1
|
Luan C, Wang Y, Li J, Zhou N, Song G, Ni Z, Xu C, Tang C, Fu P, Wang X, Gong L, Zhang E. Branched-Chain Amino Acid Supplementation Enhances Substrate Metabolism, Exercise Efficiency and Reduces Post-Exercise Fatigue in Active Young Males. Nutrients 2025; 17:1290. [PMID: 40219047 PMCID: PMC11990590 DOI: 10.3390/nu17071290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Branched-chain amino acids (BCAAs, isoleucine, leucine, and valine) are commonly applied to promote muscle protein synthesis. However, the effects of BCAAs on exercise-induced substrate metabolism, performance and post-exercise fatigue during endurance exercise remain unclear. Methods: In a double-blind cross-over design, eleven active males completed 1 h of constant load exercise (CLE) at 60% VO2max power followed by a time to exhaustion (TTE) test at 80% VO2max power after supplementation with BCAAs or placebo on consecutive three days. During exercise, indirect calorimetry was used to measure the carbohydrate (CHO) and fat oxidation rate, as well as the cycling efficiency. In addition, rating of perceived exertion (RPE) and visual analogue scale (VAS) scores were obtained at interval times during the whole period. Fingertips and venous blood (n = 8) were collected for the measurement of metabolic responses at different time points during exercise. Results: Compared to the placebo group, the fat oxidation rate was significantly higher after 20 and 30 min of CLE (p < 0.05). The CHO oxidation rates showed a significant increase in the BCAA group during TTE (p < 0.05). Meanwhile, the cycling efficiency during TTE was significantly improved (p < 0.05). Interestingly, VAS significantly decreased post-exercise in the BCAA group (p < 0.05). Additionally, the levels of blood insulin between the two groups were significantly higher in the post-exercise period compared to the pre-exercise periods (p < 0.001), while insulin levels were significantly lower in the post-exercise period with supplemental BCAAs compared to the placebo (p < 0.001). BCAAs also enhanced the levels of blood ammonia in the post-exercise period compared to the fasting and pre-exercise periods (BCAA: p < 0.01; Placebo: p < 0.001). However, in the post-exercise period, blood ammonia levels were significantly lower in the BCAA group than in the placebo group (p < 0.05). Conclusions: This study shows the critical role of BCAAs during exercise in active males and finds that BCAA supplementation enhanced fat oxidation during the CLE, increased carbohydrate oxidation and exercise efficiency during the TTE, and reduced immediate post-exercise fatigue.
Collapse
Affiliation(s)
- Chenglin Luan
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Yizhang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Junxi Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Nihong Zhou
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (N.Z.); (C.X.); (C.T.)
| | - Guilin Song
- Beijing Competitor Sports Science &Tech. Co., Ltd., Beijing 102299, China;
| | - Zhen Ni
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Chunyan Xu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (N.Z.); (C.X.); (C.T.)
| | - Chunxue Tang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (N.Z.); (C.X.); (C.T.)
| | - Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Xintang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China;
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 20213 Malmö, Sweden;
| |
Collapse
|
2
|
Karvinen S, Korhonen TMK, Kiviö R, Lensu S, Gajera B, Britton SL, Koch LG, Nieminen AI, Kainulainen H. Branched-chain amino acid supplementation and voluntary running have distinct effects on the serum metabolome of rats with high or low intrinsic aerobic capacity. Front Nutr 2024; 11:1450386. [PMID: 39628463 PMCID: PMC11611553 DOI: 10.3389/fnut.2024.1450386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/10/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction A growing body of literature associates branched-chain amino acid (BCAA) catabolism to increased fatty acid oxidation and better metabolic health. Hence, BCAA-rich diets may improve body composition and muscle protein synthesis. However, the role of individual characteristics such as a low aerobic fitness, a well-established risk factor for cardio-metabolic diseases, has not been studied. Methods This study examined 64 female rats from the high-capacity runner (HCR) and low-capacity runner (LCR) rat model. Rats from each line (HCR or LCR) were divided into four groups; differing from diet (CTRL or BCAA) and from the opportunity to voluntarily run on a running wheel (NONRUNNER or RUNNER). Groups were matched for body mass and maximal running capacity within each line. We measured maximal running capacity and metabolism before and after the intervention of diet and voluntary running activity. After the end of the experiment, serum samples were collected for metabolome analysis. Results We are the first to show that BCAA supplementation has a more pronounced impact on LCRs compared to HCRs. Specifically, in LCR rats, BCAA supplementation led to reduced daily voluntary running distance and an enrichment of serine metabolism in the serum metabolome. While voluntary running increased food intake and energy expenditure, its effects on the serum metabolome were minimal in HCRs. Conclusion The present research highlights the benefit achieved by combining BCAA supplementation with running activity, especially in the LCR line. Importantly, our results underscore the interconnected role of BCAAs and fatty acid metabolism in promoting overall metabolic health.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tia-Marje K. Korhonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ronja Kiviö
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Bharat Gajera
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Steven L. Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Anni I. Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
3
|
MacPherson J, Shipley ON, Weinrauch AM, Busquets-Vass G, Newsome SD, Anderson WG. Absence of a functional gut microbiome impairs host amino acid metabolism in the Pacific spiny dogfish (Squalus suckleyi). J Exp Biol 2024; 227:jeb247751. [PMID: 39091254 DOI: 10.1242/jeb.247751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Nitrogen recycling and amino acid synthesis are two notable ways in which the gut microbiome can contribute to host metabolism, and these processes are especially important in nitrogen-limited animals. Marine elasmobranchs are nitrogen limited as they require substantial amounts of this element to support urea-based osmoregulation. However, following antibiotic-induced depletion of the gut microbiome, elasmobranchs are known to experience a significant decline in circulating urea and employ compensatory nitrogen conservation strategies such as reduced urea and ammonia excretion. We hypothesized that the elasmobranch gut microbiome transforms dietary and recycled nutrients into amino acids, supporting host carbon and nitrogen balance. Here, using stable isotope analyses, we found that depleting the gut microbiome of Pacific spiny dogfish (Squalus suckleyi) resulted in a significant reduction to the incorporation of supplemented dietary 15N into plasma amino acids, notably those linked to nitrogen handling and energy metabolism, but had no effect on gut amino acid transport. These results demonstrate the importance of gut microbes to host amino acid pools and the unique nitrogen handling strategy of marine elasmobranchs. More broadly, these results elucidate how the gut microbiome contributes to organismal homeostasis, which is likely a ubiquitous phenomenon across animal populations.
Collapse
Affiliation(s)
- Jess MacPherson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Geraldine Busquets-Vass
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Laboratorio de Macroecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada - Unidad La Paz, La Paz, Baja California Sur 23050, Mexico
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| |
Collapse
|
4
|
Abdualkader AM, Karwi QG, Lopaschuk GD, Al Batran R. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13040. [PMID: 39007094 PMCID: PMC11239365 DOI: 10.3389/jpps.2024.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.
Collapse
Affiliation(s)
- Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| | - Qutuba G. Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gary D. Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| |
Collapse
|
5
|
Chang Y, Chen J, Zhu H, Huang R, Wu J, Lin Y, Li Q, Shen G, Feng J. Metabolic Characteristics and Discriminative Diagnosis of Growth Hormone Deficiency and Idiopathic Short Stature in Preadolescents and Adolescents. Molecules 2024; 29:1661. [PMID: 38611940 PMCID: PMC11013616 DOI: 10.3390/molecules29071661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Growth hormone deficiency (GHD) and idiopathic short stature (ISS) are the most common types of short stature (SS), but little is known about their pathogenesis, and even less is known about the study of adolescent SS. In this study, nuclear magnetic resonance (NMR)-based metabolomic analysis combined with least absolute shrinkage and selection operator (LASSO) were performed to identify the biomarkers of different types of SS (including 94 preadolescent GHD (PAG), 61 preadolescent ISS (PAI), 43 adolescent GHD (ADG), and 19 adolescent ISS (ADI)), and the receiver operating characteristic curve (ROC) was further used to evaluate the predictive power of potential biomarkers. The results showed that fourteen, eleven, nine, and fifteen metabolites were identified as the potential biomarkers of PAG, PAI, ADG, and ADI compared with their corresponding controls, respectively. The disturbed metabolic pathways in preadolescent SS were mainly carbohydrate metabolism and lipid metabolism, while disorders of amino acid metabolism played an important role in adolescent SS. The combination of aspartate, ethanolamine, phosphocholine, and trimethylamine was screened out to identify PAI from PAG, and alanine, histidine, isobutyrate, methanol, and phosphocholine gave a high classification accuracy for ADI and ADC. The differences in metabolic characteristics between GHD and ISS in preadolescents and adolescents will contribute to the development of individualized clinical treatments in short stature.
Collapse
Affiliation(s)
- Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Jing Chen
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China; (J.C.); (R.H.); (Y.L.)
| | - Hongwei Zhu
- Education Section and Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China;
| | - Rong Huang
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China; (J.C.); (R.H.); (Y.L.)
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Yanyan Lin
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China; (J.C.); (R.H.); (Y.L.)
| | - Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| |
Collapse
|
6
|
Deep A, Swaroop S, Dubey D, Rawat A, Verma A, Baisya B, Parihar R, Goel A, Rungta S. The metabolic fingerprint of chronic hepatitis C progression: Metabolome shifts and cutting-edge diagnostic options. J Mol Recognit 2024; 37:e3066. [PMID: 37916582 DOI: 10.1002/jmr.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Hepatitis C virus infection causes chronic diseases such as cirrhosis and hepatocellular carcinoma. Metabolomics research has been shown to be linked to pathophysiologic pathways in liver illnesses. The aim of this study was to investigate the serum metabolic profile of patients with chronic hepatitis C (CHC) infection and to identify underlying mechanisms as well as potential biomarkers associated with the disease. Nuclear magnetic resonance (NMR) was used to evaluate the sera of 83 patients with CHC virus and 52 healthy control volunteers (NMR). Then, multivariate statistical analysis was used to find distinguishing metabolites between the two groups. Sixteen out of 40 metabolites including include 3-HB, betaine, carnitine, creatinine, fucose, glutamine, glycerol, isopropanol, lysine, mannose, methanol, methionine, ornithine, proline, serine, and valine-were shown to be significantly different between the CHC and normal control (NC) groups (variable importance in projection >1 and p < 0.05). All the metabolic perturbations in this disease are associated with pathways of Glycine, serine, and threonine metabolism, glycerolipid metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, alanine, aspartate, and glutamate metabolism. Multivariate statistical analysis constructed using these expressed metabolites showed CHC patients can be discriminated from NCs with high sensitivity (90%) and specificity (99%). The metabolomics approach may expand the diagnostic armamentarium for patients with CHC while contributing to a comprehensive understanding of disease mechanisms.
