1
|
Turner MC, Cogliano V, Guyton K, Madia F, Straif K, Ward EM, Schubauer-Berigan MK. Research Recommendations for Selected IARC-Classified Agents: Impact and Lessons Learned. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:105001. [PMID: 37902675 PMCID: PMC10615125 DOI: 10.1289/ehp12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) Monographs program assembles expert working groups who publish a critical review and evaluation of data on agents of interest. These comprehensive reviews provide a unique opportunity to identify research needs to address classification uncertainties. A multidisciplinary expert review and workshop held in 2009 identified research gaps and needs for 20 priority occupational chemicals, metals, dusts, and physical agents, with the goal of stimulating advances in epidemiological studies of cancer and carcinogen mechanisms. Overarching issues were also described. OBJECTIVES In this commentary we review the current status of the evidence for the 20 priority agents identified in 2009. We examine whether identified Research Recommendations for each agent were addressed and their potential impact on resolving classification uncertainties. METHODS We reviewed the IARC classifications of each of the 20 priority agents and identified major new epidemiological and human mechanistic studies published since the last evaluation. Information sources were either the published Monograph for agents that have been reevaluated or, for agents not yet reevaluated, Advisory Group reports and literature searches. Findings are described in view of recent methodological developments in Monographs evidence evaluation processes. DISCUSSION The majority of the 20 priority agents were reevaluated by IARC since 2009. The overall carcinogen classifications of 9 agents advanced, and new cancer sites with either "sufficient" or "limited" evidence of carcinogenicity were also identified for 9 agents. Examination of published findings revealed whether evidence gaps and Research Recommendations have been addressed and highlighted remaining uncertainties. During the past decade, new research addressed a range of the 2009 recommendations and supported updated classifications for priority agents. This supports future efforts to systematically apply findings of Monograph reviews to identify research gaps and priorities relevant to evaluation criteria established in the updated IARC Monograph Preamble. https://doi.org/10.1289/EHP12547.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Vincent Cogliano
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Kathryn Guyton
- National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | - Federica Madia
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
- Boston College, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Caini S, Cozzolino F, Saieva C, Aprea MC, De Bonfioli Cavalcabo' N, Ermini I, Assedi M, Biagiotti D, Trane C, Facchini L, Bendinelli B, Palli D, Masala G. Serum heavy metals and breast cancer risk: A case-control study nested in the Florence cohort of the EPIC (European Prospective Investigation into Cancer and nutrition) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160568. [PMID: 36464039 DOI: 10.1016/j.scitotenv.2022.160568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic exposure to heavy metals is of concern for its potential carcinogenic effect. An association with increased breast cancer (BC) risk was hypothesized, but literature data are conflicting and the question remains unresolved. We aimed to investigate the association between heavy metals and BC risk in a case-control study nested within the Florence section of the EPIC (European Prospective Investigation into Cancer and nutrition) cohort. METHODS We included 150 BC cases and an equal number of controls individually matched to cases by age and year of enrolment. In order to avoid confounding by smoking, the study was restricted to never smokers. Serum levels of six heavy metals (Cd, Co, Cr, Mn, Pb, and Tl) were quantified in pre-diagnostic samples using inductively coupled plasma mass spectrometry. Odds ratios (ORs) and corresponding 95 % confidence intervals (CI) were calculated via multivariable conditional logistic regression models. RESULTS Serum levels of cobalt were inversely associated with BC risk (OR for the comparison of 3rd vs. 1st tertiles: 0.33, 95 % CI 0.12-0.91, p-value 0.033). None of the other heavy metals under study was significantly associated with BC risk in multivariable models. For Cd, Cr, and Tl, over half of the study participants had serum levels below the limit of quantitation. CONCLUSIONS Our results do not support the hypothesis that exposure to heavy metals is associated with an increased BC risk among never smokers from the general population. The inverse association between cobalt serum levels and BC risk requires confirmation in future studies.
