1
|
Khandan-Nasab N, Torkamanzadeh B, Abbasi B, Mohajeri T, Oskuee RK, Sahebkar A. Application of Platelet-Rich Plasma-Based Scaffolds in Soft and Hard Tissue Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40296834 DOI: 10.1089/ten.teb.2024.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Platelet-rich plasma (PRP) is a blood product with higher platelet concentrations than whole blood, offering controlled delivery of growth factors (GFs) for regenerative medicine. PRP plays pivotal roles in tissue restoration mechanisms, including angiogenesis, fibroblast proliferation, and extracellular matrix development, making it applicable across various regenerative medicine treatments. Despite promising results in different tissue injuries, challenges such as short half-life and rapid deactivation by proteases persist. To address these challenges, biomaterial-based delivery scaffolds, such as sponges or hydrogels, have been investigated. Current studies exhibit that PRP-loaded scaffolds fix these issues due to the sustained release of GFs. In this regard, given the widespread application of PRP in clinical studies, the use of PRP-loaded scaffolds has drawn significant consideration in tissue engineering (TE). Therefore, this review briefly introduces PRP as a rich origin of GFs, its classification, and preparation methods and discusses PRP applications in regenerative medicine. This study also emphasizes and reviews the latest research on the using scaffolds for PRP delivery in diverse fields of TE, including skin, bone, and cartilage repair.
Collapse
Affiliation(s)
- Niloofar Khandan-Nasab
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behdad Torkamanzadeh
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnam Abbasi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Centre for Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Baird HBG, Ashy CC, Kodali P, Myer GD, Murray IR, Pullen WM, Slone HS. Most Publications Regarding Platelet-Rich Plasma Use in the Knee Are From Asia, Investigate Injection for Osteoarthritis, and Show Outcome Improvement: A Scoping Review. Arthroscopy 2025; 41:1184-1194.e19. [PMID: 38537725 DOI: 10.1016/j.arthro.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE To evaluate and synthesize the available literature related to platelet-rich plasma (PRP) treatment of knee pathologies and to provide recommendations to inform future research in the field. METHODS PubMed, CINAHL, and Scopus databases were queried on October 6, 2023. All identified citations were collated and uploaded into Covidence for screening and data extraction. Studies were included if they were human studies published in English with adult cohorts that received PRP as a procedural injection or surgical augmentation for knee pathologies with patient-reported outcome measures (PROMs) and level of evidence Levels I-IV. RESULTS Our search yielded 2,615 studies, of which 155 studies from 2006 to 2023 met the inclusion criteria. Median follow-up was 9 months (±11.2 months). Most studies (75.5%) characterized the leukocyte content of PRP, although most studies (86%) did not use a comprehensive classification scheme. In addition, most studies were from Asia (50%) and Europe (32%) and were from a single center (96%). In terms of treatment, 74% of studies examined PRP as a procedural injection, whereas 26% examined PRP as an augmentation. Most studies (68%) examined treatment of knee osteoarthritis. Many studies (83%) documented significant improvements in PROMs, including 93% of Level III/IV evidence studies and 72% of Level I/II evidence studies, although most studies (70%) failed to include minimal clinically important difference values. The visual analog scale was the most-used PROM (58% of studies), whereas the Short Form Health Survey 36-item was the least-used PROM (5% of studies). CONCLUSIONS Most published investigations of knee PRP are performed in Asia, investigate procedural injection for osteoarthritis, and show significant outcome improvements. In addition, this review highlights the need for better classification of PRP formulations. LEVEL OF EVIDENCE Level IV, scoping review of Level I-IV studies.
Collapse
Affiliation(s)
- Henry B G Baird
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, U.S.A..
| | - Cody C Ashy
- Department of Orthopedic Surgery and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Prudhvi Kodali
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Gregory D Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, Georgia, U.S.A.; Emory Sports Medicine Center, Atlanta, Georgia, U.S.A.; Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, U.S.A.; The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, U.S.A.; Youth Physical Development Centre, Cardiff Metropolitan University, Wales, United Kingdom
| | - Iain R Murray
- The University of Edinburgh, Edinburgh, United Kingdom
| | - W Michael Pullen
- Department of Orthopedic Surgery and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Harris S Slone
- Department of Orthopedic Surgery and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| |
Collapse
|
3
|
Lin X, Zhang Y, Li J, Oliver BG, Wang B, Li H, Yong KT, Li JJ. Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects. Bioact Mater 2025; 43:510-549. [PMID: 40115881 PMCID: PMC11923379 DOI: 10.1016/j.bioactmat.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 03/23/2025] Open
Abstract
Chondral and osteochondral injuries are frequently encountered in clinical practice. However, articular cartilage has limited self-healing capacity due to its sophisticated zonal structure and avascular nature, introducing significant challenges to the restoration of chondral and osteochondral tissues after injury. Improperly repaired articular cartilage can lead to irreversible joint damage and increase the risk of osteoarthritis progression. Cartilage tissue engineering using stratified scaffolds with multizonal design to match the zonal structure of articular cartilage may help to meet the complex regeneration requirements of chondral and osteochondral tissues, and address the drawbacks experienced with single-phase scaffolds. Navigating the heterogeneity in matrix organisation and cellular composition across cartilage zones is a central consideration in multizonal scaffold design. With emphasis on recent advances in scaffold design and fabrication strategies, this review captures emerging approaches on biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage, including strategies on replicating native tissue structure through variations in fibre orientation, porous structure, and cell types. Exciting progress in this dynamic field has highlighted the tremendous potential of multizonal scaffolding strategies for regenerative medicine in the recreation of functional tissues.
Collapse
Affiliation(s)
- Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Ye Zhang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haiyan Li
- Chemical and Environmental Engineering Department, School of Engineering, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| |
Collapse
|
4
|
Blanke F, Warth F, Oehler N, Siegl J, Prall WC. Autologous platelet-rich plasma and fibrin-augmented minced cartilage implantation in chondral lesions of the knee leads to good clinical and radiological outcomes after more than 12 months: A retrospective cohort study of 71 patients. J Exp Orthop 2024; 11:e70051. [PMID: 39415804 PMCID: PMC11480521 DOI: 10.1002/jeo2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose The treatment of cartilage lesions remains a challenge. Matrix-associated autologous chondrocyte implantation has evolved to become the gold standard procedure. However, this two-step procedure has crucial disadvantages, and the one-step minced cartilage procedure has gained attention. This retrospective study aimed to evaluate the clinical and radiological outcome of an all-autologous minced cartilage technique in cartilage lesions at the knee joint. Methods In this retrospective cohort study, 71 patients (38.6 years ± 12.0, 39,4% female) with a magnetic resonance imaging (MRI) confirmed grade III-IV cartilage defect at the medial femur condyle (n = 20), lateral femur condyle (n = 2), lateral tibia plateau (n = 1), retropatellar (n = 28) and at the trochlea (n = 20) were included. All patients were treated with an all-autologous minced cartilage procedure (AutoCart™). Clinical knee function was evaluated by the Tegner score, visual analogue scale, the subjective and objective evaluation form of the International Knee Documentation Committee and the Knee Injury and Osteoarthritis Outcome Score (KOOS). MRI analyses were performed by magnetic resonance observation of cartilage repair tissue (MOCART) 2.0 knee score. Follow-up examination was 13.7 ± 4.2 (12-24) months postoperative. Results All clinical scores significantly improved after surgical intervention (p < 0.0001), especially the subgroup sports and recreation of KOOS showed clear changes from baseline in the follow-up examination. In the postoperative MRI evaluation, 39 of 71 patients showed a complete fill of the cartilage defect without subchondral changes in 78% of the patients in the MOCART 2.0 score in the follow-up analysis. None of the patients showed adverse effects, which are linked to the minced cartilage procedure during the time of follow-up. Conclusion An all-autologous minced cartilage technique for chondral lesions at the knee joint seems to be an effective and safe treatment method with good clinical and radiological short-term results. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Fabian Blanke
- Department of Knee‐, Hip‐, Shoulder‐, and Elbow Surgery, FIFA Medical Centre of ExcellenceSchön Klinik München HarlachingMünchenGermany
- Department of Orthopedic SurgeryUniversity RostockRostockGermany
- Department of Orthopedic Sports Medicine and Arthroscopic SurgeryHessing Stiftung AugsburgAugsburgGermany
| | - Franziska Warth
- Department of Knee‐, Hip‐, Shoulder‐, and Elbow Surgery, FIFA Medical Centre of ExcellenceSchön Klinik München HarlachingMünchenGermany
- Department of Orthopedic SurgeryUniversity RostockRostockGermany
| | - Nicola Oehler
- Department of Orthopedic Sports Medicine and Arthroscopic SurgeryHessing Stiftung AugsburgAugsburgGermany
| | - Johanna Siegl
- Department of Knee‐, Hip‐, Shoulder‐, and Elbow Surgery, FIFA Medical Centre of ExcellenceSchön Klinik München HarlachingMünchenGermany
- Department of Orthopedic SurgeryUniversity RostockRostockGermany
| | - Wolf Christian Prall
- Department of Knee‐, Hip‐, Shoulder‐, and Elbow Surgery, FIFA Medical Centre of ExcellenceSchön Klinik München HarlachingMünchenGermany
| |
Collapse
|
5
|
Steens W, Zinser W, Rößler P, Heyse T. Infiltration therapy in the context of cartilage surgery. Arch Orthop Trauma Surg 2024; 144:3913-3923. [PMID: 37400671 PMCID: PMC11564373 DOI: 10.1007/s00402-023-04964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Guideline-based surgical cartilage therapy for focal cartilage damage offers highly effective possibilities to sustainably reduce patients' complaints and to prevent or at least delay the development of early osteoarthritis. In the knee joint, it has the potential to reduce almost a quarter of the arthroses requiring joint replacement caused by cartilage damage. Biologically effective injection therapies could further improve these results. Based on the currently available literature and preclinical studies, intra- and postoperative injectables may have a positive effect of platelet-rich plasma/fibrin (PRP/PRF) and hyaluronic acid (HA) on cartilage regeneration and, in the case of HA injections, also on the clinical outcome can be assumed. The role of a combination therapy with use of intra-articular corticosteroids is lacking in the absence of adequate study data and cannot be defined yet. With regard to adipose tissue-based cell therapy, the current scientific data do not yet justify any recommendation for its use. Further studies also regarding application intervals, timing and differences in different joints are required.