Collapse
Affiliation(s)
- Amar Deep
- Department of Medical Gastroenterology, KGMU, Lucknow, India
- Experimental and Public Health Laboratory, Department of Zoology, Lucknow University, Lucknow, India
| | - Suchit Swaroop
- Experimental and Public Health Laboratory, Department of Zoology, Lucknow University, Lucknow, India
| | | | - Atul Rawat
- Centre of Biomedical Research, Lucknow, India
| | - Ajay Verma
- Centre of Biomedical Research, Lucknow, India
| | | | | | - Amit Goel
- Department of Medical Gastroenterology, SGPGIMS, Lucknow, India
| | - Sumit Rungta
- Department of Medical Gastroenterology, KGMU, Lucknow, India
| |
Collapse
|
7
|
Huang C, Luo Y, Zeng B, Chen Y, Liu Y, Chen W, Liao X, Liu Y, Wang Y, Wang X. Branched-chain amino acids prevent obesity by inhibiting the cell cycle in an NADPH-FTO-m 6A coordinated manner. J Nutr Biochem 2023; 122:109437. [PMID: 37666478 DOI: 10.1016/j.jnutbio.2023.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Obesity has become a major health crisis in the past decades. Branched-chain amino acids (BCAA), a class of essential amino acids, exerted beneficial health effects with regard to obesity and its related metabolic dysfunction, although the underlying reason is unknown. Here, we show that BCAA supplementation alleviates high-fat diet (HFD)-induced obesity and insulin resistance in mice and inhibits adipogenesis in 3T3-L1 cells. Further, we find that BCAA prevent the mitotic clonal expansion (MCE) of preadipocytes by reducing cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) expression. Mechanistically, BCAA decrease the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in adipose tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression. The reduced NADPH attenuates the expression of fat mass and obesity-associated (FTO) protein, a well-known m6A demethylase, to increase the N6-methyladenosine (m6A) levels of Ccna2 and Cdk2 mRNA. Meanwhile, the high m6A levels of Ccna2 and Cdk2 mRNA are recognized by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which results in mRNA decay and reduction of their protein expressions. Overall, our data demonstrate that BCAA inhibit obesity and adipogenesis by reducing CDK2 and CCNA2 expression via an NADPH-FTO-m6A coordinated manner in vivo and in vitro, which raises a new perspective on the role of m6A in the BCAA regulation of obesity and adipogenesis.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Jin A, Kan Z, Tan Q, Shao J, Han Q, Chang Y, An N, Yi M. Supplementation with food-derived oligopeptides promotes lipid metabolism in young male cyclists: a randomized controlled crossover trial. J Int Soc Sports Nutr 2023; 20:2254741. [PMID: 37674290 PMCID: PMC10486287 DOI: 10.1080/15502783.2023.2254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Accumulation of body fat and dyslipidemia are associated with the development of obesity and cardiometabolic diseases. Moreover, the degree to which lipids can be metabolized has been cited as a determinant of cardiometabolic health and prolonged endurance capacity. In the backdrop of increasing obesity and cardiometabolic diseases, lipid metabolism and its modulation by physical activity, dietary adjustments, and supplementation play a significant role in maintaining health and endurance. Food-derived oligopeptides, such as rice and soybean peptides, have been shown to directly regulate abnormal lipid metabolism or promote hypolipidemia and fat oxidation in cell culture models, animal models, and human studies. However, whether supplementation with oligopeptides derived from multiple food sources can promote lipid degradation and fat oxidation in athletes remains unclear. Therefore, in a randomized controlled crossover trial, we investigated the impact of food-derived oligopeptide supplementation before and during exercise on lipid metabolism in young male cyclists. METHODS Sixteen young male cyclists (age: 17.0 ± 1.0 years; height: 178.4 ± 6.9 cm; body mass: 68.7 ± 12.7 kg, body mass index: 21.5 ± 3.4 kg/m2; maximum oxygen uptake: 56.3 ± 5.8 mL/min/kg) participated in this randomized controlled crossover trial. Each participant drank two beverages, one containing a blend of three food-derived oligopeptides (treatment, 0.5 g/kg body weight in total) and the other without (control), with a 2-week washout period between two experiments. The cyclists completed a one-day pattern protocol that consisted of intraday fasting, 30 min of sitting still, 85 min of prolonged exercise plus a 5-min sprint (PE), a short recovery period of 60 min, a 20-min time trial (TT), and recovery till next morning. Blood samples were collected for biochemical analyses of serum lipids and other biomarkers. We analyzed plasma triglyceride species (TGs), free amino acids (FAAs), and tricarboxylic acid (TCA) cycle intermediates using omics methods. In addition, exhaled gas was collected to assess the fat oxidation rate. RESULTS Five of 20 plasma FAAs were elevated pre-exercise (pre-Ex) only 20 min after oligopeptide ingestion, and most FAAs were markedly increased post PE and TT. Serum levels of TG and non-esterified fatty acids were lower in the experimental condition than in the control condition at the post PE and TT assessments, respectively. Further, the omics analysis of plasma TGs for the experimental condition demonstrated that most TGs were lower post PE and at the next fasting when compared with control levels. Simultaneously, the fat oxidation rate began to increase only 20 min after ingestion and during the preceding 85 min of PE. Levels of TCA cycle intermediates did not differ between the conditions. CONCLUSIONS The study noted that continuous ingestion of food-derived oligopeptides accelerated total body triglyceride breakdown, non-esterified fatty acid uptake, and fat oxidation during both sedentary and exercise states. Elevated circulating and intracellular FAA flux may modulate the selection of substrates for metabolic pathways in conjunction with the release of neuroendocrinological factors that slow down carbohydrate metabolism via acetyl coenzyme A feedback inhibition. This may increase the availability of fatty acids for energy production, with FAAs supplying more substrates for the TCA cycle. The findings of this study provide novel insight into strategies for promoting lipid metabolism in populations with dyslipidemia-related metabolic disorders such as obesity and for improving physiological functioning during endurance training. However, the absence of a non-exercising control group and verification of long-term supplementation effects was a limitation. Future studies will emphasize the impacts of whole protein supplementation as a control and of combined food-derived peptides or oligopeptides with probiotics and healthy food components on lipid metabolism in individuals who exercise.
Collapse
Affiliation(s)
- Aina Jin
- Beijing Sport University, Exercise Biochemistry, Beijing, China
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Zhaobo Kan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qiushi Tan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Jing Shao
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qi Han
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Yashan Chang
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Nan An
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| |
Collapse
|
9
|
Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 2023; 5:546-562. [PMID: 37100996 PMCID: PMC10427836 DOI: 10.1038/s42255-023-00783-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms 'mitochondrial function' and 'mitochondrial dysfunction' are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.
Collapse
Affiliation(s)
- Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
10
|
Fachada V, Silvennoinen M, Sahinaho UM, Rahkila P, Kivelä R, Hulmi JJ, Kujala U, Kainulainen H. Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1 α. Int J Mol Sci 2023; 24:ijms24054282. [PMID: 36901715 PMCID: PMC10002284 DOI: 10.3390/ijms24054282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.
Collapse
|
11
|
Kojouri M, Pinto R, Mustafa R, Huang J, Gao H, Elliott P, Tzoulaki I, Dehghan A. Metabolome-wide association study on physical activity. Sci Rep 2023; 13:2374. [PMID: 36759570 PMCID: PMC9911764 DOI: 10.1038/s41598-022-26377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/14/2022] [Indexed: 02/11/2023] Open
Abstract
The underlying mechanisms linking physical activity to better health are not fully understood. Here we examined the associations between physical activity and small circulatory molecules, the metabolome, to highlight relevant biological pathways. We examined plasma metabolites associated with self-reported physical activity among 2217 participants from the Airwave Health Monitoring Study. Metabolic profiling was conducted using the mass spectrometry-based Metabolon platform (LC/GC-MS), measuring 828 known metabolites. We replicated our findings in an independent subset of the study (n = 2971) using untargeted LC-MS. Mendelian randomisation was carried out to investigate potential causal associations between physical activity, body mass index, and metabolites. Higher vigorous physical activity was associated (P < 0.05/828 = 6.03 × 10-5) with circulatory levels of 28 metabolites adjusted for age, sex and body mass index. The association was inverse for glutamate and diacylglycerol lipids, and direct for 3-4-hydroxyphenyllactate, phenyl lactate (PLA), alpha-hydroxy isovalerate, tiglylcarnitine, alpha-hydroxyisocaproate, 2-hydroxy-3-methylvalerate, isobutyrylcarnitine, imidazole lactate, methionine sulfone, indole lactate, plasmalogen lipids, pristanate and fumarate. In the replication panel, we found 23 untargeted LC-MS features annotated to the identified metabolites, for which we found nominal associations with the same direction of effect for three features annotated to 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1), 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2), 1-stearoyl-2-dihomo-linolenoyl-GPC (18:0/20:3n3 or 6). Using Mendelian randomisation, we showed a potential causal relationship between body mass index and three identified metabolites. Circulatory metabolites are associated with physical activity and may play a role in mediating its health effects.
Collapse
Affiliation(s)
- Maedeh Kojouri
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
| | - Rima Mustafa
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK.
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
12
|
Sheremetieva M, Anufriev K, Khlebodarova T, Kolchanov N, Yanenko A. Rational metabolic engineering of Corynebacterium glutamicum to create a producer of L-valine. Vavilovskii Zhurnal Genet Selektsii 2022; 26:743-757. [PMID: 36694718 PMCID: PMC9834717 DOI: 10.18699/vjgb-22-90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/06/2023] Open
Abstract
L-Valine is one of the nine amino acids that cannot be synthesized de novo by higher organisms and must come from food. This amino acid not only serves as a building block for proteins, but also regulates protein and energy metabolism and participates in neurotransmission. L-Valine is used in the food and pharmaceutical industries, medicine and cosmetics, but primarily as an animal feed additive. Adding L-valine to feed, alone or mixed with other essential amino acids, allows for feeds with lower crude protein content, increases the quality and quantity of pig meat and broiler chicken meat, as well as improves reproductive functions of farm animals. Despite the fact that the market for L-valine is constantly growing, this amino acid is not yet produced in our country. In modern conditions, the creation of strains-producers and organization of L-valine production are especially relevant for Russia. One of the basic microorganisms most commonly used for the creation of amino acid producers, along with Escherichia coli, is the soil bacterium Corynebacterium glutamicum. This review is devoted to the analysis of the main strategies for the development of L- valine producers based on C. glutamicum. Various aspects of L-valine biosynthesis in C. glutamicum are reviewed: process biochemistry, stoichiometry and regulation, enzymes and their corresponding genes, export and import systems, and the relationship of L-valine biosynthesis with central cell metabolism. Key genetic elements for the creation of C. glutamicum-based strains-producers are identified. The use of metabolic engineering to enhance L-valine biosynthesis reactions and to reduce the formation of byproducts is described. The prospects for improving strains in terms of their productivity and technological characteristics are shown. The information presented in the review can be used in the production of producers of other amino acids with a branched side chain, namely L-leucine and L-isoleucine, as well as D-pantothenate.
