1
|
Kohler K, Macheda T, Hobbs MM, Maisel MT, Rodriguez A, Farris L, Wessel CR, Infantino C, Niedowicz DM, Helman AM, Beckett TL, Unrine JM, Murphy MP. Exposure to Lead in Drinking Water Causes Cognitive Impairment via an Alzheimer's Disease Gene-Dependent Mechanism in Adult Mice. J Alzheimers Dis 2024; 100:S291-S304. [PMID: 39121129 PMCID: PMC11616619 DOI: 10.3233/jad-240640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background Exposure to lead (Pb) is a major public health problem that could occur through contaminated soil, air, food, or water, either during the course of everyday life, or while working in hazardous occupations. Although Pb has long been known as a neurodevelopmental toxicant in children, a recent and growing body of epidemiological research indicates that cumulative, low-level Pb exposure likely drives age-related neurologic dysfunction in adults. Environmental Pb exposure in adulthood has been linked to risk of late-onset Alzheimer's disease (AD) and dementia. Objective Although the biological mechanism underlying this link is unknown, it has been proposed that Pb exposure may increase the risk of AD via altering the expression of AD-related genes and, possibly, by activating the molecular pathways underlying AD-related pathology. Methods We investigated Pb exposure using a line of genetically modified mice with AD-causing knock-in mutations in the amyloid precursor protein and presenilin 1 (APPΔNL/ΔNL x PS1P264L/P264L) that had been crossed with Leprdb/db mice to impart vulnerability to vascular pathology. Results Our data show that although Pb exposure in adult mice impairs cognitive function, this effect is not related to either an increase in amyloid pathology or to changes in the expression of common AD-related genes. Pb exposure also caused a significant increase in blood pressure, a well known effect of Pb. Interestingly, although the increase in blood pressure was unrelated to genotype, only mice that carried AD-related mutations developed cognitive dysfunction, in spite of showing no significant change in cerebrovascular pathology. Conclusions These results raise the possibility that the increased risk of dementia associated with Pb exposure in adults may be tied to its subsequent interaction with either pre-existing or developing AD-related neuropathology.
Collapse
Affiliation(s)
- Katharina Kohler
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Teresa Macheda
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Misty M. Hobbs
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - M. Tyler Maisel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Antonela Rodriguez
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Lindsey Farris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Caitlin R. Wessel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | | | - Dana M. Niedowicz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Alex M. Helman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Tina L. Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
| | - Jason M. Unrine
- Department of Plant and Soil Sciences, University of Kentucky Martin-Gatton College of Agriculture, Food, and Environment, Lexington, KY, U.S.A
- Kentucky Water Research Institute, University of Kentucky, Lexington, Kentucky, USA
| | - M. Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, U.S.A
- Kentucky Water Research Institute, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Vinogradov A, Merson E, Myagkikh P, Linderov M, Brilevsky A, Merson D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1324. [PMID: 36770330 PMCID: PMC9920771 DOI: 10.3390/ma16031324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
This article presents a concise overview of modern achievements and existing knowledge gaps in the area of biodegradable magnesium alloys. Hundreds of Mg-based alloys have been proposed as candidates for temporary implants, and this number tends to increase day by day. Therefore, while reviewing common aspects of research in this field, we confine ourselves primarily to the popular Mg-Zn-Ca system, taken as a representative example. Over the last decades, research activities in this area have grown enormously and have produced many exciting results. Aiming at highlighting the areas where research efforts are still scarce, we review the state-of-the-art processing techniques and summarize the functional properties attained via a wide variety of processing routes devised towards achieving a desired properties profile, including the mechanical response in terms of strength, ductility, and fatigue resistance paired with biocompatibility and bio-corrosion resistance or controlled degradability. We pay keen attention to a summary of corrosion properties and mechano-chemical interactions between an aggressive environment and loaded Mg-based structures, resulting in stress corrosion cracking and premature corrosion fatigue failures. The polemic issues and challenges practitioners face in their laboratory research are identified and discussed.
Collapse
Affiliation(s)
- Alexei Vinogradov
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 4791 Trondheim, Norway
- Magnesium Research Center, Kumamoto University, Kumamoto 860-8555, Japan
| | - Evgeniy Merson
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Pavel Myagkikh
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Mikhail Linderov
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Alexandr Brilevsky
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Dmitry Merson
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| |
Collapse
|
3
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
4
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
5
|
Abstract
Metal homeostasis in the central nervous system (CNS) is a crucial component of healthy brain function, because metals serve as enzymatic cofactors and are key components of intra- and inter-neuronal signaling. Metal dysregulation wreaks havoc on neural networks via induction and proliferation of pathological pathways that cause oxidative stress, synaptic impairment, and ultimately, cognitive deficits. Thus, exploration of metal biology in relation to neurodegenerative pathology is essential in pursuing novel therapies for Alzheimer's Disease and other neurodegenerative disorders. This review covers mechanisms of action of aluminum, iron, copper, and zinc ions with respect to the progressive, toxic accumulation of extracellular β-amyloid plaques and intracellular hyperphosphorylated neurofibrillary tau tangles that characterizes Alzheimer's Disease, with the goal of evaluating the therapeutic potential of metal ion interference in neurodegenerative disease prevention and treatment. As neuroscientific interest in the role of metals in neurodegeneration escalates-in large part due to emerging evidence substantiating the interplay between metal imbalances and neuropathology-it becomes clear that the use of metal chelating agents may be a viable method for ameliorating Alzheimer's Disease pathology, as its etiology remains obscure. We conclude that, although metal therapies can potentially deter neurodegenerative processes, the most promising treatments will remain elusive until further understanding of neurodegenerative etiology is achieved. New research directions may best be guided by animal models of neurodegeneration, which reveal specific insights into biological mechanisms underlying dementia.
Collapse
Affiliation(s)
- Nikita Das
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - James Raymick
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
6
|
Contessa G. On the mitigation of inductive risk. EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE 2021; 11:64. [PMID: 34249184 PMCID: PMC8261402 DOI: 10.1007/s13194-021-00381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The last couple of decades have witnessed a renewed interest in the notion of inductive risk among philosophers of science. However, while it is possible to find a number of suggestions about the mitigation of inductive risk (i.e., its assessment and management) in the literature, so far these suggestions have been mostly relegated to vague marginal remarks. This paper aims to lay the groundwork for a more systematic discussion of the mitigation of inductive risk. In particular, I consider two approaches to the mitigation of inductive risk-the individualistic approach, which maintains that individual scientists are primarily responsible for the mitigation of inductive risk, and the socialized approach, according to which the responsibility for the mitigation of inductive risk should be more broadly distributed across the scientific community or, even more broadly, across society. I review some of the argument for and against the two approaches and introduce two new problems for the individualistic approach, which I call the problem of precautionary cascades and the problem of exogenous inductive risk, and I argue that a socialized approach might alleviate each of these problems.