Collapse
Affiliation(s)
- Wolfram Steens
- Department of Orthopaedics, University Medicine, 18057, Rostock, Germany.
- Orthopaedic-Neurosurgery Center, Roentgenstrasse 10, 45661, Recklinghausen, Germany.
| | - Wolfgang Zinser
- Orthoexpert, 8724, Knittelfeld, Austria
- AUVA-Unfallkrankenhaus Steiermark, 8775, Kalwang, Austria
| | - Philip Rößler
- Joint Center, Middelrhine, 56068, Koblenz, Germany
- Department of Orthopaedic and Trauma Surgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Heyse
- Center of Orthopedics and Traumatology, University Hospital Marburg, 35033, Marburg, Germany
- Orthomedic Joint Center, Frankfurt Offenbach, 63065, Offenbach, Germany
| |
Collapse
|
6
|
J JL, Parasuraman G, Amirtham SM, Francis DV, Livingston A, Goyal A, Ramasamy B, Sathishkumar S, Vinod E. Comparative assessment of chondral defect repair using migratory chondroprogenitors suspended in either gelled or freeze-dried platelet-rich plasma: An in vitro and ex vivo human osteochondral unit model study. Knee 2024; 48:105-119. [PMID: 38565037 DOI: 10.1016/j.knee.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chondroprogenitors, with enhanced chondrogenic potential, have emerged to be a promising alternative for cell-based therapy in cartilage repair. Platelet-rich plasma (PRP), widely used for intra-articular treatment, has a short half-life. Freeze-dried PRP (FD-PRP), with an extended half-life and retained growth factors, is gaining attention. This study compares the efficacy of Migratory Chondroprogenitors (MCPs) in gelled PRP and FD-PRP using in-vitro and ex-vivo models, assessing FD-PRP as a potential off-the-shelf option for effective cartilage repair. METHODOLOGY MCPs were isolated from osteoarthritic cartilage samples (n = 3), characterized through FACS and RT-PCR. For in-vitro analysis, cells were loaded into gelled PRP and FD-PRP scaffolds at a density of 1x106 cells per scaffold. Trilineage differentiation studies and live-dead assays were conducted on MCPs using Calcein AM/Propidium Homodimer-1. In ex-vivo analysis, MCPs of the same density were added to Osteochondral Units (OCU) with chondral defects containing PRP gel and FD-PRP scaffolds, harvested on the 15th and 35th days for histological examination. Controls included cell-free scaffolds. RESULTS Our in-vitro analysis demonstrates the robust viability of MCPs in both scaffolds, with no discernible impact on their differentiation capacity. Ex-vivo analysis of the OCU for cartilage repair showed that the chondrogenic potential characterized by the accumulation of extracellular matrix containing glycosaminoglycans and collagen type II production (with no alteration in collagen type X), was observed to be better with the gel PRP and the gel PRP containing MCP groups. CONCLUSIONS These findings support the preference for gel PRP as a superior synergistic scaffold for chondroprogenitor delivery.
Collapse
Affiliation(s)
- Jeya Lisha J
- Department of Physiology, Christian Medical College, Vellore, India.
| | - Ganesh Parasuraman
- Centre for Stem Cell Research, (A Unit of InStem. Bengaluru), Christian Medical College, Vellore, India.
| | | | | | - Abel Livingston
- Department of Orthopaedics, Christian Medical College, Vellore, India.
| | - Anjali Goyal
- Department of Pathology, Smt NHL Municipal Medical College, Ahmedabad, India.
| | - Boopalan Ramasamy
- Faculty of Health and Medical Sciences, The University of Adelaide, Australia; Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, Australia.
| | | | - Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India; Centre for Stem Cell Research, (A Unit of InStem. Bengaluru), Christian Medical College, Vellore, India.
| |
Collapse
|
7
|
Fahy S, Niemann M, Böhm P, Winkler T, Oehme S. Assessment of the Quality and Readability of Information Provided by ChatGPT in Relation to the Use of Platelet-Rich Plasma Therapy for Osteoarthritis. J Pers Med 2024; 14:495. [PMID: 38793077 PMCID: PMC11122161 DOI: 10.3390/jpm14050495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Objective: This study aimed to evaluate the quality and readability of information generated by ChatGPT versions 3.5 and 4 concerning platelet-rich plasma (PRP) therapy in the management of knee osteoarthritis (OA), exploring whether large language models (LLMs) could play a significant role in patient education. Design: A total of 23 common patient queries regarding the role of PRP therapy in knee OA management were presented to ChatGPT versions 3.5 and 4. The quality of the responses was assessed using the DISCERN criteria, and readability was evaluated using six established assessment tools. Results: Both ChatGPT versions 3.5 and 4 produced moderate quality information. The quality of information provided by ChatGPT version 4 was significantly better than version 3.5, with mean DISCERN scores of 48.74 and 44.59, respectively. Both models scored highly with respect to response relevance and had a consistent emphasis on the importance of shared decision making. However, both versions produced content significantly above the recommended 8th grade reading level for patient education materials (PEMs), with mean reading grade levels (RGLs) of 17.18 for ChatGPT version 3.5 and 16.36 for ChatGPT version 4, indicating a potential barrier to their utility in patient education. Conclusions: While ChatGPT versions 3.5 and 4 both demonstrated the capability to generate information of moderate quality regarding the role of PRP therapy for knee OA, the readability of the content remains a significant barrier to widespread usage, exceeding the recommended reading levels for PEMs. Although ChatGPT version 4 showed improvements in quality and source citation, future iterations must focus on producing more accessible content to serve as a viable resource in patient education. Collaboration between healthcare providers, patient organizations, and AI developers is crucial to ensure the generation of high quality, peer reviewed, and easily understandable information that supports informed healthcare decisions.
Collapse
Affiliation(s)
- Stephen Fahy
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.F.); (M.N.); (T.W.)
| | - Marcel Niemann
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.F.); (M.N.); (T.W.)
| | - Peter Böhm
- Deutsche Rheuma-Liga e.V., 53111 Bonn, Germany;
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.F.); (M.N.); (T.W.)
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Stephan Oehme
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.F.); (M.N.); (T.W.)
| |
Collapse
|
8
|
George T, Curley AJ, Saeed SK, Kuhns BD, Parsa A, Domb BG. Orthobiologics as an adjunct in treatment of femoroacetabular impingement syndrome: cell-based therapies facilitate improved postoperative outcomes in the setting of acetabular chondral lesions-a systematic review. Knee Surg Sports Traumatol Arthrosc 2023; 31:6020-6038. [PMID: 37906291 DOI: 10.1007/s00167-023-07624-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE To evaluate studies utilizing orthobiologics in the management of femoroacetabular impingement syndrome (FAIS) to (1) assess the indications for usage, and (2) analyze patient-reported outcome measures (PROM) following treatment. It was hypothesized that orthobiologics would (1) be utilized for symptomatic FAIS in the setting of labral or chondral pathology, and (2) improve PROM at most recent follow-up. METHODS The Pubmed, Ovid Medline, Cochrane, and Web of Science databases were searched for clinical studies evaluating orthobiologics [hyaluronic acid (HA), platelet-rich plasma (PRP), or cell-based therapy (CBT) for treatment of FAIS. Exclusion criteria included orthobiologics used in conjunction with cartilage transfer or scaffolding procedures and a primary indication other than FAIS. Data collection included patient demographics, indications, and baseline and most recent PROM. RESULTS Eleven studies (one level I, four level II, four level III, and two level IV evidence) met inclusion criteria, consisting of 440 patients with mean ages ranging from 32.8 to 47 years. All 11 studies demonstrated an improvement in PROM from baseline to most-recent follow-up. Four studies administered PRP either intraoperatively or the day after surgery as an adjunct to labral repair. CBT was used intraoperatively in the setting of acetabular chondral lesions (three studies) and labral repair (one study). When comparing to a control group at most recent follow-up, three PRP cohorts demonstrated similar PROM (n.s.), while one PRP group exhibited worse visual analog pain scores (2.5 vs. 3.4, p = 0.005) and modified Harris Hip Scores (mHHS) (82.6 vs. 78.7, p = 0.049). The four CBT studies reported favorable results compared to a control group, with a significantly higher mHHS at most recent follow-up or mean improvement from baseline in Hip Outcome Score-Activities of Daily Living (p < 0.05). Three studies reported on HA, which was utilized exclusively in the nonoperative setting. CONCLUSIONS Intraoperative PRP and CBT have been commonly reported in the setting of hip arthroscopy for labral repairs and acetabular chondral lesions, respectively. The CBT cohorts demonstrated more favorable PROM at most recent follow-up when compared to a control group, though these results should be interpreted with caution due to heterogeneity of orthobiologic preparations. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Tracy George
- American Hip Institute Research Foundation, Chicago, IL, 60018, USA
| | - Andrew J Curley
- American Hip Institute Research Foundation, Chicago, IL, 60018, USA
| | - Sheema K Saeed
- American Hip Institute Research Foundation, Chicago, IL, 60018, USA
| | - Benjamin D Kuhns
- American Hip Institute Research Foundation, Chicago, IL, 60018, USA
| | - Ali Parsa
- American Hip Institute Research Foundation, Chicago, IL, 60018, USA
| | - Benjamin G Domb
- American Hip Institute Research Foundation, Chicago, IL, 60018, USA.