Collapse
Affiliation(s)
| | - K.E. Anufriev
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
| | - T.M. Khlebodarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - N.A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A.S. Yanenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
| |
Collapse
|
13
|
MacCannell AD, Roberts LD. Metabokines in the regulation of systemic energy metabolism. Curr Opin Pharmacol 2022; 67:102286. [PMID: 36137304 DOI: 10.1016/j.coph.2022.102286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023]
Abstract
Metabolism consists of life-sustaining chemical reactions involving metabolites. Historically, metabolites were defined as the intermediates or end products of metabolism and considered to be passive participants changed by metabolic processes. However, recent research has redefined how we view metabolism. There is emerging evidence of metabolites which function to mediate cellular signalling and interorgan crosstalk, regulating local metabolism and systemic physiology. These bioactive metabolite signals have been termed metabokines. Metabokines regulate diverse energy metabolism pathways across multiple tissues, including fatty acid β-oxidation, mitochondrial oxidative phosphorylation, lipolysis, glycolysis and gluconeogenesis. There is increasing impetus to uncover novel metabokine signalling axes to better understand how these may be perturbed in metabolic diseases and determine their utility as therapeutic targets.
Collapse
Affiliation(s)
- Amanda Dv MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
14
|
Golubyatnikov V, Akinshin A, Ayupova N, Minushkina L. Stratifications and foliations in phase portraits of gene network models. Vavilovskii Zhurnal Genet Selektsii 2022; 26:758-764. [PMID: 36694713 PMCID: PMC9837163 DOI: 10.18699/vjgb-22-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Periodic processes of gene network functioning are described with good precision by periodic trajectories (limit cycles) of multidimensional systems of kinetic-type differential equations. In the literature, such systems are often called dynamical, they are composed according to schemes of positive and negative feedback between components of these networks. The variables in these equations describe concentrations of these components as functions of time. In the preparation of numerical experiments with such mathematical models, it is useful to start with studies of qualitative behavior of ensembles of trajectories of the corresponding dynamical systems, in particular, to estimate the highest likelihood domain of the initial data, to solve inverse problems of parameter identification, to list the equilibrium points and their characteristics, to localize cycles in the phase portraits, to construct stratification of the phase portraits to subdomains with different qualities of trajectory behavior, etc. Such an à priori geometric analysis of the dynamical systems is quite analogous to the basic section "Investigation of functions and plot of their graphs" of Calculus, where the methods of qualitative studies of shapes of curves determined by equations are exposed. In the present paper, we construct ensembles of trajectories in phase portraits of some dynamical systems. These ensembles are 2-dimensional surfaces invariant with respect to shifts along the trajectories. This is analogous to classical construction in analytic mechanics, i. e. the level surfaces of motion integrals (energy, kinetic moment, etc.). Such surfaces compose foliations in phase portraits of dynamical systems of Hamiltonian mechanics. In contrast with this classical mechanical case, the foliations considered in this paper have singularities: all their leaves have a non-empty intersection, they contain limit cycles on their boundaries. Description of the phase portraits of these systems at the level of their stratifications, and that of ensembles of trajectories allows one to construct more realistic gene network models on the basis of methods of statistical physics and the theory of stochastic differential equations.
Collapse
Affiliation(s)
- V.P. Golubyatnikov
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | - A.A. Akinshin
- Huawei Russian Research Institute, St. Petersburg, Russia
| | - N.B. Ayupova
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | | |
Collapse
|
15
|
Ren X, Wu S, Xie W, Liu Y, Yang S. Association Between the Risk of Hyperuricemia and Changes in Branched-Chain Amino Acids Intake Over Twelve Years: A Latent Class Trajectory Analysis From the China Health and Nutrition Survey, 1997-2009. Front Nutr 2022; 9:916446. [PMID: 36034924 PMCID: PMC9410769 DOI: 10.3389/fnut.2022.916446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This study aims to identify dietary branched-chain amino acids (BCAA) consumption trajectories in Chinese adults and to evaluate their association with the risk of hyperuricemia (HU). Methods Cohort data from the China Health and Nutrition Survey 1997–2009 were adopted in this research. A total of 6,810 participants aged ≥18 years were included in this study. Participants were designated into four subgroups on basis of the trajectories of dietary BCAA consumption. Cox proportional hazards models were performed to discuss the relationships between varied trajectories and the risk of HU after adjusting potential confounders. The intermediary effect of differential blood indexes between the trajectories and the risk of HU was explored with mediation analysis. Results Four distinct trajectory groups of dietary BCAA consumption were identified. Compared with the low stable trajectory group, high to low trajectory group was greatly related to an increased risk of HU (HR 1.35 (95% CI 1.03 to 1.79)) with modification for covariates. Total cholesterol (TC), hemoglobin A1c (HbA1c), fasting blood glucose (FBG), and triglyceride (TG) partially regulated trajectories and HU. Conclusion Gradually decreasing dietary BCAA intake increased the risk of HU, which is, at least, partially mediated by TC, HbA1c, FBG, and TG levels.
Collapse
Affiliation(s)
- Xiyun Ren
- Experimental Center for Preventive Medicine Teaching, College of Public Health, Harbin Medical University, Harbin, China
| | - Shasha Wu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Wei Xie
- Experimental Center for Preventive Medicine Teaching, College of Public Health, Harbin Medical University, Harbin, China
| | - Ying Liu
- Experimental Center for Preventive Medicine Teaching, College of Public Health, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Shucai Yang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
16
|
Xu W, Kenéz Á, Mann S, Overton TR, Wakshlag JJ, Nydam DV, Feng T, Yepes FL. Effects of dietary branched-chain amino acid supplementation on serum and milk metabolome profiles in dairy cows during early lactation. J Dairy Sci 2022; 105:8497-8508. [PMID: 35965128 DOI: 10.3168/jds.2022-21892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
The 3 branched-chain AA (BCAA), Val, Leu, and Ile, are essential AA used by tissues as substrates for protein synthesis and energy generation. In addition, BCAA are also involved in modulating cell signaling pathways, such as nutrient sensing and insulin signaling. In our previous study, dietary BCAA supplementation was shown to improve protein synthesis and glucose homeostasis in transition cows. However, a more detailed understanding of the changes in metabolic pathways associated with an increased BCAA availability is desired to fine-tune nutritional supplementation strategies. Multiparous Holstein cows (n = 20) were enrolled 28 d before expected calving and assigned to either the BCAA treatment (n = 10) or the control group (n = 10). Cows assigned to BCAA were fed 550 g/d of rumen-protected BCAA mixed with 200 g/d of dry molasses from calving until 35 DIM, whereas the cows assigned to the control were fed only 200 g/d of dry molasses. Serum samples were collected on d 10 before expected calving, as well as on d 4 and d 21 postpartum. Milk samples were collected on d 14 postpartum. From a larger cohort, we selected 20 BCAA-supplemented cows with the greatest plasma urea nitrogen concentration, as an indicator for greater BCAA availability, for the metabolomics analysis herein. Serum and milk samples were subjected to a liquid chromatography-mass spectrometry-based assay, detecting and measuring the abundance of 241 serum and 211 milk metabolic features, respectively. Multivariable statistical analyses revealed that BCAA supplementation altered the metabolome profiles of both serum and milk samples. Increased abundance of serum phosphocholine and glutathione and of milk Val, Ile, and Leu, and decreased abundance of milk acyl-carnitines were associated with BCAA supplementation. Altered phosphocholine and glutathione abundances point to altered hepatic choline metabolism and antioxidant balance, respectively. Altered milk acyl-carnitine abundances suggest changes in mammary fatty acid metabolism. Dietary BCAA supplementation was associated with a range of alterations in serum and milk metabolome profiles, adding to our understanding of the role of BCAA availability in modulating dairy cow protein, lipid, and energy metabolism on a whole-body level and how it affects milk composition.
Collapse
Affiliation(s)
- Wei Xu
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China.
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Thomas R Overton
- Department of Animal Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Joseph J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Daryl V Nydam
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Francisco Leal Yepes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164-6610.
| |
Collapse
|
17
|
Gong Q, Zhang R, Wei F, Fang J, Zhang J, Sun J, Sun Q, Wang H. SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. Biomed Pharmacother 2022; 152:113222. [PMID: 35671581 DOI: 10.1016/j.biopha.2022.113222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Empagliflozin (EMPA) is the first sodium-glucose co-transporter 2 inhibitor to significantly reduce cardiovascular and kidney complications in type 2 diabetes mellitus. Given this, we speculate that EMPA may have the potential to intervene in diabetic retinopathy (DR), which is another diabetes-specific microvascular complication. Db/db mice were treated with EMPA for different periods to observe the retinas and related mechanisms. EMPA effectively balanced body weight and blood glucose levels, mitigated ocular edema and microaneurysm in db/db mice. EMPA significantly inhibited oxidative stress, apoptosis and recovered tight junction in diabetic retinas. MS/MS analyses showed that EMPA suppressed aberrant branched-chain amino acid (BCAAs) accumulation in db/db retinas, which led to the inhibition of the mammalian target of rapamycin activation, downregulation of inflammation, and angiogenic factors, including TNF-ɑ, IL-6, VCAM-1, and VEGF induced by diabetes. Furthermore, branched-chain α-keto acids (BCKAs), which are catabolites of BCAAs, were increased in diabetic retinas and decreased with EMPA application. Moreover, branched-chain ketoacid dehydrogenase kinase (BCKDK) was enhanced, BCKDHA and BCKDHB were decreased in diabetic retinas. This could be reversed by EMPA treatment, thus promoting BCAAs catabolism to decrease BCAAs and BCKAs accumulation in diabetic retinas. The high levels of BCAAs in the plasma and enhanced L-type amino acid transporter 1 (LAT1) were responsible for the high levels of BCAAs in diabetic retinas, which could be inhibited by EMPA. Overall, EMPA could ameliorate DR manifestations. The normalization of BCAAs catabolism and intake may play a role in this process. This study supports EMPA as a protective drug against DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Rulin Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
18
|
Accelerometer-Based Sedentary Time, Physical Activity, and Serum Metabolome in Young Men. Metabolites 2022; 12:metabo12080700. [PMID: 36005572 PMCID: PMC9414649 DOI: 10.3390/metabo12080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Physical activity (PA) has been shown to associate with many health benefits but studies with metabolome-wide associations with PA are still lacking. Metabolome studies may deepen the mechanistic understanding of PA on the metabolic pathways related to health outcomes. The aim of the present study was to study the association of accelerometer based sedentary time (SB) and PA with metabolome measures. SB and PA were measured by a hip-worn accelerometer in 314 young adult men (age: mean 28, standard deviation 7 years). Metabolome was analyzed from fasting serum samples consisting of 66 metabolome measures (nuclear magnetic resonance-based metabolomics). The associations were analyzed using a single and compositional approach with regression analysis. The compositional analysis revealed that 4 metabolome variables were significantly (γ: 0.32−0.44, p ≤ 0.002), and 13 variables with a trend towards significance (p < 0.05), associated with SB with varying metabolic pathways. Trends towards significant associations (p < 0.05) were observed with 5 variables with moderate-to-vigorous and 1 variable with light intensity PA with varying metabolic pathways. The present study revealed possible mechanistic pathways relevant for the interaction between especially SB but also PA of moderate-to-vigorous intensity with ketone bodies and amino acid concentration related to exercised-induced energy production and lipid metabolism.