Collapse
Affiliation(s)
- Gabriele Contessa
- Department of Philosophy, Carleton University, PA 3A46, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
7
|
Malacaria L, Corrente GA, Beneduci A, Furia E, Marino T, Mazzone G. A Review on Coordination Properties of Al(III) and Fe(III) toward Natural Antioxidant Molecules: Experimental and Theoretical Insights. Molecules 2021; 26:molecules26092603. [PMID: 33946938 PMCID: PMC8124610 DOI: 10.3390/molecules26092603] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the ability of some natural antioxidant molecules (i.e., hydroxycinnamic acids, coumarin-3-carboxylic acid, quercetin, luteolin and curcumin) to form Al(III)- and Fe(III)-complexes with the aim of evaluating the coordination properties from a combined experimental and theoretical point of view. Despite the contributions of previous studies on the chemical properties and biological activity of these metal complexes involving such natural antioxidants, further detailed relationships between the structure and properties are still required. In this context, the investigation on the coordination properties of Al(III) and Fe(III) toward these natural antioxidant molecules might deserve high interest to design water soluble molecule-based metal carriers that can improve the metal’s intake and/or its removal in living organisms.
Collapse
|
8
|
Bagheri S, Saboury AA. What role do metals play in Alzheimer's disease? JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02181-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease: The potential role of BACE1 as a critical neurotoxic target. J Biochem Mol Toxicol 2021; 35:e22694. [PMID: 33393683 DOI: 10.1002/jbt.22694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Willhite CC, Karyakina NA, Nordheim E, Arnold I, Armstrong V, Momoli F, Shilnikova NS, Yenugadhati N, Krewski D. The REACH registration process: A case study of metallic aluminium, aluminium oxide and aluminium hydroxide. Neurotoxicology 2020; 83:166-178. [PMID: 33290785 DOI: 10.1016/j.neuro.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The European Union's REACH Regulation requires determination of potential health and environmental effects of chemicals in commerce. The present case study examines the application of REACH guidance for health hazard assessments of three high production volume (HPV) aluminium (Al) substances: metallic aluminium, aluminium oxide, and aluminium hydroxide. Among the potential adverse health consequences of aluminium exposure, neurotoxicity is one of the most sensitive targets of Al toxicity and the most critical endpoint. This case study illustrates integration of data from multiple lines of evidence into REACH weight of evidence evaluations. This case study then explains how those results support regulatory decisions on classification and labelling. Challenges in the REACH appraisal of Al compounds include speciation, solubility and bioavailability, application of assessment factors, read-across rationale and differences with existing regulatory standards. Lessons learned from the present case study relate to identification and evaluation of toxicologic and epidemiologic data; assessing data relevance and reliability; development of derived no-effect levels (DNELs); addressing data gaps and preparation of chemical safety reports.
Collapse
Affiliation(s)
| | - Nataliya A Karyakina
- Risk Sciences International, Ottawa, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.
| | | | - Ian Arnold
- International Aluminium Institute, London, United Kingdom; Occupational Health Program, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Franco Momoli
- Risk Sciences International, Ottawa, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada; Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Natalia S Shilnikova
- Risk Sciences International, Ottawa, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nagarajkumar Yenugadhati
- Risk Sciences International, Ottawa, Canada; Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Daniel Krewski
- Risk Sciences International, Ottawa, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada; Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Aubignat M. [Hyperhidrosis from diagnosis to management]. Rev Med Interne 2020; 42:338-345. [PMID: 33261887 DOI: 10.1016/j.revmed.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
Abstract
Hyperhidrosis is defined as uncontrollable, excessive and unpredictable sweating that exceeds the needs related to thermoregulation. It preferentially affects axillary, palms, soles and face but can affect any part of the body. This ostensibly benign symptom can have a major negative impact on quality of life sometimes leading to isolation and depression. Moreover, in some cases hyperhidrosis can be secondary to an underlying pathology sometimes malignant which must be identified quickly. Consequently, each doctor should be able to develop a diagnostic and therapeutic approach for this relatively frequent and probably underdiagnosed and undertreated reason for consultation. In this review, we focus on diagnosis hyperhidrosis and its management.
Collapse
Affiliation(s)
- M Aubignat
- Service de neurologie, CHU Amiens-Picardie, 1, rue du Professeur-Christian-Cabrol, 80054 Amiens, France; Centre expert Parkinson, CHU Amiens-Picardie, 1, rue du Professeur-Christian-Cabrol, 80054 Amiens, France.
| |
Collapse
|
12
|
Leite LCS, Melo ESDP, Arakaki DG, dos Santos EF, do Nascimento VA. Human Health Risk Assessment through Roasted Meats Consumption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6737. [PMID: 32947842 PMCID: PMC7558450 DOI: 10.3390/ijerph17186737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Data on the content of metals and metalloids in roasted meats with different types of wood and charcoal are still scarce in the literature. The concentrations of metals (Al, Cr, Cd, Cu, Fe, Mg, Mn, Mo, Ni, V, and Zn) and metalloid (As) were determined by inductively coupled plasma mass spectrometry (ICP-OES) after microwave digestion, and the estimated daily intake (EDI) for adults was assessed to determine the hazard quotient (HQ). The concentrations of Al, Cr, Cu, and Fe in raw meats were below the data obtained in other countries. The concentration of As (0.17 ± 0.42-0.23 ± 0.10 mg/kg), Mg (206.77 ± 3.99-291.95 ± 8.87 mg/kg), V (0.42 ± 0.14-6.66 ± 0.80 mg/kg), and Zn (6.66 ± 0.80-48.13 ± 0.56 mg/kg) in raw meats exceeded the values in the literature. The concentrations of Mg, As, Cr, Fe, V, and Zn are high when the meat is roasted using wood. All levels of Al, As, Cr, Cu, Fe, Mg, Mn, Mo, V, and Zn in raw meats are lower than those of meat roasted with coal and wood. The content of As in meat roasted with Chromed Copper Arsenate (CCA) wood (15.10 ± 0.27-26.25 ± 1.47 mg/kg) is higher than meat roasted with charcoal (0.46 ± 0.09-1.16 ± 0.50 mg/kg). EDI and HQ values revealed a minimal exposure of the adult population to those metals through roasted-meats consumption. However, EDI values of As in some roasted meats are above standard limits. Roast meats with wood showed higher levels of major and trace elements than meats roasted with coal. High exposures, in the long-term, may cause damage to health.