- American Hip Institute, Chicago, IL, 60018, USA.
- , 999 E Touhy Ave, Suite 450, Des Plaines, IL, 60018, USA.
| |
Collapse
|
9
|
Alcaide-Ruggiero L, Molina-Hernández V, Morgaz J, Fernández-Sarmiento JA, Granados MM, Navarrete-Calvo R, Pérez J, Quirós-Carmona S, Carrillo JM, Cugat R, Domínguez JM. Immunohistochemical Analysis of Knee Chondral Defect Repair after Autologous Particulated Cartilage and Platelet-Rich Plasma Treatment in Sheep. Int J Mol Sci 2023; 24:15157. [PMID: 37894837 PMCID: PMC10606679 DOI: 10.3390/ijms242015157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This study performs an analysis that will enable the evaluation of the quality, durability, and structure of repaired cartilaginous extracellular matrix tissue using an autologous-based particulated autograft cartilage and platelet-rich plasma treatment (PACI + PRP). A single-blind controlled experiment was conducted on 28 sheep to evaluate the efficacy of the PACI + PRP treatment for cartilage defects. Full-thickness 8 mm diameter defects were created in the weight-bearing area of both knees. The right knees received PACI + PRP. The left knees were treated with Ringer's lactate solution (RLS) or hyaluronic acid (HA) injections. Sheep were euthanized at 9- or 18-months post-surgery. An extensive immunohistochemical analysis was performed to assess collagen types (I, II, III, V, VI, IX, X, XI) and aggrecan positivity. A semiquantitative scoring system provided a detailed evaluation of immunostaining. Collagens and aggrecan scores in the PACI + PRP groups were similar to healthy cartilage. Significant differences were found in collagens associated with matrix maturity (II and V), degradation (IX), structure and mechanics (VI), and hypertrophy (X) between healthy cartilage and RLS- or HA-repaired cartilage. The PACI + PRP treatment advanced the repair cartilage process in chondral defects with mature hyaline cartilage and enhanced the structural and mechanical qualities with better consistent cartilage, less susceptible to degradation and without hypertrophic formation over time.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain; (J.M.); (J.A.F.-S.); (M.M.G.); (R.N.-C.); (S.Q.-C.); (J.M.D.)
- Fundación García Cugat para Investigación Biomédica, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain; (J.M.C.); (R.C.)
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain;
| | - Juan Morgaz
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain; (J.M.); (J.A.F.-S.); (M.M.G.); (R.N.-C.); (S.Q.-C.); (J.M.D.)
| | - J. Andrés Fernández-Sarmiento
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain; (J.M.); (J.A.F.-S.); (M.M.G.); (R.N.-C.); (S.Q.-C.); (J.M.D.)
| | - María M. Granados
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain; (J.M.); (J.A.F.-S.); (M.M.G.); (R.N.-C.); (S.Q.-C.); (J.M.D.)
| | - Rocío Navarrete-Calvo
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain; (J.M.); (J.A.F.-S.); (M.M.G.); (R.N.-C.); (S.Q.-C.); (J.M.D.)
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain;
| | - Setefilla Quirós-Carmona
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain; (J.M.); (J.A.F.-S.); (M.M.G.); (R.N.-C.); (S.Q.-C.); (J.M.D.)
| | - José M. Carrillo
- Fundación García Cugat para Investigación Biomédica, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain; (J.M.C.); (R.C.)
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Hospital Clínico Veterinario, Calle Santiago Ramón y Cajal s/n, 46115 Valencia, Spain
| | - Ramón Cugat
- Fundación García Cugat para Investigación Biomédica, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain; (J.M.C.); (R.C.)
- Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, 08023 Barcelona, Spain
| | - Juan M. Domínguez
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain; (J.M.); (J.A.F.-S.); (M.M.G.); (R.N.-C.); (S.Q.-C.); (J.M.D.)
- Fundación García Cugat para Investigación Biomédica, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain; (J.M.C.); (R.C.)
| |
Collapse
|
10
|
Raulinaitė K, Želvytė R, Škėmienė K, Burbaitė E, Karvelienė B, Monkevičienė I. The Single Intra-Articular Injection of Platelet-Rich Plasma vs. Non-Steroidal Anti-Inflammatory Drugs as Treatment Options for Canine Cruciate Ligament Rupture and Patellar Luxation. Vet Sci 2023; 10:555. [PMID: 37756077 PMCID: PMC10537195 DOI: 10.3390/vetsci10090555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Cranial cruciate ligament rupture (CCLR) and patellar luxation (PL) are common pathologies affecting canines. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used as a non-surgical treatment plan in these cases. Clinical usage of platelet-rich plasma (PRP) is an emerging area of interest in veterinary medicine. There is a lack of studies comparing those two different treatment methods in veterinary medicine. The main purpose of this study was to evaluate and compare the use of oral NSAIDs and single intra-articular injection of PRP on treatment outcomes in cases of canine CCLR and PL. Dogs diagnosed with CCRL (n = 12) and PL (n = 10) were subgrouped by the severity of pathologies and administered treatment: half of the CCRL and PL groups were orally administered NSAIDs and supplements for 14 days, and the other half received a single intra-articular PRP injection into affected stifle joint. We measured serum TNF-α levels and clinical outcomes (lameness scores, painfulness to manipulations, goniometry of stifle joint in flexion and extension, and muscle strength) before treatment, at day 14 and day 28 of treatment. The results of TNF-α concentration indicates a significant difference between groups of differently treated partial CCLR groups on d14 (p = 0.006). Results of group CCLR-P1 on d14 were decreased, while results of group CCLR-P2 on d14 were increased. When comparing TNF-α concentration between all CCLR cases treated with NSAIDs and treated with PRP, there was a significant difference between those groups on d14 (p = 0.001). The results of TNF-α concentration indicates a significant difference between groups of differently treated PL-III on d28 (p = 0.036). Results of group PL-III1 indicate growth of TNF-α concentration, while at the same d28, results of group PL-III2 indicate decreased levels of cytokine, comparing results between the subgroups at the same time point and within subgroups from baseline. Results indicate a significant difference in muscle strength between group CCLR-P1 and group CCLR-P2 on d28 (p = 0.007), indicating an increment in muscle strength in group CCLR-P1 up to d14 and its reduction up to d28, and muscle strength of group CCLR-P2 increasing up to d28. When comparing the muscle strength between all CCLR cases treated with NSAIDs and treated with PRP, there was a significant difference between those groups on d28 (p = 0.007). In conclusion, a single intra-articular injection of PRP has a superior effect on management of inflammatory processes, has better clinical outcomes, and longer duration of action than oral NSAIDs, in the treatment of canine CCRL or PL.
Collapse
Affiliation(s)
- Kristina Raulinaitė
- Department of Anatomy and Physiology, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (R.Ž.); (I.M.)
| | - Rasa Želvytė
- Department of Anatomy and Physiology, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (R.Ž.); (I.M.)
| | - Kristina Škėmienė
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių Str. 4, 50161 Kaunas, Lithuania;
| | - Evelina Burbaitė
- San Marco Veterinary Clinic, Neurology and Neurosurgery Division, Viale dell’Industria 3, 35030 Padova, Italy
| | - Birutė Karvelienė
- Dr. L. Kriaučeliūnas Small Animals Clinic, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania;
| | - Ingrida Monkevičienė
- Department of Anatomy and Physiology, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (R.Ž.); (I.M.)
| |
Collapse
|
11
|
Woo I, Park JJ, Seok HG. The Efficacy of Platelet-Rich Plasma Augmentation in Microfracture Surgery Osteochondral Lesions of the Talus: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:4998. [PMID: 37568400 PMCID: PMC10419373 DOI: 10.3390/jcm12154998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The appropriate surgical management of osteochondral lesions of the talus (OLT) remains a challenge for foot and ankle surgeons. Currently, microfracture (MF) is the first-line operative treatment for small osteochondral lesions. However, the fibrous cartilage regenerated after MF is mechanically inferior to hyaline cartilage regeneration and is susceptible to deterioration over time. Thus, this meta-analysis aimed to elucidate the efficacy of platelet-rich plasma (PRP) augmentation compared with MF only or other adjuvant supplementations combined with the PRP + MF group (others) for the management of OLT. We searched the PubMed, Embase, Web of Science, and Cochrane Library databases for studies that compared the clinical outcomes of patients who underwent MF only and those who underwent PRP or other adjuvant materials such as hyaluronic acid or BST-CarGel. After the screening, four randomized controlled trials and one quasi-randomized controlled trial were included in this review. We used the following tools for clinical evaluation: the American Orthopedic Foot and Ankle Society (AOFAS) score, Ankle-Hindfoot Scale score, Visual Analog Scale (VAS) score for pain, and the Foot and Ankle Ability Measure (FAAM) score. The standardized mean difference (SMD) was used to analyze the differences in outcomes between groups. Patients in the PRP + MF group had superior final VAS and AOFAS scores to the MF only group. (both p < 0.01) However, no significant improvements between baseline and final follow-up were noted in either score. In addition, there was no remarkable difference in the overall FAAM pain measures between the two groups. The PRP + MF and others groups revealed no significant effect differences in the clinical scores. The results of this analysis suggest that PRP + MF would be more favorable and effective than MF only or additional adjuvant supplementation.