Collapse
|
19
|
Lv X, Zhou C, Yan Q, Tan Z, Kang J, Tang S. Elucidating the underlying mechanism of amino acids to regulate muscle protein synthesis: impact on human health. Nutrition 2022; 103-104:111797. [DOI: 10.1016/j.nut.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 10/31/2022]
|
20
|
Kujala UM, Leskinen T, Rottensteiner M, Aaltonen S, Ala-Korpela M, Waller K, Kaprio J. Physical activity and health: Findings from Finnish monozygotic twin pairs discordant for physical activity. Scand J Med Sci Sports 2022; 32:1316-1323. [PMID: 35770444 PMCID: PMC9378553 DOI: 10.1111/sms.14205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Genetic and early environmental differences including early health habits associate with future health. To provide insight on the causal nature of these associations, monozygotic (MZ) twin pairs discordant for health habits provide an interesting natural experiment. Twin pairs discordant for leisure‐time physical activity (LTPA) in early adult life is thus a powerful study design to investigate the associations between long‐term LTPA and indicators of health and wellbeing. We have identified 17 LTPA discordant twin pairs from two Finnish twin cohorts and summarize key findings of these studies in this paper. The carefully characterized rare long‐term LTPA discordant MZ twin pairs have participated in multi‐dimensional clinical examinations. Key findings highlight that compared with less active twins in such MZ twin pairs, the twins with higher long‐term LTPA have higher physical fitness, reduced body fat, reduced visceral fat, reduced liver fat, increased lumen diameters of conduit arteries to the lower limbs, increased bone mineral density in loaded bone areas, and an increased number of large high‐density lipoprotein particles. The findings increase our understanding on the possible site‐specific and system‐level effects of long‐term LTPA.
Collapse
Affiliation(s)
- Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tuija Leskinen
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Mirva Rottensteiner
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sari Aaltonen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Faculty of Medicine, University of Oulu & Biocenter Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Branched-Chain Amino Acid Deprivation Decreases Lipid Oxidation and Lipogenesis in C2C12 Myotubes. Metabolites 2022; 12:metabo12040328. [PMID: 35448515 PMCID: PMC9031053 DOI: 10.3390/metabo12040328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Impaired lipid metabolism is a common risk factor underlying several metabolic diseases such as metabolic syndrome and type 2 diabetes. Branched-chain amino acids (BCAAs) that include valine, leucine and isoleucine have been proven to share a role in lipid metabolism and hence in maintaining metabolic health. We have previously introduced a hypothesis suggesting that BCAA degradation mechanistically connects to lipid oxidation and storage in skeletal muscle. To test our hypothesis, the present study examined the effects of BCAA deprivation and supplementation on lipid oxidation, lipogenesis and lipid droplet characteristics in murine C2C12 myotubes. In addition, the role of myotube contractions on cell metabolism was studied by utilizing in vitro skeletal-muscle-specific exercise-like electrical pulse stimulation (EPS). Our results showed that the deprivation of BCAAs decreased both lipid oxidation and lipogenesis in C2C12 myotubes. BCAA deprivation further diminished the number of lipid droplets in the EPS-treated myotubes. EPS decreased lipid oxidation especially when combined with high BCAA supplementation. Similar to BCAA deprivation, high BCAA supplementation also decreased lipid oxidation. The present results highlight the role of an adequate level of BCAAs in healthy lipid metabolism.
Collapse
|
22
|
Lan W, Wang Y, Zhou Z, Sun X, Zhang Y, Zhang F. Metabolic Regulation of Hepatitis B Virus Infection in HBV-Transgenic Mice. Metabolites 2022; 12:287. [PMID: 35448475 PMCID: PMC9031567 DOI: 10.3390/metabo12040287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide health burden. Metabolomics analysis has revealed HBV-induced metabolism dysregulation in liver tissues and hepatocytes. However, as an infectious disease, the tissue-specific landscape of metabolic profiles of HBV infection remains unclear. To fill this gap, we applied untargeted nuclear magnetic resonance (NMR) metabolomic analysis of the heart, liver, spleen, lung, kidney, pancreas, and intestine (duodenum, jejunum, ileum) in HBV-transgenic mice and their wild-type littermates. Strikingly, we found systemic metabolic alterations induced by HBV in liver and extrahepatic organs. Significant changes in metabolites have been observed in most tissues of HBV-transgenic mice, except for ileum. The metabolic changes may provide novel therapeutic targets for the treatment of HBV infection. Moreover, tissue-specific metabolic profiles could speed up the study of HBV induced systemic metabolic reprogramming, which could help follow the progression of HBV infection and explain the underlying pathogenesis.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341001, China
| | - Yang Wang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China;
| | - Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
23
|
Ordoñez JFF, Galindez GGST, Gulay KT, Ravago-Gotanco R. Transcriptome analysis of growth variation in early juvenile stage sandfish Holothuria scabra. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100904. [PMID: 34488170 DOI: 10.1016/j.cbd.2021.100904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The sandfish Holothuria scabra is a high-value tropical sea cucumber species representing a major mariculture prospect across the Indo-Pacific. Advancements in culture technology, rearing, and processing present options for augmenting capture production, stock restoration, and sustainable livelihood activities from hatchery-produced sandfish. Further improvements in mariculture production may be gained from the application of genomic technologies to improve performance traits such as growth. In this study, we performed de novo transcriptome assembly and characterization of fast- and slow-growing juvenile H. scabra from three Philippine populations. Analyses revealed 66 unigenes that were consistently differentially regulated in fast-growing sandfish and found to be associated with immune response and metabolism. Further, we identified microsatellite and single nucleotide polymorphism markers potentially associated with fast growth. These findings provide insight on potential genomic determinants underlying growth regulation in early juvenile sandfish which will be useful for further functional studies.
Collapse
Affiliation(s)
- June Feliciano F Ordoñez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Gihanna Gaye S T Galindez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines; Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Germany.
| | - Karina Therese Gulay
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Rachel Ravago-Gotanco
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| |
Collapse
|
24
|
Abstract
Background Cardiorespiratory fitness (CRF) is a potent health marker, the improvement of which is associated with a reduced incidence of non-communicable diseases and all-cause mortality. Identifying metabolic signatures associated with CRF could reveal how CRF fosters human health and lead to the development of novel health-monitoring strategies. Objective This article systematically reviewed reported associations between CRF and metabolites measured in human tissues and body fluids. Methods PubMed, EMBASE, and Web of Science were searched from database inception to 3 June, 2021. Metabolomics studies reporting metabolites associated with CRF, measured by means of cardiopulmonary exercise test, were deemed eligible. Backward and forward citation tracking on eligible records were used to complement the results of database searching. Risk of bias at the study level was assessed using QUADOMICS. Results Twenty-two studies were included and 667 metabolites, measured in plasma (n = 619), serum (n = 18), skeletal muscle (n = 16), urine (n = 11), or sweat (n = 3), were identified. Lipids were the metabolites most commonly positively (n = 174) and negatively (n = 274) associated with CRF. Specific circulating glycerophospholipids (n = 85) and cholesterol esters (n = 17) were positively associated with CRF, while circulating glycerolipids (n = 152), glycerophospholipids (n = 42), acylcarnitines (n = 14), and ceramides (n = 12) were negatively associated with CRF. Interestingly, muscle acylcarnitines were positively correlated with CRF (n = 15). Conclusions Cardiorespiratory fitness was associated with circulating and muscle lipidome composition. Causality of the revealed associations at the molecular species level remains to be investigated further. Finally, included studies were heterogeneous in terms of participants’ characteristics and analytical and statistical approaches. PROSPERO Registration Number CRD42020214375. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01590-y.
Collapse
|
25
|
Che L, Xu M, Gao K, Wang L, Yang X, Wen X, Xiao H, Li M, Jiang Z. Mammary tissue proteomics in a pig model indicates that dietary valine supplementation increases milk fat content via increased de novo synthesis of fatty acid. Food Sci Nutr 2021; 9:6213-6223. [PMID: 34760251 PMCID: PMC8565212 DOI: 10.1002/fsn3.2574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
Milk fat is a major source of energy that determines the growth of neonates. Recently, studies have shown that valine is closely related to lipid metabolism. Therefore, this study was designed to investigate the effects of dietary valine supplementation on milk fat synthesis using a pig model. Thirty gilts were allotted to low (LV, total valine:lysine = 0.63:1), medium (MV, total valine:lysine = 0.73:1), and high (HV, total valine:lysine = 0.93:1) valine feeding levels from Day 75 of gestation till farrowing. The results demonstrated that the concentration of milk fat at Days 1, 3, and 7 of lactation in the HV group was higher than that in the MV and LV groups. The HV group had an increased (p < .05) proportion of total saturated and monounsaturated fatty acids than the other groups. Examination of mammary tissue proteomics in the HV and LV groups revealed 121 differentially expressed proteins (68 upregulated and 53 downregulated in the HV group). The upregulated proteins in the HV group were relevant to some crucial pathways related to milk fat synthesis, including fatty acid biosynthesis and metabolism, the AMPK signaling pathway, and oxidative phosphorylation. Furthermore, the key proteins involved in fatty acid synthesis (ACACA and FASN) were identified, and their expression levels were verified (p < .05) using Western blotting. Our findings revealed that dietary valine supplementation improves milk fat synthesis by modulating the expression of fatty acid synthesis-related proteins in mammary tissues.