Collapse
Affiliation(s)
- Luana C. S. Leite
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| | - Elaine S. de P. Melo
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| | - Daniela G. Arakaki
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| | - Elisvânia F. dos Santos
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul—UFMS, Campo Grande MS 79079-900, Brazil;
- Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil
| | - Valter A. do Nascimento
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| |
Collapse
|
13
|
Kabir MT, Uddin MS, Zaman S, Begum Y, Ashraf GM, Bin-Jumah MN, Bungau SG, Mousa SA, Abdel-Daim MM. Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 2020; 58:1-20. [DOI: 10.1007/s12035-020-02096-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
|
14
|
Demir M, Ince O, Yilmaz B, Decleer W, Osmanagaoglu K. The effect of human papilloma virus vaccination on embryo yield and clinical in vitro fertilisation outcomes: a matched retrospective cohort study. J OBSTET GYNAECOL 2020; 41:421-427. [PMID: 32662316 DOI: 10.1080/01443615.2020.1739008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effects of HPV vaccination on embryo yield and pregnancy outcomes in IVF cycles with fresh embryo transfer (ET) were investigated. First, embryo yielding rates (EYR) in 2795 cycles with and without HPV vaccination were compared by retrospective cohort study design. EYR of HPV vaccinated and non-vaccinated patients were not significantly different (OR, 1.66; 95% CI, 0.76-3.63). Second, ET outcomes were compared for 155 HPV vaccine + cycles and 465 HPV vaccine - cycles after matching for ages and cycle attempt number. The differences in the number of retrieved oocytes (10.2 ± 6.1, 11.2 ± 6.7; p = .161), mature (MII) oocytes (8.7 ± 5.7, 9.8 ± 6.3; p = .088), two pronuclear zygotes (2PN) (5.4 ± 4.1, 6.1 ± 4.6; p = .110) and fertilisation rates (0.62 ± 0.23, 0.62 ± 0.23; p = .539) were insignificant between the two groups. Moreover, positive (OR, 0.74; 95% CI, 0.47-1.16), clinical (0.60; 0.36-1.01) and the ongoing pregnancy (0.55; 0.30-1.01) rates were lower in the HPV vaccinated group but the difference was not statistically significant.IMPACT STATEMENTWhat is already known on this subject? There are recent case studies that report premature ovarian insufficiency (POI) following a post-vaccination autoimmune response against the HPV vaccine. These studies suggest that the possible trigger for the immune reaction might be the immunogen content of the vaccine. However, the number of clinical studies investigating the effects of the HPV vaccine on reproductive function and in vitro fertilisation outcomes is limited.What do the results of this study add? In contrast to the case reports suggesting impaired reproductive and ovarian functions in HPV vaccinated patients, this study finds that in IVF patients HPV vaccinated and non-vaccinated women have similar EYR, MII, 2PN, oocyte counts, fertilisation rates, positive, clinical and ongoing pregnancy rates.What are the implications of these findings for clinical practice and/or further research? The results suggest the HPV vaccine does not have a negative impact on embryo yielding rates oocyte counts and fertilisation rates, positive, clinical and ongoing pregnancy rates in IVF treatments. Hence, they can be safely used for primary prevention against cervical cancer.
Collapse
Affiliation(s)
- Mustafa Demir
- Department of Obstetrics and Gynecology, Anka Hospital, Gaziantep, Turkey.,IVF Centrum, AZ Jan Palfijn Hospital, Gent, Belgium
| | - Onur Ince
- Department of Obstetrics and Gynecology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Bulent Yilmaz
- Faculty of Medicine, Department of Obstetrics and Gynecology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Wim Decleer
- IVF Centrum, AZ Jan Palfijn Hospital, Gent, Belgium
| | | |
Collapse
|
15
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina. J Neurosci Res 2020; 98:1889-1904. [DOI: 10.1002/jnr.24685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | | | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| |
Collapse
|
16
|
Rifaai RA, Mokhemer SA, Saber EA, El-Aleem SAA, El-Tahawy NFG. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in alzheimer's disease. J Chem Neuroanat 2020; 107:101795. [PMID: 32464160 DOI: 10.1016/j.jchemneu.2020.101795] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in elderly. Quercetin is a well-known flavonoid with low bioavailability. Recently, quercetin nanoparticles (QNPs) has been shown to have a better bioavailability. AIMS This study aimed to investigate the protective and therapeutic effects of QNPs in Aluminum chloride (AlCl3) induced animal model of AD. MATERIALS AND METHODS AD was induced in rats by oral administration of AlCl3 (100 mg/kg/day) for 42 days. QNPs (30 mg/kg) was given along with AlCl3 in the prophylactic group and following AD induction in the treated group. Hippocampi were harvested for assessments of the structural and ultrastructural changes using histological and histochemical approaches. RESULTS AND DISCUSSION AD hippocampi showed a prominent structural and ultrastructural disorders both neuronal and extraneuronal. Including neuronal degeneration, formation of APs and NFTs, downregulation of tyrosine hydroxylase (TH), astrogliosis and inhibition of the proliferative activity (all P ≤ 0.05). Electron microscopy showed signs of neuronal degeneration with microglia and astrocyte activation and disruption of myelination and Blood Brain Barrier (BBB). Interestingly, QNPs administration remarkably reduced the neuronal degenerative changes, APs and NFTs formation (all P ≤ 0.05). Furthermore, it showed signs of regeneration (all P ≤ 0.05) and upregulation of TH. The effect was profound in the prophylactic group. Thus, QNPs reduced the damaging effect of AlCl3 on hippocampal neurons at the molecular, cellular and subcellular levels. CONCLUSION For the best of our knowledge this is the first study to show a prophylactic and therapeutic effect for QNPs in AD model. This might open the gate for further research and provide a new line for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt
| | - Sahar Ahmed Mokhemer
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt; Delegated to Deraya University, New Minia City, Egypt
| | - Seham A Abd El-Aleem
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt.
| | | |
Collapse
|
17
|
Kadlecová A, Maková B, Artal-Sanz M, Strnad M, Voller J. The plant hormone kinetin in disease therapy and healthy aging. Ageing Res Rev 2019; 55:100958. [PMID: 31479763 DOI: 10.1016/j.arr.2019.100958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
It has been more than 60 years since the discovery of kinetin, the first known member of a group of plant hormones called cytokinins. In this review we summarize the health-promoting activity of kinetin in animal systems, ranging from cells cultured in vitro through invertebrates to mammals. Kinetin has been shown to modulate aging, to delay age-related physiological decline and to protect against some neurodegenerative diseases. We also review studies on its mechanism of action, as well as point out gaps in our current knowledge.
Collapse
Affiliation(s)
- Alena Kadlecová
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Barbara Maková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology, CISIC-JA-University Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
18
|
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 2019; 12:45-70. [PMID: 32206026 PMCID: PMC7071840 DOI: 10.2478/intox-2019-0007] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aluminium (Al) is frequently accessible to animal and human populations to the extent that intoxications may occur. Intake of Al is by inhalation of aerosols or particles, ingestion of food, water and medicaments, skin contact, vaccination, dialysis and infusions. Toxic actions of Al induce oxidative stress, immunologic alterations, genotoxicity, pro-inflammatory effect, peptide denaturation or transformation, enzymatic dysfunction, metabolic derangement, amyloidogenesis, membrane perturbation, iron dyshomeostasis, apoptosis, necrosis and dysplasia. The pathological conditions associated with Al toxicosis are desquamative interstitial pneumonia, pulmonary alveolar proteinosis, granulomas, granulomatosis and fibrosis, toxic myocarditis, thrombosis and ischemic stroke, granulomatous enteritis, Crohn's disease, inflammatory bowel diseases, anemia, Alzheimer's disease, dementia, sclerosis, autism, macrophagic myofasciitis, osteomalacia, oligospermia and infertility, hepatorenal disease, breast cancer and cyst, pancreatitis, pancreatic necrosis and diabetes mellitus. The review provides a broad overview of Al toxicosis as a background for sustained investigations of the toxicology of Al compounds of public health importance.
Collapse
Affiliation(s)
- Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Nanacha Afifi Igbokwe
- Department Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
19
|
Primus CM, Tay FR, Niu LN. Bioactive tri/dicalcium silicate cements for treatment of pulpal and periapical tissues. Acta Biomater 2019; 96:35-54. [PMID: 31146033 PMCID: PMC6717675 DOI: 10.1016/j.actbio.2019.05.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Over 2500 articles and 200 reviews have been published on the bioactive tri/dicalcium silicate dental materials. The indications have expanded since their introduction in the 1990s from endodontic restorative and pulpal treatments to endodontic sealing and obturation. Bioactive ceramics, based on tri/dicalcium silicate cements, are now an indispensable part of the contemporary dental armamentarium for specialists including endodontists, pediatric dentists, oral surgeons andfor general dentists. This review emphasizes research on how these materials have conformed to international standards for dental materials ranging from biocompatibility (ISO 7405) to conformance as root canal sealers (ISO 6876). Potential future developments of alternative hydraulic materials were included. This review provides accurate materials science information on these important materials. STATEMENT OF SIGNIFICANCE: The broadening indications and the proliferation of tri/dicalcium silicate-based products make this relatively new dental material important for all dentists and biomaterials scientists. Presenting the variations in compositions, properties, indications and clinical performance enable clinicians to choose the material most suitable for their cases. Researchers may expand their bioactive investigations to further validate and improve materials and outcomes.