Collapse
Affiliation(s)
- Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Flavia Cozzolino
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Maria Cristina Aprea
- Unit of Occupational and Environmental Toxicology - Public Health Laboratory, Department of Prevention, AUSL South-East Tuscany, Strada del Ruffolo 4, 53100 Siena, Italy.
| | - Nora De Bonfioli Cavalcabo'
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Ilaria Ermini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Melania Assedi
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Davide Biagiotti
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Cinzia Trane
- Public Health Laboratory, Department of Technical Health Professions, Rehabilitation and Prevention, AUSL South-East Tuscany, Strada del Ruffolo 4, 53100 Siena, Italy.
| | - Luigi Facchini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Benedetta Bendinelli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| |
Collapse
|
3
|
Danzeisen R, Jänig GR, Burzlaff A, Verberckmoes S, Adam J, Viegas V. The underlying mode of action for lung tumors in a tiered approach to the assessment of inhaled cobalt compounds. Regul Toxicol Pharmacol 2022; 130:105140. [PMID: 35158000 DOI: 10.1016/j.yrtph.2022.105140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
A mode of action (MOA) for cobalt substances based on the "International Programme on Chemical Safety Conceptual Framework for Evaluating a MOA for Chemical Carcinogenesis" is presented. The data recorded therein were generated in a tiered testing program described in the preceding papers of this special issue, as well as data from the public domain. The following parameters were included in the evaluation: solubility of cobalt substances in artificial lung fluids (bioelution), in vitro biomarkers for cytotoxicity, reactive oxygen species and hypoxia mimicry, inhalation toxicity following acute exposure and repeated dose inhalation effects. Two distinct groups of cobalt substances emerged: substances inducing all effects across the MOA form one group, associated with the adverse outcome of lung cancer in rodents upon chronic exposure. Another group of cobalt substances induces no or very limited effects in the in vitro and acute testing. Higher tier testing with a representative of this group, tricobalt tetraoxide, showed a response resembling rat lung overload following exposure to high concentrations of poorly soluble particles. Based on the fundamental differences in the lower tier toxicological profile, cobalt substances with an unknown hazard profile can be assigned to either group based on lower tier testing alone.
Collapse
Affiliation(s)
- Ruth Danzeisen
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK.
| | - Gerd-Rüdiger Jänig
- Dr. Gerd-Rüdiger Jänig, Toxicological Consulting, 12524, Berlin, Germany
| | - Arne Burzlaff
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | | | - Janine Adam
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | - Vanessa Viegas
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK
| |
Collapse
|
4
|
Burzlaff A, Creutzenberg O, Schaudien D, Viegas V, Danzeisen R, Warheit D. A tiered approach to investigate the inhalation toxicity of cobalt substances. Tier 4: Effects from a 28-day inhalation toxicity study with tricobalt tetraoxide in rats. Regul Toxicol Pharmacol 2022; 130:105129. [PMID: 35124138 DOI: 10.1016/j.yrtph.2022.105129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023]
Abstract
Lung cancer following inhalation in rodents is a major concern regarding exposure to cobalt substances. However, little information is available on adverse effects and toxicity following long-term inhalation exposure to poorly soluble cobalt substances with low bioavailability. Thus, the present study focused on pulmonary effects of the poorly soluble tricobalt tetraoxide (5, 20, 80 mg/m³) in a 28-day inhalation exposure study. Lung weights increased with increasing exposures. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation at the mid-dose with increasing severity in the high-dose group and post-exposure persistency. Markers for cellular damage and cell proliferation were statistically significantly increased. No increase in 8-OH-dG lesions was observed, indicating an absence of oxidative DNA lesions. The primary effect of inhaled Co3O4 particles is inflammation of the respiratory tract strongly resembling responses of inhaled "inert dust" substances, with a NOAEC of 5 mg/m³ under the conditions of this test.
Collapse
Affiliation(s)
- Arne Burzlaff
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany.
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fh-ITEM), Nikolai Fuchs Strasse 1, 30625, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fh-ITEM), Nikolai Fuchs Strasse 1, 30625, Hannover, Germany
| | - Vanessa Viegas
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK
| | - Ruth Danzeisen
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK.