Collapse
Affiliation(s)
| | | | - Hyun-Gyu Seok
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (I.W.); (J.J.P.)
| |
Collapse
|
12
|
Alcaide-Ruggiero L, Molina-Hernández V, Morgaz J, Fernández-Sarmiento JA, Granados MM, Navarrete-Calvo R, Pérez J, Quirós-Carmona S, Carrillo JM, Cugat R, Domínguez JM. Particulate cartilage and platelet-rich plasma treatment for knee chondral defects in sheep. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-022-07295-7. [PMID: 36598512 DOI: 10.1007/s00167-022-07295-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Articular cartilage is vulnerable to multiple types of damage and it has limited reparative and regenerative capacities due to its absence of vascularity. Although a large number of therapeutic strategies exist to treat chondral defects, they have some limitations, such as fibrocartilage formation. Therefore, the goal of the present study was to evaluate the chondrogenic regenerative properties of an autologous-made matrix of particulated cartilage and platelet-rich plasma (PACI + PRP) implantation for the treatment of full-thickness chondral defects in sheep. METHODS A full-thickness 8 mm diameter cartilage defect was created in the weight-bearing area of the medial femoral condyle in both knees of 16 sheep. The right knees of all animals were treated with particulated autograft cartilage implantation and platelet-rich plasma, while the left knees were injected with Ringer's lactate solution or hyaluronic acid. The sheep were killed 9 or 18 months after surgery. Macroscopic evaluations were performed using three different scoring systems, and histopathological evaluations were performed using a modified scoring system based on different scoring systems. RESULTS The PACI + PRP groups showed statistically significant differences in the percentage of defect repair and chondrocytes in the newly formed cartilage tissue at 18 months compared to 9 months. CONCLUSIONS The results suggest that macroscopic appearance, histological structure and chondrocyte repair were improved when using PACI + PRP treatment for chondral defects, producing an outcome similar to the surrounding healthy cartilage. PACI + PRP is a totally autologous, easy, and unexpensive treatment that can be performed in one-step procedure and is useful as a therapeutic option for knee chondral defects.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Fundación García Cugat para Investigación Biomédica, Barcelona, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain.
| | - Juan Morgaz
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | | | - María M Granados
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Rocío Navarrete-Calvo
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Setefilla Quirós-Carmona
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José M Carrillo
- Fundación García Cugat para Investigación Biomédica, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Ramón Cugat
- Fundación García Cugat para Investigación Biomédica, Barcelona, Spain.,Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, Barcelona, Spain
| | - Juan M Domínguez
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Fundación García Cugat para Investigación Biomédica, Barcelona, Spain
| |
Collapse
|
13
|
Talebi Jouybari M, Fani N, Jahangir S, Bagheri F, Golru R, Taghiyar L. Validation of Tissue-Engineered Constructs: Preclinical and Clinical Studies. CARTILAGE: FROM BIOLOGY TO BIOFABRICATION 2023:491-527. [DOI: 10.1007/978-981-99-2452-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Sax OC, Chen Z, Mont MA, Delanois RE. The Efficacy of Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis Symptoms and Structural Changes: A Systematic Review and Meta-Analysis. J Arthroplasty 2022; 37:2282-2290.e2. [PMID: 35537610 DOI: 10.1016/j.arth.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) usage in orthopedics continues to rise, despite guidelines suggesting non-superiority to comparative cohorts. Therefore, we performed a systematic review and meta-analysis on PRP efficacy using two clinical assessments: (1) Visual Analog Scale and (2) Western Ontario and McMaster Universities Osteoarthritis Index. We assessed consistency and clinical relevancy by determining study heterogeneity (eg, sample sizes, ages, body mass index, arthritic severities, etc.). Comparative cohorts were: (A) hyaluronic acid (HA); (B) corticosteroid (CS); (C) normal saline (NS); and (D) exercise therapy. We performed sub-analyses of structural changes assessed on ultrasound, radiograph, or magnetic resonance imaging . METHODS We utilized PubMed, Cochrane Library, and Embase databases up to December 1, 2021, according to Preferred Reporting Items for Systematic-Reviews and Meta-Analyses guidelines. Twenty-four studies met criteria, with comparisons to: HA (n = 11); CS (n = 6); NS (n = 5); and exercise therapy (n = 3). Seven studies assessed structural changes. Evaluations utilized a methodological scoring system. I2 statistics and forest plots pooled analyses and delineated study results. RESULTS PRP led to Visual Analog Scale and Western Ontario and McMaster Universities Osteoarthritis Index improvements in most studies when compared to HA, CS, and NS (P ≤ .05). Comparison to exercise therapy resulted in inconclusive findings (P ≥ .05). However, substantial heterogeneity (I2 ≥ 76%) was reported due to study variability. No differences were found when assessing structural changes or cartilage thickness by magnetic resonance imaging (standardized mean difference -0.01 [-0.19, 0.18], P = .91). CONCLUSIONS PRP may be associated with pain and functional improvements but was not clinically relevant (inconsistent study- and patient-metrics). In addition, PRP did not confer superiority when assessing knee-related structural changes.
Collapse
Affiliation(s)
- Oliver C Sax
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Zhongming Chen
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Michael A Mont
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Ronald E Delanois
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| |
Collapse
|
15
|
Infiltration nach chirurgischer Knorpeltherapie. ARTHROSKOPIE 2022. [DOI: 10.1007/s00142-022-00561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Roseti L, Grigolo B. Current concepts and perspectives for articular cartilage regeneration. J Exp Orthop 2022; 9:61. [PMID: 35776217 PMCID: PMC9249961 DOI: 10.1186/s40634-022-00498-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Articular cartilage injuries are common in the population. The increment in the elderly people and active life results in an increasing demand for new technologies and good outcomes to satisfy longer and healthier life expectancies. However, because of cartilage's low regenerative capacity, finding an efficacious treatment is still challenging for orthopedics. Since the pioneering studies based on autologous cell transplantation, regenerative medicine has opened new approaches for cartilage lesion treatment. Tissue engineering combines cells, biomaterials, and biological factors to regenerate damaged tissues, overcoming conventional therapeutic strategies. Cells synthesize matrix structural components, maintain tissue homeostasis by modulating metabolic, inflammatory, and immunologic pathways. Scaffolds are well acknowledged by clinicians in regenerative applications since they provide the appropriate environment for cells, can be easily implanted, reduce surgical morbidity, allow enhanced cell proliferation, maturation, and an efficient and complete integration with surrounding articular cartilage. Growth factors are molecules that facilitate tissue healing and regeneration by stimulating cell signal pathways. To date, different cell sources and a wide range of natural and synthetic scaffolds have been used both in pre-clinical and clinical studies with the aim to find the suitable solution for recapitulating cartilage microenvironment and inducing the formation of a new tissue with the biochemical and mechanical properties of the native one. Here, we describe the current concepts for articular cartilage regeneration, highlighting the key actors of this process trying to identify the best perspectives.
Collapse
Affiliation(s)
- Livia Roseti
- IRCCS Istituto Ortopedico Rizzoli Bologna, Bologna, Italy
| | | |
Collapse
|
17
|
Mosley C, Edwards T, Romano L, Truchetti G, Dunbar L, Schiller T, Gibson T, Bruce C, Troncy E. Proposed Canadian Consensus Guidelines on Osteoarthritis Treatment Based on OA-COAST Stages 1–4. Front Vet Sci 2022; 9:830098. [PMID: 35558892 PMCID: PMC9088681 DOI: 10.3389/fvets.2022.830098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The Canadian consensus guidelines on OA treatment were created from a diverse group of experts, with a strong clinical and/or academic background in treating OA in dogs. The document is a summary of the treatment recommendations made by the group, with treatments being divided into either a core or secondary recommendation. Each treatment or modality is then summarized in the context of available research based support and clinical experience, as the treatment of OA continues to be a multimodal and commonly a multidisciplinary as well as individualized approach. The guidelines aim to help clinicians by providing clear and clinically relevant information about treatment options based on COAST defined OA stages 1–4.