Collapse
Affiliation(s)
- Carolyn M Primus
- Department of Endodontics, The Dental College of Georgia, Augusta University, USA.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, USA
| | - Li-Na Niu
- Department of Endodontics, The Dental College of Georgia, Augusta University, USA; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Hena, China
| |
Collapse
|
20
|
Srivastava AK, Pittman JM, Zerweck J, Venkata BS, Moore PC, Sachleben JR, Meredith SC. β-Amyloid aggregation and heterogeneous nucleation. Protein Sci 2019; 28:1567-1581. [PMID: 31276610 PMCID: PMC6699094 DOI: 10.1002/pro.3674] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023]
Abstract
In this article, we consider the role of heterogeneous nucleation in β-amyloid aggregation. Heterogeneous nucleation is more common and occurs at lower levels of supersaturation than homogeneous nucleation. The nucleation period is also the stage at which most of the polymorphism of amyloids arises, this being one of the defining features of amyloids. We focus on several well-known heterogeneous nucleators of β-amyloid, including lipid surfaces, especially those enriched in gangliosides and cholesterol, and divalent metal ions. These two broad classes of nucleators affect β-amyloid particularly in light of the amphiphilicity of these peptides: the N-terminal region, which is largely polar and charged, contains the metal binding site, whereas the C-terminal region is aliphatic and is important in lipid binding. Notably, these two classes of nucleators can interact cooperatively, aggregation begetting greater aggregation.
Collapse
Affiliation(s)
- Atul K. Srivastava
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Jay M. Pittman
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Jonathan Zerweck
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Bharat S. Venkata
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | | | | | - Stephen C. Meredith
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| |
Collapse
|
21
|
Liu Y, Nguyen M, Robert A, Meunier B. Metal Ions in Alzheimer's Disease: A Key Role or Not? Acc Chem Res 2019; 52:2026-2035. [PMID: 31274278 DOI: 10.1021/acs.accounts.9b00248] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts in universities and pharmaceutical companies, effective drugs are still lacking for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease have not yet been clearly understood. Besides a small percentage of cases with early onset disease having a genetic origin (<5%, familial AD), most cases develop in the elderly as a sporadic form due to multiple and complex parameters of aging. Consequently, AD is spreading in all countries with a long life expectancy. AD is characterized by deposition of senile plaques made of β-amyloid proteins (Aβ) and by hyperphosphorylation of tau proteins, which have been considered as the main drug targets up to now. However, antibodies targeting amyloid aggregates, as well as enzyme inhibitors aiming to modify the amyloid precursor protein processing, have failed to improve cognition in clinical trials. Thus, to set up effective drugs, it is urgent to enlarge the panel of drug targets. Evidence of the link between AD and redox metal dysregulation has also been supported by post-mortem analyses of amyloid plaques, which revealed accumulation of copper, iron, and zinc by 5.7, 2.8, and 3.1 times, respectively, the levels observed in normal brains. Copper-amyloid complexes, in the presence of endogenous reductants, are able to catalyze the reduction of dioxygen and to produce reduced, reactive oxygen species (ROS), leading to neuron death. The possibility of using metal chelators to regenerate normal trafficking of metal ions has been considered as a promising strategy in order to reduce the redox stress lethal for neurons. However, most attempts to use metal chelators as therapeutic agents have been limited to existing molecules available from the shelves. Very few chelators have resulted from a rational design aiming to create drugs with a safety profile and able to cross the blood-brain barrier after an oral administration. In the human body, metals are handled by a sophisticated protein network to strictly control their transport and reactivity. Abnormal concentrations of certain metals may lead to pathological events due to misaccumulation and irregular reactivity. Consequently, therapeutic attempts to restore metal homeostasis should carefully take into account the coordination chemistry specificities of the concerned redox-active metal ions. This Account is focused on the role of the main biologically redox-active transition metals, iron and copper. For iron, the recent debate on the possible role of magnetite in AD pathogenesis is presented. The section devoted to copper is focused on the design of specific copper chelators as drug candidates able to regulate copper homeostasis and to reduce the oxidative damage responsible for the neuron death observed in AD brains. A short survey on non-redox-active metal ions is also included at the beginning, such as aluminum and its controversial role in AD and zinc which is a key metal ion in the brain.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| |
Collapse
|
22
|
Sieg H, Ellermann AL, Maria Kunz B, Jalili P, Burel A, Hogeveen K, Böhmert L, Chevance S, Braeuning A, Gauffre F, Fessard V, Lampen A. Aluminum in liver cells - the element species matters. Nanotoxicology 2019; 13:909-922. [PMID: 30938204 DOI: 10.1080/17435390.2019.1593542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aluminum (Al) can be ingested from food and released from packaging and can reach key organs involved in human metabolism, including the liver via systemic distribution. Recent studies discuss the occurrence of chemically distinct Al-species and their interconversion by contact with biological fluids. These Al species can vary with regard to their intestinal uptake, systemic transport, and therefore could have species-specific effects on different organs and tissues. This work aims to assess the in vitro hepatotoxic hazard potential of three different relevant Al species: soluble AlCl3 and two nanoparticulate Al species were applied, representing for the first time an investigation of metallic nanoparticles besides to mineral bound γ-Al2O3 on hepatic cell lines. To investigate the uptake and toxicological properties of the Al species, we used two different human hepatic cell lines: HepG2 and differentiated HepaRG cells. Cellular uptake was determined by different methods including light microscopy, transmission electron microscopy, side-scatter analysis, and elemental analysis. Oxidative stress, mitochondrial dysfunction, cell death mechanisms, and DNA damage were monitored as cellular parameters. While cellular uptake into hepatic cell lines occurred predominantly in the particle form, only ionic AlCl3 caused cellular effects. Since it is known, that Al species can convert one into another, and mechanisms including 'trojan-horse'-like uptake can lead to an Al accumulation in the cells. This could result in the slow release of Al ions, for which reason further hazard cannot be excluded. Therefore, individual investigation of the different Al species is necessary to assess the toxicological potential of Al particles.