Collapse
Affiliation(s)
- Long Che
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Mengmeng Xu
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Li Wang
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xiaolu Wen
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Mengyun Li
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
26
|
Wang Y, Ning Y, Yuan C, Cui B, Liu G, Zhang Z. The protective mechanism of a debranched corn starch/konjac glucomannan composite against dyslipidemia and gut microbiota in high-fat-diet induced type 2 diabetes. Food Funct 2021; 12:9273-9285. [PMID: 34606538 DOI: 10.1039/d1fo01233a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to explore the protection mechanism of a debranched corn starch/konjac glucomannan (DCSK) composite against type 2 diabetes (T2D) related to dyslipidemia and gut microbiota in mice fed on a high-fat diet (HFD). The results showed that the consumption of DCSK led to a significant improvement in the biochemical parameters and physiological indices associated with T2D in the HFD group, including the decrease in blood glucose, triglyceride, total cholesterol, and high-density lipoprotein cholesterol levels, as well as the suppression of the oxidative stress of the liver and kidneys. Furthermore, the health of the intestinal microbiota in the HFD-fed mice was altered dramatically after DCSK consumption. Metabolomics revealed 13 differential metabolites strongly linked to DCSK intervention, and DCSK supplementation regulated amino acid metabolism, nucleotide metabolism, and lipid metabolism. These findings demonstrated that DCSK has an outstanding ability to improve hyperglycemia, hyperlipidemia, and gut microbiota associated with T2D.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Grain and Oil, Henan University of Technology, Zhengzhou 450001, China
| | - Yuejia Ning
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
27
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
28
|
Lautaoja JH, M O'Connell T, Mäntyselkä S, Peräkylä J, Kainulainen H, Pekkala S, Permi P, Hulmi JJ. Higher glucose availability augments the metabolic responses of the C2C12 myotubes to exercise-like electrical pulse stimulation. Am J Physiol Endocrinol Metab 2021; 321:E229-E245. [PMID: 34181491 PMCID: PMC8410101 DOI: 10.1152/ajpendo.00133.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The application of exercise-like electrical pulse simulation (EL-EPS) has become a widely used exercise mimetic in vitro. EL-EPS produces similar physiological responses as in vivo exercise, while less is known about the detailed metabolic effects. Routinely, the C2C12 myotubes are cultured in high-glucose medium (4.5 g/L), which may alter EL-EPS responses. In this study, we evaluate the metabolic effects of EL-EPS under the high- and low-glucose (1.0 g/L) conditions to understand how substrate availability affects the myotube response to EL-EPS. The C2C12 myotube, media, and cell-free media metabolites were analyzed using untargeted nuclear magnetic resonance (NMR)-based metabolomics. Furthermore, translational and metabolic changes and possible exerkine effects were analyzed. EL-EPS enhanced substrate utilization as well as production and secretion of lactate, acetate, 3-hydroxybutyrate, and branched-chain fatty acids (BCFAs). The increase in BCFAs correlated with branched-chain amino acids (BCAAs) and BCFAs were strongly decreased when myotubes were cultured without BCAAs suggesting the action of acyl-CoA thioesterases on BCAA catabolites. Notably, not all EL-EPS responses were augmented by high glucose because EL-EPS increased phosphorylated c-Jun N-terminal kinase and interleukin-6 secretion independent of glucose availability. Administration of acetate and EL-EPS conditioned media on HepG2 hepatocytes had no adverse effects on lipolysis or triacylglycerol content. Our results demonstrate that unlike in cell-free media, the C2C12 myotube and media metabolites were affected by EL-EPS, particularly under high-glucose condition suggesting that media composition should be considered in future EL-EPS studies. Furthermore, acetate and BCFAs were identified as putative exerkines warranting more research.NEW & NOTEWORTHY The present study examined for the first time the metabolome of 1) C2C12 myotubes, 2) their growth media, and 3) cell-free media after exercise-like electrical pulse stimulation under distinct nutritional loads. We report that myotubes grown under high-glucose conditions had greater responsiveness to EL-EPS when compared with lower glucose availability conditions and increased media content of acetate and branched-chain fatty acids suggests they might act as putative exerkines warranting further research.
Collapse
Affiliation(s)
- Juulia H Lautaoja
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sakari Mäntyselkä
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Juuli Peräkylä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
29
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
30
|
Leal Yepes FA, Mann S, Overton TR, Behling-Kelly E, Nydam DV, Wakshlag JJ. Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation. J Dairy Sci 2021; 104:10324-10337. [PMID: 34176626 DOI: 10.3168/jds.2021-20265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Essential amino acids (EAA) are critical for multiple physiological processes. Branched-chain amino acid (BCAA) supplementation provides energy substrates, promotes protein synthesis, and stimulates insulin secretion in rodents and humans. Most dairy cows face a protein and energy deficit during the first weeks postpartum and utilize body reserves to counteract this shortage. The objective was to evaluate the effect of rumen-protected BCAA (RP-BCAA; 375 g of 27% l-leucine, 85 g of 48% l-isoleucine, and 91 g of 67% l-valine) with or without oral propylene glycol (PG) administration on markers of liver health status, concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in plasma, and liver triglycerides (TG) during the early postpartum period in dairy cows. Multiparous Holstein cows were enrolled in blocks of 3 and randomly assigned to either the control group or 1 of the 2 treatments from calving until 35 d postpartum. The control group (n = 16) received 200 g of dry molasses per cow/d; the RP-BCAA group (n = 14) received RP-BCAA mixed with 200 g of dry molasses per cow/d; the RP-BCAA plus PG (RP-BCAAPG) group (n = 16) received RP-BCAA mixed with 200 g of dry molasses per cow/d, plus 300 mL of PG, once daily from calving until 7 d in milk (DIM). The RP-BCAA and RP-BCAAGP groups, on average (± standard deviation), were predicted to receive a greater supply of metabolizable protein in the form of l-Leu 27.4 ± 3.5 g/d, l-Ile 15.2 ± 1.8 g/d, and l-Val 24.2 ± 2.4 g/d compared with the control cows. Liver biopsies were collected at d 9 ± 4 prepartum and at 5 ± 1 and 21 ± 1 DIM. Blood was sampled 3 times per week from calving until 21 DIM. Milk yield, dry matter intake, NEFA, BHB, EAA blood concentration, serum chemistry, insulin, glucagon, and liver TG and protein abundance of total and phosphorylated branched-chain ketoacid dehydrogenase E1α (p-BCKDH-E1α) were analyzed using repeated measures ANOVA. Cows in the RP-BCAA and RP-BCAAPG groups had lower liver TG and lower activities of aspartate aminotransferase and glutamate dehydrogenase during the first 21 DIM, compared with control. All cows, regardless of treatment, showed an upregulation of p-BCKDH-E1α at d 5 postpartum, compared with levels at 21 d postpartum. Insulin, Met, and Glu blood concentration were greater in RP-BCAA and RP-BCAAPG compared with control during the first 35 DIM. Therefore, the use of RP-BCAA in combination with PG might be a feasible option to reduce hepatic lipidosis in dairy cows during early lactation.
Collapse
Affiliation(s)
- F A Leal Yepes
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853.
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - E Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - D V Nydam
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - J J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
31
|
Riddell N, Murphy MJ, Crewther SG. Electroretinography and Gene Expression Measures Implicate Phototransduction and Metabolic Shifts in Chick Myopia and Hyperopia Models. Life (Basel) 2021; 11:life11060501. [PMID: 34072440 PMCID: PMC8228081 DOI: 10.3390/life11060501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
The Retinal Ion-Driven Fluid Efflux (RIDE) model theorizes that phototransduction-driven changes in trans-retinal ion and fluid transport underlie the development of myopia (short-sightedness). In support of this model, previous functional studies have identified the attenuation of outer retinal contributions to the global flash electroretinogram (gfERG) following weeks of myopia induction in chicks, while discovery-driven transcriptome studies have identified changes to the expression of ATP-driven ion transport and mitochondrial metabolism genes in the retina/RPE/choroid at the mid- to late-induction time-points. Less is known about the early time-points despite biometric analyses demonstrating changes in eye growth by 3 h in the chick lens defocus model. Thus, the present study compared gfERG and transcriptome profiles between 3 h and 3 days of negative lens-induced myopia and positive lens-induced hyperopia in chicks. Photoreceptor (a-wave and d-wave) and bipolar (b-wave and late-stage d-wave) cell responses were suppressed following negative lens-wear, particularly at the 3–4 h and 3-day time-points when active shifts in the rate of ocular growth were expected. Transcriptome measures revealed the up-regulation of oxidative phosphorylation genes following 6 h of negative lens-wear, concordant with previous reports at 2 days in this model. Signal transduction pathways, with core genes involved in glutamate and G-protein coupled receptor signalling, were down-regulated at 6 h. These findings contribute to a growing body of evidence for the dysregulation of phototransduction and mitochondrial metabolism in animal models of myopia.
Collapse
|
32
|
Margolis LM, Karl JP, Wilson MA, Coleman JL, Ferrando AA, Young AJ, Pasiakos SM. Metabolomic profiles are reflective of hypoxia-induced insulin resistance during exercise in healthy young adult males. Am J Physiol Regul Integr Comp Physiol 2021; 321:R1-R11. [PMID: 33949213 PMCID: PMC8321788 DOI: 10.1152/ajpregu.00076.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia-induced insulin resistance appears to suppress exogenous glucose oxidation during metabolically matched aerobic exercise during acute (<8 h) high-altitude (HA) exposure. However, a better understanding of this metabolic dysregulation is needed to identify interventions to mitigate these effects. The objective of this study was to determine if differences in metabolomic profiles during exercise at sea level (SL) and HA are reflective of hypoxia-induced insulin resistance. Native lowlanders (n = 8 males) consumed 145 g (1.8 g/min) of glucose while performing 80-min of metabolically matched treadmill exercise at SL (757 mmHg) and HA (460 mmHg) after 5-h exposure. Exogenous glucose oxidation and glucose turnover were determined using indirect calorimetry and dual tracer technique ([13C]glucose and [6,6-2H2]glucose). Metabolite profiles were analyzed in serum as change (Δ), calculated by subtracting postprandial/exercised state SL (ΔSL) and HA (ΔHA) from fasted, rested conditions at SL. Compared with SL, exogenous glucose oxidation, glucose rate of disappearance, and glucose metabolic clearance rate (MCR) were lower (P < 0.05) during exercise at HA. One hundred and eighteen metabolites differed between ΔSL and ΔHA (P < 0.05, Q < 0.10). Differences in metabolites indicated increased glycolysis, tricarboxylic acid cycle, amino acid catabolism, oxidative stress, and fatty acid storage, and decreased fatty acid mobilization for ΔHA. Branched-chain amino acids and oxidative stress metabolites, Δ3-methyl-2-oxobutyrate (r = -0.738) and Δγ-glutamylalanine (r = -0.810), were inversely associated (P < 0.05) with Δexogenous glucose oxidation. Δ3-Hydroxyisobutyrate (r = -0.762) and Δ2-hydroxybutyrate/2-hydroxyisobutyrate (r = -0.738) were inversely associated (P < 0.05) with glucose MCR. Coupling global metabolomics and glucose kinetic data suggest that the underlying cause for diminished exogenous glucose oxidative capacity during aerobic exercise is acute hypoxia-mediated peripheral insulin resistance.