Collapse
Affiliation(s)
- Conny Mosley
- Elanco Animal Health, Mississauga, ON, Canada
- VCA Canada, 404 Veterinary Emergency and Referral Hospital, Newmarket, ON, Canada
- *Correspondence: Conny Mosley
| | - Tara Edwards
- VCA Canada, Central Victoria Veterinary Hospital, Victoria, BC, Canada
| | - Laura Romano
- VCA Canada, Centra Victoria Veterinary Hospital, Victoria, BC, Canada
| | | | | | - Teresa Schiller
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tom Gibson
- Grand River Veterinary Surgical Services; Adjunct Faculty OVC, Mississauga, ON, Canada
| | - Charles Bruce
- Pulse Veterinary Specialists and Emergency, Sherwood Park, AB, Canada
| | - Eric Troncy
- Faculté de médecine vétérinaire, Université de Montréal, Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Montreal, QC, Canada
| |
Collapse
|
18
|
Garbin LC, Contino EK, Olver CS, Frisbie DD. A safety evaluation of allogeneic freeze-dried platelet-rich plasma or conditioned serum compared to autologous frozen products equivalents in equine healthy joints. BMC Vet Res 2022; 18:141. [PMID: 35436878 PMCID: PMC9014566 DOI: 10.1186/s12917-022-03225-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hemoderivatives such as autologous conditioned serum (ACS) and platelet-rich plasma (PRP) have been used as potential disease-modifying therapies in musculoskeletal disorders such as osteoarthritis (OA). These therapies are based on the delivery of multiple growth factors and anti-inflammatory cytokines that are known to participate in inflammatory processes. The variability of cytokine content due to the autologous nature of the product, the non-availability for immediate use and need for storage at low temperatures are limitations for its use in the field. An allogeneic freeze-dried conditioned serum (CS) and PRP would provide field clinicians with a more practical approach to use such products in daily practice. Based on in vitro preliminary data, this experimental study aimed to test the in vivo safety of allogeneic freeze-dried CS and PRP in healthy joints, using the horse as a model. Results Eight horses were randomly assigned and treated with PRP or CS. Horses had three joints injected with ALLO-FD PRP or CS, and three contralateral joints injected with the AUTO version of the same product, by a blinded clinician. Horses were evaluated clinically, and had synovial fluid collected at different time points and evaluated for cell content, PGE2 and protein. Both CS and PRP products triggered a self-limiting and mild inflammatory response in equine healthy joints. This was indicated by the transient increase in nucleated cell count, PGE2 and total protein in synovial fluid. This mild inflammatory response did not result in significant lameness and was not different among the groups. Conclusions The allogeneic freeze-dried PRP and CS showed to be overall safe and not dissimilar compared to their autologous frozen version in equine healthy joints. Further studies are necessary to evaluate the modulatory effects of these therapies in a clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03225-4.
Collapse
Affiliation(s)
- Livia Camargo Garbin
- Equine Orthopaedic Research Center, Colorado State University, 300 West Drake Road, , Fort Collins, CO, 80523, USA.,Present Address: Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, 30602, Athens, GA, USA
| | - Erin K Contino
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, 2350 Drive, Fort Collins, CO, 80523, USA
| | - Christine S Olver
- Veterinary Diagnostic Laboratory, Clinical Pathology Section, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - David D Frisbie
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, 2350 Drive, Fort Collins, CO, 80523, USA.
| |
Collapse
|
19
|
Nowaczyk A, Szwedowski D, Dallo I, Nowaczyk J. Overview of First-Line and Second-Line Pharmacotherapies for Osteoarthritis with Special Focus on Intra-Articular Treatment. Int J Mol Sci 2022; 23:1566. [PMID: 35163488 PMCID: PMC8835883 DOI: 10.3390/ijms23031566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) can be defined as the result of pathological processes of various etiologies leading to damage to the articular structures. Although the mechanism of degenerative changes has become better understood due to the plethora of biochemical and genetic studies, the drug that could stop the degenerative cascade is still unknown. All available forms of OA therapy are based on symptomatic treatment. According to actual guidelines, comprehensive treatment of OA should always include a combination of various therapeutic options aimed at common goals, which are pain relief in the first place, and then the improvement of function. Local treatment has become more common practice, which takes place between rehabilitation and pharmacological treatment in the hierarchy of procedures. Only in the case of no improvement and the presence of advanced lesions visible in imaging tests, should surgery be considered. Currently, an increasing number of studies are being published suggesting that intra-articular injections may be as effective or even more effective than non-steroidal anti-inflammatory drugs (NSAIDs) and result in fewer systemic adverse events. The most commonly used preparations are hyaluronic acid (HA), glucocorticosteroids (GS), and also platelet-rich plasma (PRP) in recent years. This review aims to present the mechanism of action and clinical effectiveness of different pharmacological options in relieving pain and improving functions in OA as well as the emerging approach in intra-articular treatment with PRP.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, LudwikRydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Dawid Szwedowski
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87-100 Toruń, Poland;
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
| | - Ignacio Dallo
- Unit of Biological Therapies, SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, 41013 Seville, Spain;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
20
|
Liu Y, Shah KM, Luo J. Strategies for Articular Cartilage Repair and Regeneration. Front Bioeng Biotechnol 2022; 9:770655. [PMID: 34976967 PMCID: PMC8719005 DOI: 10.3389/fbioe.2021.770655] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is an avascular tissue, with limited ability to repair and self-renew. Defects in articular cartilage can induce debilitating degenerative joint diseases such as osteoarthritis. Currently, clinical treatments have limited ability to repair, for they often result in the formation of mechanically inferior cartilage. In this review, we discuss the factors that affect cartilage homeostasis and function, and describe the emerging regenerative approaches that are informing the future treatment options.
Collapse
Affiliation(s)
- Yanxi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Karan M Shah
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Tang Y, Wang H, Sun Y, Jiang Y, Fang S, Kan Z, Lu Y, Liu S, Zhou X, Li Z. Using Platelet-Rich Plasma Hydrogel to Deliver Mesenchymal Stem Cells into Three-Dimensional PLGA Scaffold for Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2021; 4:8607-8614. [PMID: 35005939 DOI: 10.1021/acsabm.1c01160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthetic biodegradable polyester-based rigid porous scaffolds and cell-laden hydrogels have been separately employed as therapeutic modality for cartilage repair. However, the synthetic rigid scaffolds alone may be limited due to the inherent lack of bioactivity for cartilage regeneration, while the hydrogels have insufficient mechanical properties that are not ideal for load-bearing cartilage applications. In the present study, a hybrid construct was designed to merge the advantage of 3D-printed rigid poly(lactic-co-glycolic acid) (PLGA) scaffolds with cell-laden platelet-rich plasma (PRP) hydrogels that can release growth factors to regulate the tissue healing process. PRP hydrogels potentially achieved the effective delivery of mesenchymal stem cells (MSCs) into PLGA scaffolds. This hybrid construct could obtain adequate mechanical properties and independently provide MSCs with appropriate clues for proliferation and differentiation. Real-time gene expression analysis showed that PRP stimulated both chondrogenic and osteogenic differentiation of MSC seeding into PLGA scaffolds. Finally, the hybrid constructs were implanted into rabbits to simultaneously regenerate both articular cartilage and subchondral bone within osteochondral defects. Our findings suggest that this unique hybrid system could be practically applied for osteochondral regeneration due to its capacity for cell transportation, growth factors release, and excellent mechanical strength, which would greatly contribute to the progress of cartilage tissue engineering.
Collapse
Affiliation(s)
- Ying Tang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huaping Wang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yilin Sun
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Jiang
- Hematology Department, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Sha Fang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ze Kan
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingxi Lu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shenghou Liu
- Department of Orthopaedics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xianfeng Zhou
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
22
|
Shukla RV, Mody H, Gupte SC, Ghosh K. Regulated upon activation, normal T cells expressed and secreted (CCL5) in platelet concentrate: Role of mode of preparation and duration of storage. Asian J Transfus Sci 2021; 15:189-194. [PMID: 34908753 PMCID: PMC8628231 DOI: 10.4103/ajts.ajts_107_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/31/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND OBJECTIVES: Platelet concentrates (PCs) can be prepared in several different ways, and they can be stored over few days before the use. Regulated on activation, normal T cells expressed and secreted (RANTES) levels in these concentrates may vary depending on the type of preparation and duration of storage of this component. We measured RANTES levels in platelet supernatants in different preparations and with different storage duration. MATERIALS AND METHODS: Fifteen PCs were prepared by platelet-rich plasma (PRP) and buffy coat (BC) method each. Forty-two single donor platelets (SDPs) were prepared using cell separators Cobe Spectra, Trima Accel, and Amicus. Filtered PCs were prepared using labside and bedside filters. The supernatants were collected after 1, 18, 65, and 112 h of preparation. SDP samples were taken on the 0 day, 3rd day, and 5th day. In filtered PC, pre- and post-filtration samples were taken, and aliquots were frozen at − 56°C for the measurement of RANTES. RESULTS: RANTES at 1 h was 1210 ± 560 pg/ml in PRP-PC, 1384 ± 463 pg/ml in BC-PC. At 112 h, 1617 ± 451 pg/ml and 1949 ± 134 pg/ml, respectively. In SDP, 0-day level was 1850 ± 278 pg/ml and >2000 pg/ml on 5th day. In prestorage, filtered PC RANTES was 1035 ± 496 pg/ml, and in the poststorage sample, it was 310 ± 508 pg/ml. With bedside filters, presample showed 1243 ± 832 pg/ml and postsample showed 556 ± 748 pg/ml. CONCLUSION: The concentration of RANTES increased continuously from 1 h to 5 days of storage in all PCs. After 65 h, BC-PC showed higher levels of RANTES compared to PRP-PC. Filtered PRP-PCs appear to be the best in terms of low RANTES to prevent allergic reactions and cultures negative.