Collapse
Affiliation(s)
- Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Anna Lena Ellermann
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Birgitta Maria Kunz
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Pégah Jalili
- ANSES, French Agency for Food, Environmental and Occupational Health Safety, Fougères Laboratory , Fougères Cedex , France
| | | | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health Safety, Fougères Laboratory , Fougères Cedex , France.,ASPIC Cellular Imaging Platform , Fougères , France
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Soizic Chevance
- University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) , Rennes , France
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Fabienne Gauffre
- University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) , Rennes , France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health Safety, Fougères Laboratory , Fougères Cedex , France
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| |
Collapse
|
23
|
The etiology, diagnosis, and management of hyperhidrosis: A comprehensive review: Therapeutic options. J Am Acad Dermatol 2019; 81:669-680. [PMID: 30710603 DOI: 10.1016/j.jaad.2018.11.066] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022]
Abstract
Hyperhidrosis (HH) is a chronic disorder of excess sweat production that may have a significant adverse effect on quality of life. A variety of treatment modalities currently exist to manage HH. Initial treatment includes lifestyle and behavioral recommendations. Antiperspirants are regarded as the first-line therapy for primary focal HH and can provide significant benefit. Iontophoresis is the primary remedy for palmar and plantar HH. Botulinum toxin injections are administered at the dermal-subcutaneous junction and serve as a safe and effective treatment option for focal HH. Oral systemic agents are reserved for treatment-resistant cases or for generalized HH. Energy-delivering devices such as lasers, ultrasound technology, microwave thermolysis, and fractional microneedle radiofrequency may also be utilized to reduce focal sweating. Surgery may be considered when more conservative treatments have failed. Local surgical techniques, particularly for axillary HH, include excision, curettage, liposuction, or a combination of these techniques. Sympathectomy is the treatment of last resort when conservative treatments are unsuccessful or intolerable, and after accepting secondary compensatory HH as a potential complication. A review of treatment modalities for HH and a sequenced approach are presented.
Collapse
|
24
|
Sieg H, Braeuning C, Kunz BM, Daher H, Kästner C, Krause BC, Meyer T, Jalili P, Hogeveen K, Böhmert L, Lichtenstein D, Burel A, Chevance S, Jungnickel H, Tentschert J, Laux P, Braeuning A, Gauffre F, Fessard V, Meijer J, Estrela-Lopis I, Thünemann AF, Luch A, Lampen A. Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells. Nanotoxicology 2018; 12:992-1013. [PMID: 30317887 DOI: 10.1080/17435390.2018.1504999] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 µg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related.
Collapse
Affiliation(s)
- Holger Sieg
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| | - Caroline Braeuning
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| | - Birgitta Maria Kunz
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| | - Hannes Daher
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| | - Claudia Kästner
- b German Federal Institute for Materials Research and Testing (BAM) , Berlin, Germany
| | - Benjamin-Christoph Krause
- c Department of Chemical and Product Safety , German Federal Institute for Risk Assessment , Berlin, Germany
| | - Thomas Meyer
- d Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Pégah Jalili
- e ANSES, French Agency for Food, Environmental and Occupational Health and Safety , Fougères Laboratory, Toxicology of contaminants unit , Fougères Cedex , France
| | - Kevin Hogeveen
- e ANSES, French Agency for Food, Environmental and Occupational Health and Safety , Fougères Laboratory, Toxicology of contaminants unit , Fougères Cedex , France
| | - Linda Böhmert
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| | - Dajana Lichtenstein
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| | - Agnès Burel
- f CNRS, Inserm , Univ Rennes , Rennes , France
| | - Soizic Chevance
- g CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , Univ Rennes , Rennes , France
| | - Harald Jungnickel
- c Department of Chemical and Product Safety , German Federal Institute for Risk Assessment , Berlin, Germany
| | - Jutta Tentschert
- c Department of Chemical and Product Safety , German Federal Institute for Risk Assessment , Berlin, Germany
| | - Peter Laux
- b German Federal Institute for Materials Research and Testing (BAM) , Berlin, Germany
| | - Albert Braeuning
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| | - Fabienne Gauffre
- g CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , Univ Rennes , Rennes , France
| | - Valérie Fessard
- e ANSES, French Agency for Food, Environmental and Occupational Health and Safety , Fougères Laboratory, Toxicology of contaminants unit , Fougères Cedex , France
| | - Jan Meijer
- h Felix Bloch Institute for Solid State Physics , Leipzig University , Leipzig , Germany
| | - Irina Estrela-Lopis
- d Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Andreas F Thünemann
- b German Federal Institute for Materials Research and Testing (BAM) , Berlin, Germany
| | - Andreas Luch
- c Department of Chemical and Product Safety , German Federal Institute for Risk Assessment , Berlin, Germany
| | - Alfonso Lampen
- a Department of Food Safety , German Federal Institute for Risk Assessment , Berlin , Germany
| |
Collapse
|
25
|
Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer's disease: as it was in the beginning. Rev Neurosci 2018; 28:825-843. [PMID: 28704198 DOI: 10.1515/revneuro-2017-0006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Abstract
Since Alzheimer's disease was first described in 1907, many attempts have been made to reveal its main cause. Nowadays, two forms of the disease are known, and while the hereditary form of the disease is clearly caused by mutations in one of several genes, the etiology of the sporadic form remains a mystery. Both forms share similar sets of neuropathological and molecular manifestations, including extracellular deposition of amyloid-beta, intracellular accumulation of hyperphosphorylated tau protein, disturbances in both the structure and functions of mitochondria, oxidative stress, metal ion metabolism disorders, impairment of N-methyl-D-aspartate receptor-related signaling pathways, abnormalities of lipid metabolism, and aberrant cell cycle reentry in some neurons. Such a diversity of symptoms led to proposition of various hypotheses for explaining the development of Alzheimer's disease, the amyloid hypothesis, which postulates the key role of amyloid-beta in Alzheimer's disease development, being the most prominent. However, this hypothesis does not fully explain all of the molecular abnormalities and is therefore heavily criticized. In this review, we propose a hypothetical model of Alzheimer's disease progression, assuming a key role of age-related mitochondrial dysfunction, as was postulated in the mitochondrial cascade hypothesis. Our model explains the connections between all the symptoms of Alzheimer's disease, with particular attention to autophagy, metal metabolism disorders, and aberrant cell cycle re-entry in neurons. Progression of the Alzheimer's disease appears to be a complex process involving aging and too many protective mechanisms affecting one another, thereby leading to even greater deleterious effects.
Collapse
|
26
|
Shoji H, Irino Y, Yoshida M, Miyakawa T. Behavioral effects of long-term oral administration of aluminum ammonium sulfate in male and female C57BL/6J mice. Neuropsychopharmacol Rep 2018; 38:18-36. [PMID: 30106265 PMCID: PMC7292291 DOI: 10.1002/npr2.12002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background Aluminum (Al) is considered to be a neurotoxic metal, and excessive exposure to Al has been reported to be a potential risk factor for neurodegenerative diseases. Al ammonium sulfate is one of the Al compounds that is widely used as a food additive. However, the effects of the oral administration of Al ammonium sulfate on physical development and behavior remain to be examined. Methods In this study, we investigated the effects of the administration of Al ammonium sulfate 12‐water dissolved in drinking water (0.075 mg/mL) beginning in adolescence on various types of behavior in adult female C57BL/6J mice through a battery of behavioral tests (low‐dose experiment; Experiment 1). We further examined the behavioral effects of the oral administration of a higher dose of the Al compound in drinking water (1 mg/mL) beginning in the prenatal period on behavior in adult male and female mice (high‐dose experiment; Experiment 2). Results In the low‐dose experiment, in which females’ oral intake of Al was estimated to be 0.97 mg Al/kg/d as adults, Al‐treated females exhibited an increase in total arm entries in the elevated plus maze test, an initial decrease and subsequent increase in immobility in the forced swim test, and reduced freezing in the fear conditioning test approximately 1 month after the conditioning session compared with vehicle‐treated females (uncorrected P < .05). However, the behavioral differences did not reach a statistically significant level after correction for multiple testing. In the high‐dose experiment, in which animals’ oral intakes were estimated to be about ten times higher than those in the low‐dose experiment, behavioral differences found in the low‐dose experiment were not observed in high‐dose Al‐treated mice, suggesting that the results of the low‐dose experiment might be false positives. Additionally, although high‐dose Al‐treated females exhibited increased social contacts with unfamiliar conspecifics and impaired reference memory performance, and high‐dose Al‐treated mice exhibited decreases in prepulse inhibition and in correct responses in the working memory task (uncorrected P < .05), the differences in any of the behavioral measures did not reach the significance level after correction for multiple testing. Conclusion Our results show that long‐term oral exposure to Al ammonium sulfate at the doses used in this study may have the potential to induce some behavioral changes in C57BL/6J mice. However, the behavioral effects of Al were small and statistically weak, as indicated by the fact that the results failed to reach the study‐wide significance level. Thus, further study will be needed to replicate the results and reevaluate the behavioral outcomes of oral intake of Al ammonium sulfate. Aluminum (Al) ammonium sulfate was orally administered to C57BL/6J mice (estimated dose of 0.97‐9.78 Al mg/kg/d). Behavioral effects of Al were assessed in a battery of behavioral tests in mice in adulthood. Statistically significant behavioral differences were not found between Al‐ and vehicle‐treated mice.