Collapse
Affiliation(s)
- Lee M Margolis
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - J Philip Karl
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Marques A Wilson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Julie L Coleman
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Arny A Ferrando
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Andrew J Young
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Stefan M Pasiakos
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
33
|
Preston G, Emmerzaal T, Radenkovic S, Lanza IR, Oglesbee D, Morava E, Kozicz T. Cerebellar and multi-system metabolic reprogramming associated with trauma exposure and post-traumatic stress disorder (PTSD)-like behavior in mice. Neurobiol Stress 2021; 14:100300. [PMID: 33604421 PMCID: PMC7872981 DOI: 10.1016/j.ynstr.2021.100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We recently reported that mice exposed to a novel paradigm for the induction of PTSD-like behavior displayed reduced mitochondrial electron transport chain (mtETC) complex activity as well as decreased multi-system fatty acid oxidation (FAO) flux. Based on these results, we hypothesized that stressed and PTSD-like animals would display evidence of metabolic reprogramming in both cerebellum and plasma consistent with increased energetic demand, mitochondrial metabolic reprogramming, and increased oxidative stress. We performed targeted metabolomics in both cerebellar tissue and plasma, as well as untargeted nuclear magnetic resonance (NMR) spectroscopy in the cerebellum of 6 PTSD-like and 7 resilient male mice as well as 7 trauma-naïve controls. We identified numerous differences in amino acids and tricarboxylic acid (TCA) cycle metabolite concentrations in the cerebellum and plasma consistent with altered mitochondrial energy metabolism in trauma exposed and PTSD-like animals. Pathway analysis identified metabolic pathways with significant metabolic pathway shifts associated with trauma exposure, including the tricarboxylic acid cycle, pyruvate, and branched-chain amino acid metabolism in both cerebellar tissue and plasma. Altered glutamine and glutamate metabolism, and arginine biosynthesis was evident uniquely in cerebellar tissue, while ketone body levels were modified in plasma. Importantly, we also identified several cerebellar metabolites (e.g. choline, adenosine diphosphate, beta-alanine, taurine, and myo-inositol) that were sufficient to discriminate PTSD-like from resilient animals. This multilevel analysis provides a comprehensive understanding of local and systemic metabolite fingerprints associated with PTSD-like behavior, and subsequently altered brain bioenergetics. Notably, several transformed metabolic pathways observed in the cerebellum were also reflected in plasma, connecting central and peripheral biosignatures of PTSD-like behavior. These preliminary findings could direct further mechanistic studies and offer insights into potential metabolic interventions, either pharmacological or dietary, to improve PTSD resilience.
Collapse
Affiliation(s)
- Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tim Emmerzaal
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Anatomy, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - Silvia Radenkovic
- Metabolomic Expertise Center, CCB, VIB- KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
| | - Ian R. Lanza
- Division of Endocrinology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
34
|
Chen JW, Lin YL, Samuel Wu YH, Wang SY, Chou CH, Chen YC. Ameliorative effects of functional crude-chalaza hydrolysates on the hepatosteatosis development induced by a high-fat diet. Poult Sci 2021; 100:101009. [PMID: 33647717 PMCID: PMC7921881 DOI: 10.1016/j.psj.2021.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Approximately 400 metric tons of egg chalazae, a byproduct in the liquid-egg processing plant, are produced yearly but always regarded as a waste in Taiwan. Our team successfully developed a crude egg chalaza hydrolysate by protease-A digestion (CCH-A). Free branched-chain amino acids, 3-aminoisobutyric acid, and β-alanine, and anserine were assayed in the CCH-A used in this study. Besides, the in vitro bile-acid binding ability and inhibitory lipase activity of CCH-As were demonstrated. Then, high-fat diet feeding for 10 wk caused hyperlipidemia, insulin resistance, and hepatosteatosis in hamsters (P < 0.05). However, CCH-A co-treatment decreased serum/liver triglyceride levels and lipid accumulation in livers by increasing daily fecal lipid/bile-acid outputs, upregulating fatty-acid β oxidation, and downregulating fatty-acid biosynthesis in livers (P < 0.05). CCH-A co-treatment also amended insulin resistance, augmented hepatic antioxidant capacity, and decreased liver damages and inflammatory responses (P < 0.05). Taken together, our results do not only demonstrate the hepatoprotective effects of CCH-As against a chronic high-fat dietary habit, achieving effects similar to Simvastatin, but also decrease the environmental burden of handling chalazae in the liquid-egg industry.
Collapse
Affiliation(s)
- Jr-Wei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan; Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan, Taipei City 100, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Chung-Hsi Chou
- School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
35
|
Sampson CM, Dimet AL, Neelakantan H, Ogunseye KO, Stevenson HL, Hommel JD, Watowich SJ. Combined nicotinamide N-methyltransferase inhibition and reduced-calorie diet normalizes body composition and enhances metabolic benefits in obese mice. Sci Rep 2021; 11:5637. [PMID: 33707534 PMCID: PMC7952898 DOI: 10.1038/s41598-021-85051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
Obesity is a large and growing global health problem with few effective therapies. The present study investigated metabolic and physiological benefits of nicotinamide N-methyltransferase inhibitor (NNMTi) treatment combined with a lean diet substitution in diet-induced obese mice. NNMTi treatment combined with lean diet substitution accelerated and improved body weight and fat loss, increased whole-body lean mass to body weight ratio, reduced liver and epididymal white adipose tissue weights, decreased liver adiposity, and improved hepatic steatosis, relative to a lean diet substitution alone. Importantly, combined lean diet and NNMTi treatment normalized body composition and liver adiposity parameters to levels observed in age-matched lean diet control mice. NNMTi treatment produced a unique metabolomic signature in adipose tissue, with predominant increases in ketogenic amino acid abundance and alterations to metabolites linked to energy metabolic pathways. Taken together, NNMTi treatment's modulation of body weight, adiposity, liver physiology, and the adipose tissue metabolome strongly support it as a promising therapeutic for obesity and obesity-driven comorbidities.
Collapse
Affiliation(s)
- Catherine M Sampson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch At Galveston, Galveston, TX, USA
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrea L Dimet
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Kehinde O Ogunseye
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch At Galveston, Galveston, TX, USA
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
36
|
Olkowicz M, Tomczyk M, Debski J, Tyrankiewicz U, Przyborowski K, Borkowski T, Zabielska-Kaczorowska M, Szupryczynska N, Kochan Z, Smeda M, Dadlez M, Chlopicki S, Smolenski RT. Enhanced cardiac hypoxic injury in atherogenic dyslipidaemia results from alterations in the energy metabolism pattern. Metabolism 2021; 114:154400. [PMID: 33058853 DOI: 10.1016/j.metabol.2020.154400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Dyslipidaemia is a major risk factor for myocardial infarction that is known to correlate with atherosclerosis in the coronary arteries. We sought to clarify whether metabolic alterations induced by dyslipidaemia in cardiomyocytes collectively constitute an alternative pathway that escalates myocardial injury. METHODS Dyslipidaemic apolipoprotein E and low-density lipoprotein receptor (ApoE/LDLR) double knockout (ApoE-/-/LDLR-/-) and wild-type C57BL/6 (WT) mice aged six months old were studied. Cardiac injury under reduced oxygen supply was evaluated by 5 min exposure to 5% oxygen in the breathing air under electrocardiogram (ECG) recording and with the assessment of troponin I release. To address the mechanisms LC/MS was used to analyse the cardiac proteome pattern or in vivo metabolism of stable isotope-labelled substrates and HPLC was applied to measure concentrations of cardiac high-energy phosphates. Furthermore, the effect of blocking fatty acid use with ranolazine on the substrate preference and cardiac hypoxic damage was studied in ApoE-/-/LDLR-/- mice. RESULTS Hypoxia induced profound changes in ECG ST-segment and troponin I leakage in ApoE-/-/LDLR-/- mice but not in WT mice. The evaluation of the cardiac proteomic pattern revealed that ApoE-/-/LDLR-/- as compared with WT mice were characterised by coordinated increased expression of mitochondrial proteins, including enzymes of fatty acids' and branched-chain amino acids' oxidation, accompanied by decreased expression levels of glycolytic enzymes. These findings correlated with in vivo analysis, revealing a reduction in the entry of glucose and enhanced entry of leucine into the cardiac Krebs cycle, with the cardiac high-energy phosphates pool maintained. These changes were accompanied by the activation of molecular targets controlling mitochondrial metabolism. Ranolazine reversed the oxidative metabolic shift in ApoE-/-/LDLR-/- mice and reduced cardiac damage induced by hypoxia. CONCLUSIONS We suggest a novel mechanism for myocardial injury in dyslipidaemia that is consequent to an increased reliance on oxidative metabolism in the heart. The alterations in the metabolic pattern that we identified constitute an adaptive mechanism that facilitates maintenance of metabolic equilibrium and cardiac function under normoxia. However, this adaptation could account for myocardial injury even in a mild reduction of oxygen supply.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Marta Tomczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106 Warsaw, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Tomasz Borkowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Natalia Szupryczynska
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Zdzislaw Kochan
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106 Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531 Krakow, Poland.
| | - Ryszard T Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland.
| |
Collapse
|
37
|
Wang F, Wang B, Chen X, Liu W, Wang G, Li X, Liu X, Li N, Zhang J, Yin T, Jing J, Chang X, Jin Y, Zhang Y, Zhao Y. Association Between Blood Pressure and Branched-Chain/Aromatic Amino Acid Excretion Rate in 24-Hour Urine Samples from Elderly Hypertension Patients. Diabetes Metab Syndr Obes 2021; 14:3965-3973. [PMID: 34531669 PMCID: PMC8439623 DOI: 10.2147/dmso.s324153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recently, the association between lifestyle-related diseases and free amino acids in the blood plasma-especially branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs)-has been highlighted. However, few studies have been carried out on 24-hour urine samples. Therefore, we aimed to explore the relationships between 24-hour urinary BCAAs and AAAs excretion rate and blood pressure (BP) in elderly patients with hypertension. METHODS AND RESULTS Each of the 322 elderly patients with hypertension completed an in-person questionnaire interview, underwent a physical examination, and provided a 24-hour urine specimen. We measured their BCAAs and AAAs excretion rate, and used multiple linear regression analysis with variable selection to construct models describing the relationships between their BCAAs and AAAs excretion rate and BP. After adjusted for age, gender, height, and weight, valine was inversely associated with both systolic blood pressure (SBP) (β: -0.232, 95% CI: -0.16, -0.006) and diastolic blood pressure (DBP) (β: -0.144, 95% CI: -0.089, -0.005). These findings were invariant even following adjustment for urine volume and drugs history, and Ile was positively associated with DBP (β: 0.170, 95% CI: 0.001, 0.066). CONCLUSION The data revealed that the excretion rate of 24-hour urinary BCAAs was closely related to BP in elderly hypertension patients, and these findings will provide new insights into the association between BACC metabolism and BP.