Collapse
Affiliation(s)
- Rinku V Shukla
- Surat Raktadan Kendra and Research Centre, Surat, Gujarat, India
| | - H Mody
- Surat Raktadan Kendra and Research Centre, Surat, Gujarat, India
| | | | - Kanjaksha Ghosh
- Surat Raktadan Kendra and Research Centre, Surat, Gujarat, India
| |
Collapse
|
23
|
Kucharik MP, Abraham PF, Nazal MR, Varady NH, Eberlin CT, Meek WM, Naessig SA, Martin SD. Treatment of Full-Thickness Acetabular Chondral Flaps During Hip Arthroscopy: Bone Marrow Aspirate Concentrate Versus Microfracture. Orthop J Sports Med 2021; 9:23259671211059170. [PMID: 34901293 PMCID: PMC8655470 DOI: 10.1177/23259671211059170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
Background: The optimal treatment strategy for patients with full-thickness chondral flaps undergoing hip arthroscopy is controversial. Purpose: To compare functional outcomes of patients who underwent bone marrow aspirate concentrate (BMAC) application with those of patients who underwent microfracture. Study Design: Cohort study; Level of evidence, 3. Methods: This was a retrospective case series of prospectively collected data on patients who underwent arthroscopic acetabular labral repair by 1 surgeon between June 2014 and April 2020. The inclusion criteria for this study were age ≥18 years, preoperative radiographs of the pelvis, arthroscopic acetabular labral repair, exposed subchondral bone with overlying chondral flap seen at the time of hip arthroscopy, microfracture or BMAC to address this lesion, and completed patient-reported outcome measures (PROMs) (International Hip Outcome Tool–33 [iHOT-33], Hip Outcome Score–Activities of Daily Living [HOS-ADL], Hip Outcome Score–Sports Subscale [HOS-Sport], modified Harris Hip Score [mHHS], and visual analog scale [VAS] for pain) at enrollment and 12-month follow-up. Clinical outcomes were assessed using PROM scores. Results: A total of 81 hips with full-thickness chondral flaps were included in this study: 50 treated with BMAC and 31 treated with microfracture. There were no significant differences between groups in age, sex, body mass index, tear size, radiographic osteoarthritis, or radiographic femoroacetabular impingement. In the BMAC cohort, all PROM scores improved significantly from preoperatively to follow-up: 41.7 to 75.6 for iHOT-33, 67.6 to 91.0 for HOS-ADL, 41.5 to 72.3 for HOS-Sport, 59.4 to 87.2 for mHHS, and 6.2 to 2.2 for VAS pain (P < .001 for all). In the microfracture cohort, the score improvements were 48.0 to 65.1 for iHOT-33 (P = .001), 80.5 to 83.3 for HOS-ADL (P = .275), 59.2 to 62.4 for HOS-Sport (P = .568), 70.4 to 78.3 for mHHS (P = .028), and 4.9 to 3.6 for VAS pain (P = .036). Regarding clinically meaningful outcomes, 77.6% of the BMAC group and 50.0% of the microfracture group met the minimal clinically important difference for iHOT-33 at the 12-month follow-up (P = .013). Conclusion: Patients with full-thickness chondral flaps at the time of hip arthroscopy experienced greater improvements in functional outcome scores at the 12-month follow-up when treated with BMAC as opposed to microfracture.
Collapse
Affiliation(s)
- Michael P Kucharik
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Mass General Brigham, Boston, Massachusetts, USA
| | - Paul F Abraham
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Mark R Nazal
- Department of Orthopaedic Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Nathan H Varady
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Christopher T Eberlin
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Mass General Brigham, Boston, Massachusetts, USA
| | - Wendy M Meek
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Mass General Brigham, Boston, Massachusetts, USA
| | - Sara A Naessig
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Mass General Brigham, Boston, Massachusetts, USA
| | - Scott D Martin
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Mass General Brigham, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Satin AM, Norelli JB, Sgaglione NA, Grande DA. Effect of Combined Leukocyte-Poor Platelet-Rich Plasma and Hyaluronic Acid on Bone Marrow-Derived Mesenchymal Stem Cell and Chondrocyte Metabolism. Cartilage 2021; 13:267S-276S. [PMID: 31282189 PMCID: PMC8804819 DOI: 10.1177/1947603519858739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Given the potential applications of combined biologics, the authors sought to evaluate the in vitro effect of combined platelet-rich plasma (PRP) and hyaluronic acid (HA) on cellular metabolism. DESIGN Bone marrow-derived mesenchymal stem cells (BMSCs) and chondrocytes were obtained from the femurs of Sprague-Dawley rats. An inflammatory model was created by adding 10 ng/mL interleukin-1-beta to culture media. Non-crosslinked high-molecular-weight HA, activated-PRP (aPRP), and unactivated-PRP (uPRP) were tested. Cellular proliferation and gene expression were measured at 1 week. Genes of interest included aggrecan, matrix metalloproteinase (MMP)-9, and MMP-13. RESULTS Combined uPRP-HA was associated with a significant increase in chondrocyte and BMSC proliferation at numerous preparations. There was a trend of increased chondrocyte aggrecan expression with combined PRP-HA. The greatest and only significant decrease in BMSC MMP-9 expression was observed with combined PRP-HA. While a significant reduction of BMSC MMP-13 expression was seen with PRP and HA-alone, a greater reduction was observed with PRP-HA. MMP-9 chondrocyte expression was significantly reduced in cells treated with PRP-HA. PRP-alone and HA-alone at identical concentrations did not result in a significant reduction. The greatest reduction of MMP-13 chondrocyte expression was observed in chondrocytes plus combined PRP-HA. CONCLUSIONS We demonstrated a statistically significant increase in BMSC and chondrocyte proliferation and decreased expression of catabolic enzymes with combined PRP-HA. These results demonstrate the additive in vitro effect of combined PRP-HA to stimulate cellular growth, restore components of the articular extracellular matrix, and reduce inflammation.
Collapse
Affiliation(s)
- Alexander M. Satin
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
| | - Jolanta B. Norelli
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nicholas A. Sgaglione
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel A. Grande
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
25
|
Salzmann GM, Ossendorff R, Gilat R, Cole BJ. Autologous Minced Cartilage Implantation for Treatment of Chondral and Osteochondral Lesions in the Knee Joint: An Overview. Cartilage 2021; 13:1124S-1136S. [PMID: 32715735 PMCID: PMC8808955 DOI: 10.1177/1947603520942952] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cartilage defects in the knee are being diagnosed with increased frequency and are treated with a variety of techniques. The aim of any cartilage repair procedure is to generate the highest tissue quality, which might correlate with improved clinical outcomes, return-to-sport, and long-term durability. Minced cartilage implantation (MCI) is a relatively simple and cost-effective technique to transplant autologous cartilage fragments in a single-step procedure. Minced cartilage has a strong biologic potential since autologous, activated non-dedifferentiated chondrocytes are utilized. It can be used both for small and large cartilage lesions, as well as for osteochondral lesions. As it is purely an autologous and homologous approach, it lacks a significant regulatory oversight process and can be clinically adopted without such limitations. The aim of this narrative review is to provide an overview of the current evidence supporting autologous minced cartilage implantation.
Collapse
Affiliation(s)
- Gian M. Salzmann
- Gelenkzentrum Rhein-Main, Wiesbaden,
Germany,Lower Extremity Orthopaedics,
Musculoskeletal Centre, Schulthess Clinic, Zurich, Switzerland
| | - Robert Ossendorff
- Clinic for Orthopaedics and Trauma
Surgery, University Hospital Bonn, Bonn, Germany,Robert Ossendorff, Clinic for Orthopaedics
and Trauma Surgery, University Hospital Bonn, Venusberg Campus 1, Bonn, 53127,
Germany.
| | - Ron Gilat
- Midwest Orthopaedics at Rush, Rush
University Medical Center, Chicago, IL, USA
| | - Brian J. Cole
- Midwest Orthopaedics at Rush, Rush
University Medical Center, Chicago, IL, USA
| |
Collapse
|
26
|
Solanki K, Shanmugasundaram S, Shetty N, Kim SJ. Articular cartilage repair & joint preservation: A review of the current status of biological approach. J Clin Orthop Trauma 2021; 22:101602. [PMID: 34631411 PMCID: PMC8488240 DOI: 10.1016/j.jcot.2021.101602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 01/03/2023] Open
Abstract
The articular cartilage of the joint is the thin viscoelastic layer of the connective tissue. It has a unique anatomy and physiology, which makes the repair of the articular cartilage damage more difficult and challenging due to its limited healing capacity. Increasing knowledge regarding the importance of articular cartilage for joint preservation has led to increased attention on early identification of cartilage damage as well as degeneration in order to delay osteoarthritis. There are various treatment modalities ranging from preventive management, physical therapy, pharmacological, non-pharmacological and surgical treatments exist in current literature. However most of the studies have limited long term follow up and mainly consists of small case series and case reports. This is an up to date concise review discussing the available management options for articular cartilage damage starting to lifestyle modification to pharmacotherapy, physiotherapy, and osteobiologics till various joint preservation techniques that have been in use currently.
Collapse
Affiliation(s)
- Ketansinh Solanki
- Department of Arthroscopy and Trauma, Soundarapandian Bone and Joint Hospital, Chennai, India
| | - Saseendar Shanmugasundaram
- Department of Arthroscopy and Cartilage Reconstruction, Apollo Hospital, Muscat, Oman
- Corresponding author.
| | - Neha Shetty
- Kent Knee Unit, Spire Alexandra Hospital, Chatham, Kent, ME5 9PG, UK
| | - Seok-Jung Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
27
|
Zahir H, Dehghani B, Yuan X, Chinenov Y, Kim C, Burge A, Bandhari R, Nemirov D, Fava P, Moley P, Potter H, Nguyen J, Halpern B, Donlin L, Ivashkiv L, Rodeo S, Otero M. In vitro responses to platelet-rich-plasma are associated with variable clinical outcomes in patients with knee osteoarthritis. Sci Rep 2021; 11:11493. [PMID: 34075069 PMCID: PMC8169703 DOI: 10.1038/s41598-021-90174-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Autologous blood-derived products such as platelet-rich plasma (PRP) are widely used to treat musculoskeletal conditions, including knee osteoarthritis (OA). However, the clinical outcomes after PRP administration are often variable, and there is limited information about the specific characteristics of PRP that impact bioactivity and clinical responses. In this study, we aimed to develop an integrative workflow to evaluate responses to PRP in vitro, and to assess if the in vitro responses to PRP are associated with the PRP composition and clinical outcomes in patients with knee OA. To do this, we used a coculture system of macrophages and fibroblasts paired with transcriptomic analyses to comprehensively characterize the modulation of inflammatory responses by PRP in vitro. Relying on patient-reported outcomes and achievement of minimal clinically important differences in OA patients receiving PRP injections, we identified responders and non-responders to the treatment. Comparisons of PRP from these patient groups allowed us to identify differences in the composition and in vitro activity of PRP. We believe that our integrative workflow may enable the development of targeted approaches that rely on PRP and other orthobiologics to treat musculoskeletal pathologies.