![]()
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yasuhiro Irino
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaru Yoshida
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
27
|
Shaw CA. Aluminum as a CNS and Immune System Toxin Across the Life Span. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:53-83. [DOI: 10.1007/978-981-13-1370-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
28
|
Li Y, Jiao Q, Xu H, Du X, Shi L, Jia F, Jiang H. Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. Front Mol Neurosci 2017; 10:339. [PMID: 29114205 PMCID: PMC5660707 DOI: 10.3389/fnmol.2017.00339] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Biometal dyshomeostasis and toxic metal accumulation are common features in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. The neurotoxic effects of metal imbalance are generally associated with reduced enzymatic activities, elevated protein aggregation and oxidative stress in the central nervous system, in which a cascade of events lead to cell death and neurodegeneration. Although the links between biometal imbalance and neurodegenerative disorders remain elusive, a major class of endogenous proteins involved in metal transport has been receiving increasing attention over recent decades. The abnormal expression of these proteins has been linked to biometal imbalance and to the pathogenesis of AD. Here, we present a brief overview of the physiological roles of biometals including iron, zinc, copper, manganese, magnesium and calcium, and provide a detailed description of their transporters and their synergistic involvement in the development of AD. In addition, we also review the published data relating to neurotoxic metals in AD, including aluminum, lead, cadmium, and mercury.
Collapse
Affiliation(s)
- Yong Li
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Qian Jiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Xixun Du
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Limin Shi
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Fengju Jia
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Hong Jiang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Abstract
INTRODUCTION Inquiries from healthcare providers and patients about the gluten and aluminum content of Synthroid® (levothyroxine sodium tablets) have increased. The objective of this study was to measure and evaluate the gluten content of the raw materials used in the manufacturing of Synthroid. Additionally, this study determined the aluminum content in different strengths of Synthroid tablets by estimating the amount of aluminum in the raw materials used in the manufacturing of Synthroid. METHODS Gluten levels of three lots of the active pharmaceutical ingredient (API) and one lot of each excipient from different vendors were examined. The ingredients in all current Synthroid formulations (strengths) were evaluated for their quantity of aluminum. RESULTS Gluten concentrations were below the lowest limit of detection (<3.0 ppm) for all tested lots of the API and excipients of Synthroid tablets. Aluminum content varied across tablet strengths (range 19-137 µg/tablet). Gluten levels of the API and excipients were found to be below the lowest level of detection and are considered gluten-free based on the US Food and Drug Administration (FDA) definition for food products. Across the various tablet strengths of Synthroid, the maximum aluminum levels were well below the FDA-determined minimal risk level for chronic oral aluminum exposure (1 mg/kg/day). CONCLUSION These data demonstrate that Synthroid tablets are not a source for dietary gluten and are a minimal source of aluminum. FUNDING AbbVie Inc.
Collapse
|
30
|
King A, Troakes C, Aizpurua M, Mirza A, Hodges A, Al-Sarraj S, Exley C. Unusual neuropathological features and increased brain aluminium in a resident of Camelford, UK. Neuropathol Appl Neurobiol 2017; 43:537-541. [PMID: 28603852 DOI: 10.1111/nan.12417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- A King
- Department Of Clinical Neuropathology, King's College Hospital, London, UK.,London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.,Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - M Aizpurua
- Department Of Clinical Neuropathology, King's College Hospital, London, UK.,London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - A Mirza
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, UK
| | - A Hodges
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - S Al-Sarraj
- Department Of Clinical Neuropathology, King's College Hospital, London, UK.,London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
31
|
Schreurs BG, Sparks DL. Dietary high cholesterol and trace metals in the drinking water increase levels of ABCA1 in the rabbit hippocampus and temporal cortex. J Alzheimers Dis 2016; 49:201-9. [PMID: 26444796 DOI: 10.3233/jad-150601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholesterol-fed rabbits have been documented to show increased amyloid-β (Aβ) deposits in the brain that can be exacerbated by the quality of drinking water especially if rabbits drink tap water or distilled water containing copper. One mechanism of cholesterol and Aβ clearance may be through the ATP-binding cassette transporter A1 (ABCA1). OBJECTIVE AND METHODS Using an ABCA1 antibody, we determined the number of ABCA1-immunopositive neurons in three areas of rabbit brain as a function of feeding 2% cholesterol and providing tap water, distilled water, or distilled water to which aluminum, copper, or zinc was added. RESULTS The number of neurons with ABCA1 immunoreactivity was increased significantly as a result of dietary cholesterol in the rabbit hippocampus and inferior and superior temporal cortex. The number of neurons with ABCA1 immunoreactivity was further increased in all three areas as a result of cholesterol-fed rabbits drinking tap water or distilled water with copper. Finally, cholesterol-fed rabbits that drank distilled water with aluminum also showed an increased number of ABCA1-immunopositive neurons in inferior and superior temporal cortex. CONCLUSIONS These data suggest that ABCA1 levels increase in parallel with previously documented increases in Aβ levels as a result of high dietary cholesterol and copper in the drinking water. Addition of aluminum to distilled water may have a similar effect in the temporal cortex. ABCA1 has been proposed as a means of clearing Aβ from the brain and manipulations that increase Aβ also result in an increase of clearance machinery.