Collapse
Affiliation(s)
- Faxuan Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Binxia Wang
- Second People’s Hospital of Gansu Province, Lanzhou, Gansu, People’s Republic of China
| | - Xiyuan Chen
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Wanlu Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Guoqi Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Xiaoxia Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Xiuying Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Nan Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Jiaxing Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Ting Yin
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Jinyun Jing
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Xiaoyu Chang
- Editorial Department of the Journal of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Yanan Jin
- Centers for Disease Control and Prevention in Ningxia, Yinchuan, Ningxia, People’s Republic of China
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People’s Republic of China
| | - Yi Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Correspondence: Yi Zhao School of Public Health and Management, Ningxia Medical UniversityTel +86 139 9501 1690Fax +86 951-6980144 Email
| |
Collapse
|
38
|
Manjarín R, Boutry-Regard C, Suryawan A, Canovas A, Piccolo BD, Maj M, Abo-Ismail M, Nguyen HV, Fiorotto ML, Davis TA. Intermittent leucine pulses during continuous feeding alters novel components involved in skeletal muscle growth of neonatal pigs. Amino Acids 2020; 52:1319-1335. [PMID: 32974749 DOI: 10.1007/s00726-020-02894-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 μmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, β-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA.
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA.
| | - Claire Boutry-Regard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Agus Suryawan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Angela Canovas
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, U.S. Department of Agriculture/Agricultural Research Service, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Magdalena Maj
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mohammed Abo-Ismail
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA
| | - Hanh V Nguyen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Teresa A Davis
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Carpentier AC. Branched-chain Amino Acid Catabolism by Brown Adipose Tissue. Endocrinology 2020; 161:5820622. [PMID: 32296814 PMCID: PMC7286613 DOI: 10.1210/endocr/bqaa060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Correspondence: Dr. André C. Carpentier, Division of Endocrinology, Faculty of Medicine, University of Sherbrooke, 3001, 12th Ave North, Sherbrooke, Quebec, Canada J1H 5N4. E-mail:
| |
Collapse
|
40
|
Effects of exercise and dietary interventions on serum metabolites in men with insomnia symptoms: A 6-month randomized controlled trial. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:95-101. [PMID: 35784182 PMCID: PMC9219304 DOI: 10.1016/j.smhs.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
|
41
|
Liu ME, Chou CH, Li L, Wu YHS, Lin YL, Tu DG, Chen YC. Modulation effects of black-vinegar-based supplement against a high-fat dietary habit: antiobesity/hypolipidemic, antioxidative, and energy-metabolism effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2380-2388. [PMID: 31901136 DOI: 10.1002/jsfa.10246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND An imbalanced fat or excess energy intake always results in obesity and increased serum/liver lipids, thus leading to metabolic syndromes. Given the bioactive components in black vinegar (BV), such as branched amino acids, phenolic profile, and mineral contents, we investigated the antiobesity effects of BV-based supplements in rats fed a high-fat diet (HFD). RESULTS HFD (30% fat, w/w) feeding increased (P < 0.05) body weight, weight gains, weights of livers and mesenteric, epididymal, and perirenal adipose tissues, and serum/liver triglyceride levels relative to those of rats fed a normal diet (4% fat, w/w; CON). These increased values were ameliorated (P < 0.05) by supplementing with BV-based supplements but were still higher (P < 0.05) than those of CON rats. The increased areas of perirenal adipocytes in rats fed with an HFD were also decreased (P < 0.05) by supplementing with BV-based supplements, which might result from an upregulation (P < 0.05) of 5'-adenosine monophosphate-activated protein kinase (AMPK), carnitine palmitoyltransferase-1 (CPT1), and uncoupling protein-2 (UCP2) in the perirenal adipose tissues. A similar effect was observed for AMPK, peroxisome proliferator-activated receptor alpha, retinoid X receptor alpha, CPT1, and UCP2 gene and protein levels in livers (P < 0.05). Generally, BV-based supplements increased the fecal triglyceride, cholesterol, and bile acid levels of rats fed with an HFD, which partially contribute to the lipid-lowering effects. Furthermore, BV-based supplements increased (P < 0.05) hepatic Trolox equivalent antioxidant capacity and lowered (P < 0.05) serum/liver thiobarbituric acid reactive substances values in HFD-fed rats. CONCLUSION In a chronic high-fat dietary habit, the food-grade BV-based supplement is a good daily choice to ameliorate obesity and its associated comorbidities. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-En Liu
- Department of Community Health, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Chung-Hsi Chou
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
- Department of Biomedical Science, National Chung Cheng University, Minxiong Township, Chia-Yi County, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Webb L, Sadri H, Schuh K, Egert S, Stehle P, Meyer I, Koch C, Dusel G, Sauerwein H. Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition. J Dairy Sci 2020; 103:2847-2863. [DOI: 10.3168/jds.2019-17147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
|
43
|
Che L, Xu M, Gao K, Wang L, Yang X, Wen X, Xiao H, Jiang Z, Wu D. Valine supplementation during late pregnancy in gilts increases colostral protein synthesis through stimulating mTOR signaling pathway in mammary cells. Amino Acids 2019; 51:1547-1559. [PMID: 31720834 DOI: 10.1007/s00726-019-02790-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/28/2019] [Indexed: 12/15/2022]
Abstract
Mammary gland development during late pregnancy in sows is a major factor affecting the composition of colostrum and milk and the pre-weaning growth of piglets, while valine is essential for protein and nitrogen metabolism in mammary gland of sow. However, the effects of valine and its underlying mechanism on mammary gland development during late pregnancy are still unclear. Here, we hypothesized that dosage of dietary valine during late pregnancy will affect protein synthesis of colostrum in gilts. The results showed that supplementation of valine during late pregnancy significantly increased content of protein (P < 0.01), fat (P = 0.02) and solids-non-fat (P = 0.04) in colostrum. Our in vitro study also confirmed that valine supplementation increased protein synthesis and cell proliferation in porcine mammary epithelial cells (PMEC). Furthermore, these changes were associated with elevated phosphorylation levels of mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (S6) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) in valine-supplemented cells, which could be effectively blocked by the antagonists of mTOR. These findings indicated that valine enhanced mammary gland development and protein synthesis in colostrum via the mTOR signaling pathway. These results, using an in vivo and in vitro model, helped to understand the beneficial effects of dietary valine supplementation on gilts.
Collapse
Affiliation(s)
- Long Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Chengdu, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Mengmeng Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Chengdu, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Xiaolu Wen
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China.
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Chengdu, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
44
|
Beneficial effects of running and milk protein supplements on Sirtuins and risk factors of metabolic disorders in rats with low aerobic capacity. Metabol Open 2019; 4:100019. [PMID: 32812928 PMCID: PMC7424841 DOI: 10.1016/j.metop.2019.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background Physical activity and dietary intake of dairy products are associated with improved metabolic health. Dairy products are rich with branched chain amino acids that are essential for energy production. To gain insight into the mechanisms underlying the benefit of the sub-chronic effects of running and intake of milk protein supplements, we studied Low Capacity Runner rats (LCR), a rodent exercise model with risk for metabolic disorders. We especially focused on the role of Sirtuins, energy level dependent proteins that affect many cellular metabolic processes. Methods Forty-seven adult LCR female rats sedentary or running voluntarily in wheels were fed normal chow and given supplements of either whey or milk protein drink (PD)-supplemented water, or water only for 21 weeks. Physiological responses were measured in vivo. Blood lipids were determined from serum. Mitochondrial markers and Sirtuins (Sirt1-7) including downstream targets were measured in plantaris muscle by western blotting. Results For the first 10 weeks whey-drinking rats ran about 50% less compared to other groups; still, in all runners glucose tolerance improved and triglycerides decreased. Generally, running induced a ∼six-fold increase in running capacity and a ∼8% decrease in % body fat. Together with running, protein supplements increased the relative lean mass of the total body weight by ∼11%. In comparison with sedentary controls, running and whey increased HDL (21%) and whey, with or without running, lowered LDL (−34%). Running increased mitochondrial biogenesis and Sirtuins 3 and 4. When combined with exercise, both whey and milk protein drink induced about a 4-fold increase in Sirt3, compared to runners drinking water only, and about a 2-fold increase compared to the respective sedentary group. Protein supplements, with or without running, enhanced the phosphorylation level of the acetyl-coA-carboxylase, suggesting increased fat oxidation. Both supplemented diets increased Sirt5 and Sirt7 without an additional effect from exercise. Running diminished and PD supplement increased Sirt6. Conclusion We demonstrate in rats new sub-chronic effects of milk proteins on metabolism that involve Sirtuins and their downstream targets in skeletal muscle. The results show that running and milk proteins act on reducing the risk factors of metabolic disorders and suggest that the underlying mechanisms may involve Sirtuins. Notably, we found that milk protein supplements have some favorable effects on metabolism even without running. Interactive effects of running and/or milk protein supplements were studied. Milk protein drink enhanced and whey diminished the amount of voluntary running. Despite less running whey-supplementation improved metabolic health. Almost all Sirtuins in muscle adapted to milk protein and running interventions.
Collapse
|
45
|
Evaluation of Pancreatic and Extra Pancreatic Effects of Branched Amino Acids. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background and aims: Leucine, Isoleucine, and Valine collectively known as Branched-chain amino acids (BCAAs), can be closely associated with metabolic dysregulates and with insulin resistance. We aimed to explore the role of BCAAs as potential treatment option for diabetes.
Material and method: Bioassay the effect of BCAAs on MIN6 cell line on insulin secretion and pancreatic beta cells expansion, then were checked for inhibitory potential of pancreatic amylase, glucosidase and lipase as alternative approach for diabetes treatment.