Collapse
Affiliation(s)
- Habib Zahir
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,New York Institute of Technology, Old Westbury, NY, USA
| | - Bijan Dehghani
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - Xiaoning Yuan
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,NewYork-Presbyterian Hospital, New York, NY, USA
| | - Yurii Chinenov
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,The David Z. Rosensweig Genomics Research Center, New York, NY, USA
| | - Christine Kim
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,Columbia University, New York, NY, USA
| | - Alissa Burge
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - Reyna Bandhari
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - Daniel Nemirov
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - Patrick Fava
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - Peter Moley
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,HSS Center for Regenerative Medicine, New York, NY, USA
| | - Hollis Potter
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - Joseph Nguyen
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - Brian Halpern
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,HSS Center for Regenerative Medicine, New York, NY, USA
| | - Laura Donlin
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,Derfner Foundation Precision Medicine Laboratory, New York, NY, USA
| | - Lionel Ivashkiv
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,The David Z. Rosensweig Genomics Research Center, New York, NY, USA
| | - Scott Rodeo
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.,HSS Center for Regenerative Medicine, New York, NY, USA
| | - Miguel Otero
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA. .,HSS Center for Regenerative Medicine, New York, NY, USA. .,Derfner Foundation Precision Medicine Laboratory, New York, NY, USA.
| |
Collapse
|
28
|
Mou TC, Feng JY. Research advances in cartilage stem cells markers and induced differentiation. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:108-114. [PMID: 33723946 DOI: 10.7518/hxkq.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cartilage stem cells (CSCs) are cells that self-proliferate, have surface antigen expression, and have multidirectional differentiation potential in the articular cartilage. CSCs, as an ideal source of stem cells, has a good application prospect in stem cell therapy. This article reviews the CSCs markers, cartilage differentiation signaling pathway, and clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Ting-Chen Mou
- Dept. of Stomatological, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Jian-Ying Feng
- College of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
29
|
Focal Chondral and Subchondral Bone Lesions of the Knee: Current Evidence for the Use of Biologic Treatment. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2019.150716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Yausep OE, Madhi I, Trigkilidas D. Platelet rich plasma for treatment of osteochondral lesions of the talus: A systematic review of clinical trials. J Orthop 2020; 18:218-225. [PMID: 32071508 PMCID: PMC7013135 DOI: 10.1016/j.jor.2020.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The ankle is the second most frequent site, following the knee, that requires cartilage repair. Osteochondral lesion of the talus (OLT) is common among athletes and is a result of talar cartilage detachment with or without subchondral bone fragmentation after a traumatic event. Treatment strategies for OLT can be classified as reparative or replacement interventions, with the former taking precedence. Recent studies show that the growth factors and bioactive components in platelet rich plasma (PRP) could improve cartilage regeneration. The prospect of using autologous blood to obtain a product that could enhance regeneration in damaged cartilage has been regarded as innovative, as it could circumvent the need for a replacement, and potentially join the ranks of first line reparative interventions against cartilage diseases. METHODS Literature searches were performed across seven search engines for randomized controlled trials using PRP to treat patients with OLT. Outcomes extracted included ankle function and pain measures. Level of evidence and methodological quality were evaluated using relevant guidelines. RESULTS Four studies met the eligibility criteria and were systematically appraised. Two studies scored Level 1 and 2 scored Level 2 based on the LOE assessment. MQOE evaluation revealed one study with excellent quality, and three with good quality. Overall results showed that PRP, as an adjunct to microfracture surgery, significantly improved function and reduced pain compared to microfracture surgery alone. Intra-articular PRP injection also demonstrated significantly enhanced recovery of function, and decreased pain scores compared to HA. CONCLUSION PRP improves joint function, and reduces pain in patients with OLT regardless of the method of implementation. In addition, inter-study comparison demonstrated that patients that received surgery along with PRP injections improved more than those that received PRP only. The studies that corroborate this conclusion have high levels of evidence with satisfactory methodological quality. LEVEL OF EVIDENCE Level 2, systematic review of Level 1 and 2 studies.
Collapse
Affiliation(s)
| | - Imad Madhi
- Orthopedic Division, South Tyneside District Hospital, South Shields, United Kingdom
| | - Dionysios Trigkilidas
- Orthopedic Division, South Tyneside District Hospital, South Shields, United Kingdom
| |
Collapse
|
31
|
EFFECTIVENESS OF THE PLATELET-RICH PLASMA APPLICATION AT DIFFERENT SIMULATION PERIODS OF DEGENERATIVE DISC DISEASE IN RATS. WORLD OF MEDICINE AND BIOLOGY 2020. [DOI: 10.26724/2079-8334-2020-1-71-183-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Mehrabani D, Seghatchian J, Acker JP. Platelet rich plasma in treatment of musculoskeletal pathologies. Transfus Apher Sci 2019; 58:102675. [DOI: 10.1016/j.transci.2019.102675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Camargo Garbin L, McIlwraith CW, Frisbie DD. Evaluation of allogeneic freeze-dried platelet lysate in cartilage exposed to interleukin 1-β in vitro. BMC Vet Res 2019; 15:386. [PMID: 31675958 PMCID: PMC6824121 DOI: 10.1186/s12917-019-2118-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022] Open
Abstract
Background Platelet-rich plasma (PRP) as well as other platelet-derived products have been used as a potential disease-modifying treatment for musculoskeletal diseases, such as osteoarthritis (OA). The restorative properties of such products rely mainly on the high concentrations of growth factors, demonstrating encouraging results experimentally and clinically. Yet, the autologous blood-derived nature of the PRP product lead to limitations that precludes it’s widespread use. The main limitations for PRP use are; product variability, the need for minimum laboratory settings in most cases, and the need for storage at low temperatures to preserve its properties. Based on these limitations, the objective of this study was to investigate an allogeneic off-the-shelf platelet lysate (PL) in cartilage exposed to interleukin 1β (IL-1β). For this purpose, blood and cartilage were harvested from eight skeletally mature and healthy horses. Blood was processed into PL aliquots and divided into three groups (Frozen, Freeze-dried and Filtered freeze-dried), used in autologous and allogeneic conditions and in three different concentrations (1.5, 3 and 6-fold). Different PL preparations were then applied in cartilage culture with interleukin-1 beta and cultured for 10 days. Cartilage and media samples were collected and analyzed for total GAG and 35SO4-labeled GAG content. Results No significant differences between the controls and PL groups in cartilage and media were demonstrated. The effects of PL on cartilage matrix were concentration dependent and intermediate concentrations (3-fold) in PL showed increased 35SO4-labelled GAG in cartilage. Conclusion In conclusion, the allogeneic freeze-dried PL presented equivalent effects compared to frozen autologous PL. Intermediate platelet concentration on average demonstrated improved results, demonstrating less GAG loss compared to other concentrations.
Collapse
Affiliation(s)
- Livia Camargo Garbin
- Department of Clinical Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago.
| | - C Wayne McIlwraith
- C.Wayne McIlwraith Translational Medicine Institute, Orthopaedic Research Center, Colorado State University, 2350 Gillette Drive, Fort Collins, CO, 80523, USA
| | - David D Frisbie
- C.Wayne McIlwraith Translational Medicine Institute, Orthopaedic Research Center, Colorado State University, 2350 Gillette Drive, Fort Collins, CO, 80523, USA
| |
Collapse
|
34
|
Vinod E, Francis DV, Jacob T, Amirtham SM, Sathishkumar S, Kanthakumar P, Oommen V. Autologous platelet rich fibrin as a scaffold for chondrocyte culture and transplantation: An in vitro bovine study. J Clin Orthop Trauma 2019; 10:S26-S31. [PMID: 31700205 PMCID: PMC6823837 DOI: 10.1016/j.jcot.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/25/2019] [Indexed: 01/11/2023] Open
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College and Hospital, Vellore, 632002, India
- Centre for Stem Cell Research, Christian Medical College and Hospital, Vellore, 632002, India
| | - Deepak Vinod Francis
- Department of Anatomy, Christian Medical College and Hospital, Vellore, 632002, India
| | - Tripti Jacob
- Department of Anatomy, Christian Medical College and Hospital, Vellore, 632002, India
- Department of Anatomy, School of Medical Sciences, UNSW, Sydney, 2052, Australia
| | | | - Solomon Sathishkumar
- Department of Physiology, Christian Medical College and Hospital, Vellore, 632002, India
| | | | - Vinay Oommen
- Department of Physiology, Christian Medical College and Hospital, Vellore, 632002, India
| |
Collapse
|
35
|
Mitev K, Longurov A. Intra-articular Platelet-Rich Plasma Injections for Treating Knee Pain Associated with Articular Cartilage and Degenerative Meniscal Lesions. Open Access Maced J Med Sci 2019; 7:2484-2487. [PMID: 31666852 PMCID: PMC6814463 DOI: 10.3889/oamjms.2019.674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/04/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND: Platelet-rich plasma (PRP) is an autologous concentration of platelets that contain a large number of growth factors. These growth factors play a role in the regeneration, repair, and acceleration of the biochemical process, thereby reducing the pain associated with injuries of the articular cartilage and meniscus AIM: The purpose of this study is to evaluate the effect of the PRP method in the treatment of knee joint cartilage injuries and degenerative meniscus lesions as well as pain relief. MATERIAL AND METHODS: The process of obtaining PRP begins by taking 15 ml of blood from the patient with a special system called Arthrex Double Syringe system. The test tube is centrifuged at 4000 rpm for 5 minutes. From the separated plasma, 5-6 ml PRP is taken and prepared for application. PRP is administered intra-articularly. RESULTS: At the Jan Mitrev Clinic in Skopje in 2018, PRP procedures were performed on 126 patients, 56 (44.4%) of whom were male, and 70 (55.6%) were female. The patients were evaluated by the Tegner Lysholm Knee Scoring Scale (TLKSS) before applying 3 doses of PRP for 7 days as well as 3 and 6 months after the application of PRP. The results showed considerable improvement 3 months after the PRP application, and 6 months after the application the results remained approximately identical. CONCLUSION: The application of PRP in the field of medicine is widely applied, and it will continue to be because the understanding of PRP therapy is increasingly refined. This therapy represents a potential and latest method in short-term pain reduction, but additional studies are needed to prove its long-term effectiveness.