Collapse
Affiliation(s)
- Bernard G Schreurs
- West Virginia University and Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|
32
|
Virk SA, Eslick GD. Aluminum Levels in Brain, Serum, and Cerebrospinal Fluid are Higher in Alzheimer's Disease Cases than in Controls: A Series of Meta-Analyses. J Alzheimers Dis 2016; 47:629-38. [PMID: 26401698 DOI: 10.3233/jad-150193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Aluminum is the most studied environmental agent linked with Alzheimer's disease (AD). However, it remains unclear whether levels are significantly elevated in AD sufferers. OBJECTIVE To systematically assess levels of aluminum in brain, serum, and cerebrospinal fluid (CSF) of AD cases and controls. METHODS Electronic searches of Medline, Embase, PubMed, and Cochrane Library were conducted up to June 2015. Studies reporting brain, serum, or CSF aluminum levels in individuals with AD and non-demented controls were included. Meta-analyses were performed using random-effects models and the pooled standardized mean difference (SMD) reported with 95% confidence intervals (CI). RESULTS Overall, 34 studies involving 1,208 participants and 613 AD cases met the criteria for inclusion. Aluminum was measured in brain tissue in 20 studies (n = 386), serum in 12 studies (n = 698), and CSF in 4 studies (n = 124). Compared to control subjects, AD sufferers had significantly higher levels of brain (SMD 0.88; 95% CI, 0.25-1.51), serum (SMD 0.28; 95% CI, 0.03-0.54), and CSF (SMD 0.48; 95% CI, 0.03-0.93) aluminum. Sensitivity analyses excluding studies without age-matched controls did not impact upon these results. CONCLUSIONS The findings of the present meta-analyses demonstrate that aluminum levels are significantly elevated in brain, serum, and CSF of patients with AD. These findings suggest that elevated aluminum levels, particularly in serum, may serve as an early marker of AD and/or play a role in the development of the disease. These results substantially clarify the existing evidence examining the link between chronic aluminum exposure and the development of AD.
Collapse
|
33
|
Abdullah NH, Mohamed N, Sulaiman LH, Zakaria TA, Rahim DA. Potential Health Impacts of Bauxite Mining in Kuantan. Malays J Med Sci 2016; 23:1-8. [PMID: 27418864 PMCID: PMC4934713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 06/06/2023] Open
Abstract
Bauxite mining is not known to most Malaysian except recently due to environmental pollution issues in Kuantan, Pahang. Potential impacts are expected to go beyond physical environment and physical illness if the situation is not controlled. Loss of economic potentials, and the presence of unpleasant red dust causing mental distress, anger and community outrage. More studies are needed to associate it with chronic physical illness. While evidences are vital for action, merely waiting for a disease to occur is a sign of failure in prevention. All responsible agencies should focus on a wider aspect of health determinants rather than merely on the occurrence of diseases to act and the need to emphasize on sustainable mining to ensure health of people is not compromised.
Collapse
Affiliation(s)
- Noor Hisham Abdullah
- Office of Director General of Health, Level 12, E7, Ministry of Health, 62590 Putrajaya, Malaysia
| | - Norlen Mohamed
- Environmental Health Unit, Level 2, E3, Disease Control Division, Ministry of Health, 62590 Putrajaya, Malaysia
| | - Lokman Hakim Sulaiman
- Office of Deputy Director General of Health (Public Health), Level 12, E7, Ministry of Health, 62590 Putrajaya, Malaysia
| | - Thahirahtul Asma Zakaria
- Environmental Health Unit, Level 2, E3, Disease Control Division, Ministry of Health, 62590 Putrajaya, Malaysia
| | - Daud Abdul Rahim
- Environmental Health Unit, Level 2, E3, Disease Control Division, Ministry of Health, 62590 Putrajaya, Malaysia
| |
Collapse
|
34
|
Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer's disease. Brain Res 2016; 1642:397-408. [PMID: 27084583 DOI: 10.1016/j.brainres.2016.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Alzheime's disease (AD) is an overwhelming neurodegenerative disorder, characterized by synaptic dysfunction, memory loss, neuro-inflammation and neural cell death. Very few treatments are in hand for the management of AD and they are only concentrating on peculiar aspects. Hence, an immense thrust is required to find utmost therapeutic targets to conquer this condition. This study investigates a potential role of vanillin, a selective agonist of transient receptor potential vanilloid subtype 1 (TRPV1) in the experimental models of AD viz. intracerebroventricular (i.c.v.) streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose induced AD in mice. The i.c.v. administration of STZ and intraperitoneally administration of AlCl3+d-galactose have significantly impaired learning-memory (Morris water maze and attentional set-shifting test), brain structure (hematoxylin, eosin and Congo red staining), enhanced brain oxidative stress (thiobarbituric acid reactive substance - TBARS and glutathione - GSH), nitrosative stress (nitrite/nitrate), acetylcholinesterase activity (AChE), inflammation (MPO), and calcium levels (Ca(++)). Treatment with vanillin in different doses and donepezil have significantly ameliorated i.c.v. STZ and AlCl3+d-galactose induced reduction in executive function, impaired reversal learning, cognition, memory and brain damage. Treatment with these drugs has also reduced the brain oxidative stress (TBARS and GSH), nitrosative stress (nitrite/nitrate), and AChE, MPO, and Ca(++) levels. These results indicate that vanillin, a selective agonist of TRPV1 and donepezil, a potent acetylcholine esterase inhibitor have attenuated i.c.v. STZ and AlCl3+d-galactose induced experimental AD. Hence, pharmacological positive modulation of TRPV1 channels may be a potential research target for mitigation of AD.
Collapse
|
35
|
Cappai R. 'From past to future' - deciphering the molecular basis of Alzheimer's disease through the pages of the Journal of Neurochemistry. J Neurochem 2016; 139 Suppl 2:215-223. [PMID: 26996965 DOI: 10.1111/jnc.13546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 12/28/2022]
Abstract
The Journal of Neurochemistry has made significant contributions to unraveling the molecular basis for Alzheimer's disease during its 60-year history. To mark its 60th anniversary, this review describes the association between the journal and Alzheimer's disease research - from the early years when Alzheimer's disease was a minor topic in the journal through to the molecular era in the mid-1980s. This coincided with a number of the highly cited Alzheimer's disease studies which described fundamental aspects of the neurochemistry of Alzheimer's disease and encompassed the themes of oxidative stress and post-translational modifications, cholinergic system, tau, purification of Aβ, defining the Aβ toxic species, mechanism of amyloid precursor protein processing, and the development of diagnostics and therapeutics. The Journal of Neurochemistry has made significant contributions toward unraveling the molecular, cellular and pathological basis of Alzheimer's disease through its 60 years. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Roberto Cappai
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Lahiri DK, Maloney B, Bayon BL, Chopra N, White FA, Greig NH, Nurnberger JI. Transgenerational latent early-life associated regulation unites environment and genetics across generations. Epigenomics 2016; 8:373-87. [PMID: 26950428 DOI: 10.2217/epi.15.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The origin of idiopathic diseases is still poorly understood. The latent early-life associated regulation (LEARn) model unites environmental exposures and gene expression while providing a mechanistic underpinning for later-occurring disorders. We propose that this process can occur across generations via transgenerational LEARn (tLEARn). In tLEARn, each person is a 'unit' accumulating preclinical or subclinical 'hits' as in the original LEARn model. These changes can then be epigenomically passed along to offspring. Transgenerational accumulation of 'hits' determines a sporadic disease state. Few significant transgenerational hits would accompany conception or gestation of most people, but these may suffice to 'prime' someone to respond to later-life hits. Hits need not produce symptoms or microphenotypes to have a transgenerational effect. Testing tLEARn requires longitudinal approaches. A recently proposed longitudinal epigenome/envirome-wide association study would unite genetic sequence, epigenomic markers, environmental exposures, patient personal history taken at multiple time points and family history.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Bryan Maloney
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Baindu L Bayon
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Nipun Chopra
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Fletcher A White
- Department of Anesthesia, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - John I Nurnberger
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| |
Collapse
|
37
|
Bondy SC. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology 2015; 52:222-9. [PMID: 26687397 DOI: 10.1016/j.neuro.2015.12.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022]
Abstract
Aluminum (Al) is a very common component of the earth's mineral composition. It is not essential element for life and is a constituent of rather inert minerals. Therefore, it has often been regarded as not presenting a significant health hazard. As a result, aluminum-containing agents been used in the preparation of many foodstuffs processing steps and also in elimination of particulate organic matter from water. More recently, the reduced pH of bodies of water resulting from acid rain has led to mobilization of aluminum-containing minerals into a more soluble form, and these have thus entered residential drinking water resources. By this means, the body burden of aluminum in humans has increased. Epidemiological and experimental findings indicate that aluminum is not as harmless as was previously thought, and that aluminum may contribute to the inception and advancement of Alzheimer's disease. Epidemiological data is reinforced by indications that aluminum exposure can result in excess inflammatory activity within the brain. Activation of the immune system not initiated by an infectious agent, typifies the aging brain and is even more augmented in several neurodegenerative diseases. The origin of most age-related neurological disorders is generally not known but as they are largely not of genetic derivation, their development is likely triggered by unknown environmental factors. There is a growing and consistent body of evidence that points to aluminum as being one such significant influence. Evidence is presented that reinforces the likelihood that aluminum is a factor speeding the rate of brain aging. Such acceleration would inevitably enlarge the incidence of age-related neurological diseases.