| | | |
Collapse
|
5
|
Andersson L, Hedbrant A, Persson A, Bryngelsson IL, Sjögren B, Stockfelt L, Särndahl E, Westberg H. Inflammatory and coagulatory markers and exposure to different size fractions of particle mass, number and surface area air concentrations in the Swedish hard metal industry, in particular to cobalt. Biomarkers 2021; 26:557-569. [PMID: 34128444 DOI: 10.1080/1354750x.2021.1941260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To study the relationship between inhalation of airborne particles and cobalt in the Swedish hard metal industry and markers of inflammation and coagulation in blood. METHODS Personal sampling of inhalable cobalt and dust were performed for subjects in two Swedish hard metal plants. Stationary measurements were used to study concentrations of inhalable, respirable, and total dust and cobalt, PM10 and PM2.5, the particle surface area and the particle number concentrations. The inflammatory markers CC16, TNF, IL-6, IL-8, IL-10, SAA and CRP, and the coagulatory markers FVIII, vWF, fibrinogen, PAI-1 and D-dimer were measured. A complete sampling was performed on the second or third day of a working week following a work-free weekend, and additional sampling was taken on the fourth or fifth day. The mixed model analysis was used, including covariates. RESULTS The average air concentrations of inhalable dust and cobalt were 0.11 mg/m3 and 0.003 mg/m3, respectively. For some mass-based exposure measures of cobalt and total dust, statistically significant increased levels of FVIII, vWF and CC16 were found. CONCLUSIONS The observed relationships between particle exposure and coagulatory biomarkers may indicate an increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Lena Andersson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bengt Sjögren
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Håkan Westberg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Prueitt RL, Li W, Chang YC, Boffetta P, Goodman JE. Systematic review of the potential respiratory carcinogenicity of metallic nickel in humans. Crit Rev Toxicol 2020; 50:605-639. [DOI: 10.1080/10408444.2020.1803792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Paolo Boffetta
- Stony Brook Cancer Center and Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
7
|
Abstract
Nickel (Ni) metal and Ni compounds are widely used in applications like stainless steel, alloys, and batteries. Nickel is a naturally occurring element in water, soil, air, and living organisms, and is essential to microorganisms and plants. Thus, human and environmental nickel exposures are ubiquitous. Production and use of nickel and its compounds can, however, result in additional exposures to humans and the environment. Notable human health toxicity effects identified from human and/or animal studies include respiratory cancer, non-cancer toxicity effects following inhalation, dermatitis, and reproductive effects. These effects have thresholds, with indirect genotoxic and epigenetic events underlying the threshold mode of action for nickel carcinogenicity. Differences in human toxicity potencies/potentials of different nickel chemical forms are correlated with the bioavailability of the Ni2+ ion at target sites. Likewise, Ni2+ has been demonstrated to be the toxic chemical species in the environment, and models have been developed that account for the influence of abiotic factors on the bioavailability and toxicity of Ni2+ in different habitats. Emerging issues regarding the toxicity of nickel nanoforms and metal mixtures are briefly discussed. This review is unique in its covering of both human and environmental nickel toxicity data.
Collapse
|
8
|
Mortality Among Hardmetal Production Workers: Pooled Analysis of Cohort Data From an International Investigation: Erratum. J Occup Environ Med 2018; 60:e567-e568. [PMID: 30289837 DOI: 10.1097/jom.0000000000001465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Lison D, van den Brule S, Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit Rev Toxicol 2018; 48:522-539. [PMID: 30203727 DOI: 10.1080/10408444.2018.1491023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article summarizes recent experimental and epidemiological data on the genotoxic and carcinogenic activities of cobalt compounds. Emphasis is on the respiratory system, but endogenous exposure from Co-containing alloys used in endoprostheses, and limited data on nanomaterials and oral exposures are also considered. Two groups of cobalt compounds are differentiated on the basis of their mechanisms of toxicity: (1) those essentially involving the solubilization of Co(II) ions, and (2) metallic materials for which both surface corrosion and release of Co(II) ions act in concert. For both groups, identified genotoxic and carcinogenic mechanisms are non-stochastic and thus expected to exhibit a threshold. Cobalt compounds should, therefore, be considered as genotoxic carcinogens with a practical threshold. Accumulating evidence indicates that chronic inhalation of cobalt compounds can induce respiratory tumors locally. No evidence of systemic carcinogenicity upon inhalation, oral or endogenous exposure is available. The scarce data available for Co-based nanosized materials does not allow deriving a specific mode of action or assessment for these species.
Collapse
Affiliation(s)
- D Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - S van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - G Van Maele-Fabry
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
10
|
|
11
|
|
12
|
|