024.127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Osteoporosis is associated with an imbalance in bone formation, with certain drugs used in disease treatment being implicated in its development. Supplementation with trace elements may contribute to bone regeneration, offering an alternative approach by enhancing bone mineral density (BMD) and thereby thwarting the onset of osteoporosis. This review aims to assess the mechanisms through which trace elements such as copper (Cu), iron (Fe), selenium (Se), manganese (Mn), and zinc (Zn) are linked to increased bone mass, thus mitigating the effects of pharmaceuticals. Our findings underscore that the use of drugs such as aromatase inhibitors (AIs), proton pump inhibitors (PPIs), antiretrovirals, glucocorticoids, opioids, or anticonvulsants can result in decreased BMD, a primary contributor to osteoporosis. Research indicates that essential elements like Cu, Fe, Se, Mn, and Zn, through various mechanisms, can bolster BMD and forestall the onset of the disease, owing to their protective effects. Consequently, our study recommends a minimum daily intake of these essential minerals for patients undergoing treatment with the aforementioned drugs, as the diverse mechanisms governing the effects of trace elements Cu, Fe, Mn, Se, and Zn facilitate bone remodeling.
Collapse
Affiliation(s)
- Nayara de Souza da Costa
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Luíza Siqueira Lima
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Maria Eduarda Andrade Galiciolli
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Deborah Helen Fabiano Ribeiro
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Milena Mariano Ribeiro
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Gisele de Paula Júlia Garica
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Isabela Saragioto Marçal
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Meire Ellen Pereira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Cláudia Sirlene Oliveira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil.
| |
Collapse
|
7
|
Khomula EV, Araldi D, Green PG, Levine JD. Sensitization of human and rat nociceptors by low dose morphine is toll-like receptor 4-dependent. Mol Pain 2024; 20:17448069241227922. [PMID: 38195088 PMCID: PMC10851754 DOI: 10.1177/17448069241227922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4. And, sub-analgesic doses of several opioids have been shown to induce hyperalgesia in rodents by their action as TLR4 agonists. In the present in vitro patch-clamp electrophysiology experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG) neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that low concentration (100 nM) of morphine reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion that in humans, as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.
Collapse
Affiliation(s)
- Eugen V Khomula
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Paul G Green
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
- Department of Preventative & Restorative Dental Sciences, and Division of Neuroscience, University of California at San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Neuroscience, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Khomula EV, Levine JD. Sensitization of Human and Rat Nociceptors by Low Dose Morphine is TLR4-dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572472. [PMID: 38187676 PMCID: PMC10769211 DOI: 10.1101/2023.12.19.572472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4. And, sub-analgesic doses of several opioids have been shown to induce hyperalgesia in rodents by their action as TLR4 agonists. In the present in vitro patch-clamp electrophysiology experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG) neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that morphine (100 nM) reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion that in humans, as well as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.
Collapse
|
9
|
Sulaiman MI, Alabsi W, Szabo L, Hay M, Polt R, Largent-Milnes TM, Vanderah TW. PNA6, a Lactosyl Analogue of Angiotensin-(1-7), Reverses Pain Induced in Murine Models of Inflammation, Chemotherapy-Induced Peripheral Neuropathy, and Metastatic Bone Disease. Int J Mol Sci 2023; 24:15007. [PMID: 37834455 PMCID: PMC10573977 DOI: 10.3390/ijms241915007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing both inflammatory and neuropathic elements. We have developed a novel non-addictive pain therapeutic, PNA6, that is a derivative of the peptide Angiotensin-(1-7) and binds the Mas receptor to decrease inflammation-related cancer pain. In the present study, we provide evidence that PNA6 attenuates inflammatory, chemotherapy-induced peripheral neuropathy (CIPN) and cancer pain confined to the long bones, exhibiting longer-lasting efficacious therapeutic effects. PNA6, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-Lact)-amide, was successfully synthesized using solid phase peptide synthesis (SPPS). PNA6 significantly reversed inflammatory pain induced by 2% carrageenan in mice. A second murine model of platinum drug-induced painful peripheral neuropathy was established using oxaliplatin. Mice in the oxaliplatin-vehicle treatment groups demonstrated significant mechanical allodynia compared to the oxaliplatin-PNA6 treatment group mice. In a third study modeling a complex pain state, E0771 breast adenocarcinoma cells were implanted into the femur of female C57BL/6J wild-type mice to induce cancer-induced bone pain (CIBP). Both acute and chronic dosing of PNA6 significantly reduced the spontaneous pain behaviors associated with CIBP. These data suggest that PNA6 is a viable lead candidate for treating chronic inflammatory and complex neuropathic pain.
Collapse
Affiliation(s)
- Maha I. Sulaiman
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
| | - Wafaa Alabsi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Lajos Szabo
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
| | - Meredith Hay
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ 85721, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|