Collapse
Affiliation(s)
- Stephen C Bondy
- Environmental Toxicology Program, Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697-1830, USA.
| |
Collapse
|
38
|
Koeman T, Schouten LJ, van den Brandt PA, Slottje P, Huss A, Peters S, Kromhout H, Vermeulen R. Occupational exposures and risk of dementia-related mortality in the prospective Netherlands Cohort Study. Am J Ind Med 2015; 58:625-35. [PMID: 25943788 DOI: 10.1002/ajim.22462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Occupational exposures may be associated with non-vascular dementia. METHODS We analyzed the effects of occupational exposures to solvents, pesticides, metals, extremely low frequency magnetic fields (ELF-MF), electrical shocks, and diesel motor exhaust on non-vascular dementia related mortality in the Netherlands Cohort Study (NLCS). Exposures were assigned using job-exposure matrices. After 17.3 years of follow-up, 682 male and 870 female cases were available. Analyses were performed using Cox regression. RESULTS Occupational exposure to metals, chlorinated solvents and ELF-MF showed positive associations with non-vascular dementia among men, which seemed driven by metals (hazard ratio ever high vs. background exposure: 1.35 [0.98-1.86]). Pesticide exposure showed statistically significant, inverse associations with non-vascular dementia among men. We found no associations for shocks, aromatic solvents, and diesel motor exhaust. CONCLUSIONS Consistent positive associations were found between occupational exposure to metals and non-vascular dementia. The finding on pesticides is not supported in the overall literature.
Collapse
Affiliation(s)
- Tom Koeman
- Institute for Risk Assessment Sciences; Division of Environmental Epidemiology; Utrecht University; Utrecht
| | - Leo J. Schouten
- Department of Epidemiology; GROW School for Oncology and Developmental Biology; Maastricht University Medical Centre; Maastricht
| | - Piet A. van den Brandt
- Department of Epidemiology; GROW School for Oncology and Developmental Biology; Maastricht University Medical Centre; Maastricht
| | - Pauline Slottje
- Institute for Risk Assessment Sciences; Division of Environmental Epidemiology; Utrecht University; Utrecht
| | - Anke Huss
- Institute for Risk Assessment Sciences; Division of Environmental Epidemiology; Utrecht University; Utrecht
| | - Susan Peters
- Occupational Respiratory Epidemiology; School of Population Health; University of Western Australia; Perth Australia
| | - Hans Kromhout
- Institute for Risk Assessment Sciences; Division of Environmental Epidemiology; Utrecht University; Utrecht
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences; Division of Environmental Epidemiology; Utrecht University; Utrecht
- Julius Centre for Public Health Sciences and Primary Care; University Medical Center; Utrecht
| |
Collapse
|
39
|
El-Sayyed H, Badawy G, Elnabi SH, El-Elaimy I, Shehari EA. Ameliorative effect of Morus alba leaves extract against developmental retinopathy in pups of diabetic and aluminum intoxicated pregnant albino rats. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30349-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Wesdock JC, Arnold IMF. Occupational and environmental health in the aluminum industry: key points for health practitioners. J Occup Environ Med 2015; 56:S5-11. [PMID: 24806726 PMCID: PMC4131940 DOI: 10.1097/jom.0000000000000071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- James C Wesdock
- From Alcoa, Inc (Dr Wesdock), Richmond, Va; and International Aluminium Institute (Dr Arnold), London, England
| | | |
Collapse
|
41
|
Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IMF, Momoli F, Krewski D. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 2014; 44 Suppl 4:1-80. [PMID: 25233067 PMCID: PMC4997813 DOI: 10.3109/10408444.2014.934439] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+2) and Al(H2O)6 (+3)] that after complexation with O2(•-), generate Al superoxides [Al(O2(•))](H2O5)](+2). Semireduced AlO2(•) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (•-) and OH(•). Thus, it is the Al(+3)-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.
Collapse
Affiliation(s)
- Calvin C. Willhite
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
| | | | - Robert A. Yokel
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | - Thomas M. Wisniewski
- Departments of Neurology, Psychiatry and Pathology, New York University School of Medicine, New York City, New York, USA
| | - Ian M. F. Arnold
- Occupational Health Program, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Franco Momoli
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
42
|
Singla N, Dhawan DK. Zinc modulates aluminium-induced oxidative stress and cellular injury in rat brain. Metallomics 2014; 6:1941-50. [PMID: 25141099 DOI: 10.1039/c4mt00097h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dysregulation of metal homeostasis has been perceived as one of the key factors in the progression of neurodegeneration. Aluminium (Al) has been considered as a major risk factor, which is linked to several neurodegenerative diseases, especially Alzheimer's disease, whereas zinc (Zn) has been reported as a vital dietary element, which regulates a number of physiological processes in central nervous system. The present study was conducted to explore the protective potential of zinc, if any, in ameliorating neurotoxicity induced by aluminium. Male Sprague Dawley rats received either aluminium chloride (AlCl3) orally (100 mg kg(-1) b.wt. per day), zinc sulphate (ZnSO4) at a dose level of 227 mg L(-1) in drinking water or combined treatment of aluminium and zinc for 8 weeks. Aluminium treatment significantly elevated the levels of lipid peroxidation and reactive oxygen species as well as the activities of catalase, superoxide dismutase and glutathione reductase, which however were decreased following Zn co-treatment of Al-treated rats. In contrast, Al treatment decreased the activities of glutathione-S-transferase as well as the levels of reduced glutathione, oxidised glutathione and total glutathione, but co-administration of Zn to Al-treated animals increased these levels. Furthermore, Al treatment caused a significant increase in the levels of Fe and Mn as well as of Al but decreased the Zn and metallothionein levels. In the Zn-supplemented animals, the levels of Al, Fe, Mn were found to be significantly decreased, whereas the levels of metallothionein as well as Zn were increased. Moreover, histopathological alterations such as vacuolization and loss of Purkinje cells were also evident following Al treatment, which showed improvement upon Zn supplementation. Therefore, zinc has the potential to alleviate aluminium-induced neurodegeneration.
Collapse
Affiliation(s)
- Neha Singla
- Department of Biophysics, Sector-14, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|