Results: BCAAs significantly enhance insulin secretion parallel to L-alanine efficacy. Furthermore, BCAAs obtain a dose dependent β-cell proliferation similar to glucagon-like peptide-1. Moreover, these acids could restore the secretory function of MIN6 β-cell despite stressful gluco-lipo-toxicity; separately or combined. Moreover, BCAAs exerted a dose dependent dual inhibition of amylase, glucosidase and lipase.
Conclusions: Our current findings suggest that BCAAs supplementation may have a potential therapeutic effect against diabetes as insulin releasing agent and as specific inhibitors for both-amylase/α-amyloglucoside and lipase
Collapse
|
46
|
Kujala UM, Vaara JP, Kainulainen H, Vasankari T, Vaara E, Kyröläinen H. Associations of Aerobic Fitness and Maximal Muscular Strength With Metabolites in Young Men. JAMA Netw Open 2019; 2:e198265. [PMID: 31441934 PMCID: PMC6714035 DOI: 10.1001/jamanetworkopen.2019.8265] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE High physical fitness is associated with a reduction in risk of cardiovascular diseases and death, but the underlying mechanisms are insufficiently understood. OBJECTIVE To determine how aerobic fitness and muscular strength are associated with serum metabolome measures. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study included Finnish men receiving military refresher training from May 5, 2015, to November 28, 2015, representing partly overlapping groups of individuals with the lowest vs highest aerobic fitness and the lowest vs highest muscular strength. Data analyses were conducted from January 1, 2018, to May 31, 2019. MAIN OUTCOMES AND MEASURES The associations of aerobic fitness (determined with maximum oxygen consumption in milliliters per minute per kilogram, measured with maximal cycle ergometer test) and muscular strength (determined with a maximal strength test for lower extremities in kilograms) with 66 metabolome measures from fasting serum samples (nuclear magnetic resonance-based metabolomics) were analyzed. RESULTS Participants included 580 Finnish men (mean [SD] age, 26.1 [6.5] years). Including overlap between groups, there were 196 men in the lowest aerobic fitness group and 197 men in the highest aerobic fitness group as well as 196 men in the lowest muscular strength group and 197 men in the highest muscular strength group. Of 66 studied metabolome measures, 48 differed between high vs low aerobic fitness groups, including small very low-density lipoprotein (standardized median difference, -0.67; 95% CI, -0.83 to -0.49), large high-density lipoprotein (standardized median difference, 0.89; 95% CI, 0.69-1.15), total triglyceride levels (standardized median difference, -0.52; 95% CI, -0.65 to -0.34), isoleucine (standardized median difference, -0.37; 95% CI, -0.55 to -0.16), leucine (standardized median difference, -0.55; 95% CI, -0.72 to -0.34), phenylalanine (standardized median difference, -0.54; 95% CI, -0.71 to -0.32), glycerol (standardized median difference, -0.64; 95% CI, -0.81 to -0.48), and glycoprotein (standardized median difference, -0.78; 95% CI, -0.95 to -0.62) concentration, a high unsaturation degree of fatty acids (standardized median difference, 0.59; 95% CI, 0.42-0.81), and apolipoprotein B to apolipoprotein A1 ratio (standardized median difference, -0.88; 95% CI, -1.08 to -0.67). Adding aerobic fitness into the regression model after age, education, smoking, use of alcohol, and dietary factors accounted for more than an additional 5% of variation for 25 metabolome measures (R2 range, 5.01%-15.90% by measure). With these 2 criteria, maximal muscular strength was not associated with any metabolome measures. Aerobic fitness was associated with high large high-density lipoprotein particle concentration (R2, 14.97%; 95% CI, 10.65%-20.85%), low apolipoprotein B to apolipoprotein A1 ratio (R2, 14.49%; 95% CI, 10.58%-19.51%), and low glycoprotein concentration (R2, 15.90%; 95% CI, 11.22%-21.51%). Aerobic fitness was also associated with low very low-density lipoprotein, triglyceride, isoleucine, leucine, phenylalanine, glycerol, and glycoprotein concentrations and with a high unsaturation degree of fatty acids. Adjusting for recent physical activity influenced the results minimally. Adjusting for body fat percentage showed that some of the associations were mechanistically associated with body fat percentage. CONCLUSIONS AND RELEVANCE This study provides data on the association of high aerobic fitness with underlying oxidative lipid metabolism associated with a reduction in cardiometabolic risk. High maximal muscular strength is not similarly associated with these benefits.
Collapse
Affiliation(s)
- Urho M. Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jani P. Vaara
- Department of Leadership and Military Pedagogy, National Defence University, Helsinki, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tommi Vasankari
- The UKK Institute, Centre for Health Promotion Research, Tampere, Finland
| | - Elina Vaara
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- JAMK University of Applied Sciences, Jyväskylä, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
47
|
Yang KT, Lin YL, Lin YX, Wang SY, Wu YHS, Chou CH, Fu SG, Chen YC. Protective effects of antioxidant egg-chalaza hydrolysates against chronic alcohol consumption-induced liver steatosis in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2300-2310. [PMID: 30324620 DOI: 10.1002/jsfa.9426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction is highly related to some human chronic diseases. There are approximately 400 metric tons of chalazae produced yearly after the processing of the liquid-egg production, which are disposed of as waste. The objectives of this study were to look for the optimal production condition of antioxidant crude chalaza hydrolysates and evaluate the in vivo antioxidant capacity via a chronic alcohol consumption mouse model. RESULTS Antioxidant crude chalaza hydrolysates (CCH-As) could be produced by protease A at 1:100 ratio (w/w) and 0.5 h hydrolytic period. After our analyses, CCH-As were rich in leucine, arginine, phenylalanine, valine, lysine and antioxidant dipeptides (anserine and carnosine), and the major molecular masses were lower than 15 kDa. Regarding protective effects of CCH-As against oxidative damage in alcoholic-liquid-diet-fed mice, alcohol-fed mice had lower (P < 0.05) liver antioxidant capacities, and higher (P < 0.05) liver lipid contents, serum lipid/liver damage indices and IL-1β/IL-6 values. CCH-A supplementation reversed (P < 0.05) liver antioxidant capacities and reduced (P < 0.05) serum/liver lipids in alcohol-fed mice, which may result from increased (P < 0.05) fecal lipid output, upregulated (P < 0.05) fatty acid β-oxidation and downregulated (P < 0.05) lipogenesis in the liver. CONCLUSION Taken together, this CCH-A should benefit the liquid-egg industry, while also offering consumers a choice of healthy ingredients from animal sources. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kuo-Tai Yang
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Xuan Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsieng S Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chung-Hsi Chou
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Zoonoses Research Center, National Taiwan University, Taipei, Taiwan
| | - Shih-Guei Fu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Zoonoses Research Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
48
|
Webb LA, Sadri H, von Soosten D, Dänicke S, Egert S, Stehle P, Sauerwein H. Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation. J Dairy Sci 2019; 102:3556-3568. [PMID: 30712942 DOI: 10.3168/jds.2018-14463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
Branched-chain α-keto acid dehydrogenase (BCKDH) complex catalyzes the irreversible oxidative decarboxylation of branched-chain α-keto acids. This reaction is considered as the rate-limiting step in the overall branched-chain amino acid (BCAA) catabolic pathway in mammals. For characterizing the potential enzymatic involvement of liver, skeletal muscle, adipose tissue (AT), and mammary gland (MG) in BCAA metabolism during early lactation, tissue and blood samples were examined on d 1, 42, and 105 after parturition from 25 primiparous Holstein cows. Serum BCAA profiles were analyzed and the mRNA and protein abundance as well as the activity in the different tissues were assessed for the BCAA catabolic enzymes, partly for the branched-chain aminotransferase and completely for BCKDH. Total BCAA concentration in serum was lowest on d 1 after parturition and increased thereafter to a steady level for the duration of the experiment. Pronounced differences between the tissues were observed at all molecular levels. The mRNA abundance of the mitochondrial isoform of branched-chain aminotransferase (BCATm) was greatest in AT as compared with the other tissues studied, indicating that AT might be an important contributor in the initiation of BCAA catabolism in dairy cows. From the different subunits of the BCKDH E1 component, only the mRNA for the β polypeptide (BCKDHB), not for the α polypeptide (BCKDHA), was elevated in liver. The BCKDHA mRNA abundance was similar across all tissues except muscle, which tended to lower values. Highest BCKDHA protein abundance was observed in both liver and MG, whereas BCKDHB protein was detectable in these tissues but could not be quantified. Adipose tissue and muscle only displayed abundance of the α subunit, with muscle having the lowest BCKDHA protein of all tissues. We found similarities in protein abundance for both BCKDH E1 subunits in liver and MG; however, the corresponding overall BCKDH enzyme activity was 7-fold greater in liver compared with MG, allowing for hepatic oxidation of BCAA transamination products. Reduced BCKDH activity in MG associated with no measurable activity in AT and muscle may favor sparing of BCAA for the synthesis of the different milk components, including nonessential AA. Deviating from previously published data on BCAA net fluxes and isotopic tracer studies in ruminants, our observed results might in part be due to complex counter-regulatory mechanisms during early lactation.
Collapse
Affiliation(s)
- L A Webb
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran.
| | - D von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - S Egert
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - P Stehle
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
49
|
Tůma P, Sommerová B, Šiklová M. Monitoring of adipose tissue metabolism using microdialysis and capillary electrophoresis with contactless conductivity detection. Talanta 2019; 192:380-386. [DOI: 10.1016/j.talanta.2018.09.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/02/2023]
|
50
|
Bonvini A, Coqueiro AY, Tirapegui J, Calder PC, Rogero MM. Immunomodulatory role of branched-chain amino acids. Nutr Rev 2018; 76:840-856. [PMID: 30124936 DOI: 10.1093/nutrit/nuy037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Branched-chain amino acids (BCAAs) have been associated with immunomodulation since the mid-1970s and 1980s and have been used in the nutritional therapy of critically ill patients. Evidence shows that BCAAs can directly contribute to immune cell function, aiding recovery of an impaired immune system, as well as improving the nutritional status in cancer and liver diseases. Branched-chain amino acids may also play a role in treatment of patients with sepsis or trauma, contributing to improved clinical outcomes and survival. Branched-chain amino acids, especially leucine, are activators of the mammalian target of rapamycin (mTOR), which, in turn, interacts with several signaling pathways involved in biological mechanisms of insulin action, protein synthesis, mitochondrial biogenesis, inflammation, and lipid metabolism. Although many in vitro and human and animal model studies have provided evidence for the biological activity of BCAAs, findings have been conflicting, and the mechanisms of action of these amino acids are still poorly understood. This review addresses several aspects related to BCAAs, including their transport, oxidation, and mechanisms of action, as well as their role in nutritional therapy and immunomodulation.
Collapse
Affiliation(s)
- Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Audrey Y Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Marcelo M Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|