Collapse
Affiliation(s)
- Konstantin Mitev
- Zan Mitrev Clinic for Surgical Disease, Skopje, Republic of Macedonia.,University Goce Delchev, Faculty of Medical Sciences, Shtip, Republic of Macedonia
| | - Aleksandar Longurov
- University Goce Delchev, Faculty of Medical Sciences, Shtip, Republic of Macedonia
| |
Collapse
|
36
|
Wang C, Xu M, Guo W, Wang Y, Zhao S, Zhong L. Clinical efficacy and safety of platelet-rich plasma in arthroscopic full-thickness rotator cuff repair: A meta-analysis. PLoS One 2019; 14:e0220392. [PMID: 31356630 PMCID: PMC6663026 DOI: 10.1371/journal.pone.0220392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Arthroscopic repair of rotator cuff tears, although commonly performed, carries the risk of retears. Therefore, bioremediation techniques such as platelet-rich plasma injections have been used as adjuvant therapies. The clinical efficacy of platelet-rich plasma in the arthroscopic repair of full-thickness rotator cuff injury is controversial. We performed a meta-analysis to evaluate the clinical effectiveness and safety of platelet-rich plasma and provide evidence-based medical recommendations for selecting the proper clinical treatment plan for full-thickness rotator cuff injuries. METHODS A search for the terms "platelet-rich plasma" and "rotator cuff" was performed in the PubMed, EMBASE, and Cochrane Library databases using a computer. After conducting quality evaluations and data extraction, RevMan 5.3 software was used to combine the effect sizes, and the GRADEpro Guideline Development Tool was used to rate the level of evidence from aspects of functional score, pain score and retear rate. RESULTS Eight randomized controlled trials involving 566 patients were included. The long-term retear rate(RR = 0.96, 95% CI [0.52, 1.78], P = .89), Constant score(RR = 0.96, 95% CI [0.52, 1.78], P = .89), and Visual Analog Scale score for pain (SMD = -0.28, 95% CI [-0.60, 0.04], P = .08), as well as both the long-term and short-term Disabilities of the Arm, Shoulder, and Hand scores(SMD = -0.13, 95% CI [-0.44, 0.18], P = .41;SMD = -0.02, 95% CI [-0.40, 0.36], P = .93), were not significantly different between the platelet-rich plasma and control groups. However, the short-term retear rate(RR = 0.29, 95% CI [0.13, 0.65], P = .003) and Visual Analog Scale score (SMD = -0.41, 95% CI [-0.62, -0.19], P = .0002) were significantly lower, while the short-term Constant score(SMD = 0.37, 95% CI [0.19, 0.55], P < .0001) and short-term and long-term University of California at Los Angeles activity scores (SMD = 0.38, 95% CI [0.16, 0.60], P = .0008;SMD = 0.85, 95% CI [0.48, 1.22], P < .00001) were significantly higher, in the platelet-rich plasma group than in the control group. CONCLUSION Platelet-rich plasma injection can effectively improve the short-term outcomes following arthroscopic repair of full-thickness rotator cuff tears, thus reducing the rate of retears, alleviating pain, and improving patients' shoulder function. Specifically, the clinical outcomes are better with the use of platelet-rich plasma in single-row fixation than in other fixation techniques. Therefore, platelet-rich plasma injection can be recommended as an adjuvant therapy in single-row repair for improved short-term results.
Collapse
Affiliation(s)
- Chang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- College of Mathematics, Jilin University, Changchun, China
| | - Meng Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yaodong Wang
- School of Science,China University of Mining & Technology, Beijing, China
| | - Shishun Zhao
- College of Mathematics, Jilin University, Changchun, China
| | - Lei Zhong
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Johal H, Khan M, Yung SHP, Dhillon MS, Fu FH, Bedi A, Bhandari M. Impact of Platelet-Rich Plasma Use on Pain in Orthopaedic Surgery: A Systematic Review and Meta-analysis. Sports Health 2019; 11:355-366. [PMID: 31136726 DOI: 10.1177/1941738119834972] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CONTEXT Amid extensive debate, evidence surrounding the use of platelet-rich plasma (PRP) for musculoskeletal injuries has rapidly proliferated, and an overall assessment of efficacy of PRP across orthopaedic indications is required. OBJECTIVES (1) Does PRP improve patient-reported pain in musculoskeletal conditions? and (2) Do PRP characteristics influence its treatment effect? DATA SOURCES MEDLINE, EMBASE, Cochrane, CINAHL, SPORTDiscus, and Web of Science libraries were searched through February 8, 2017. Additional studies were identified from reviews, trial registries, and recent conferences. STUDY SELECTION All English-language randomized trials comparing platelet-rich therapy with a control in patients 18 years or older with musculoskeletal bone, cartilage, or soft tissue injuries treated either conservatively or surgically were included. Substudies of previously reported trials or abstracts and conference proceedings that lacked sufficient information to generate estimates of effect for the primary outcome were excluded. STUDY DESIGN Systematic review and meta-analysis. LEVEL OF EVIDENCE Level 1. DATA EXTRACTION All data were reviewed and extracted independently by 3 reviewers. Agreement was high between reviewers with regard to included studies. RESULTS A total of 78 randomized controlled trials (5308 patients) were included. A standardized mean difference (SMD) of 0.5 was established as the minimum for a clinically significant reduction in pain. A reduction in pain was associated with PRP at 3 months (SMD, -0.34; 95% CI, -0.48 to -0.20) and sustained until 1 year (SMD, -0.60; 95% CI, -0.81 to -0.39). Low- to moderate-quality evidence supports a reduction in pain for lateral epicondylitis (SMD, -0.69; 95% CI, -1.15 to -0.23) and knee osteoarthritis (SMD, -0.91; 95% CI, -1.41 to -0.41) at 1 year. PRP characteristics did not influence results. CONCLUSION PRP leads to a reduction in pain; however, evidence for clinically significant efficacy is limited. Available evidence supports the use of PRP in the management of lateral epicondylitis as well as knee osteoarthritis.
Collapse
Affiliation(s)
- Herman Johal
- Center for Evidence-Based Orthopaedics, Division of Orthopaedic Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Moin Khan
- Center for Evidence-Based Orthopaedics, Division of Orthopaedic Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Shu-Hang Patrick Yung
- Hong Kong Centre for Sports Medicine and Sports Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Mandeep S Dhillon
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Freddie H Fu
- Department of Orthopaedic Surgery, University of Pittsburgh Schools of the Health Sciences, UPMC Center for Sports Medicine, Pittsburgh, Pennsylvania
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mohit Bhandari
- Center for Evidence-Based Orthopaedics, Division of Orthopaedic Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Concentration of Chondrogenic Soluble Factors in Freshly Harvested Lipoaspirate. Ann Plast Surg 2019; 83:344-351. [PMID: 30994491 DOI: 10.1097/sap.0000000000001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cartilage tissue has a limited capacity for healing with the consequence that patients are often treated symptomatically until they become candidates for osteotomy or total joint replacement. Alternative biological therapies, for example, application of platelet-rich plasma and implantation of chondrocytes and mesenchymal stem cells, have emerged as a new treatment modality to repair articular cartilage. In addition, autologous fat transfer is performed for treatment of cartilage defects, example given, in osteoarthrosis, but several questions regarding basic biochemical properties of the transplant remain unanswered. Bone morphogenetic protein 4 (BMP4), matrix metalloproteinase (MMP)-8, cartilage oligomeric matrix protein (COMP), and chitinase-3-like protein 1 (CHI3L1) have been shown to be involved in chondrogenic regeneration and represent potential therapeutic agents for cartilage repair. However, no study regarding naturally occurring levels of these soluble factors in transplanted adipose tissue has yet been performed. METHODS To investigate the influence of age, body mass index, donor site, and sex on the concentration of BMP4, MMP-8, COMP, and CHI3L1 in freshly aspirated adipose tissue, their content was measured by means of enzyme-linked immunosorbent assay readings. RESULTS There were significant quantities of BMP4, MMP-8, COMP, and CHI3L1 (23.6, 249.9, 298.0, and 540.6 pg/mg, respectively) in the lipoaspirate harvested for transplantation. There was no correlation between the content of soluble factors and the patients' age or body mass index. Furthermore, the sex did not affect the amount of the investigated factors. However, there were significantly lower contents of BMP4, COMP, and CHI3L1 found in lipoaspirates harvested from the abdomen compared with nonabdominal donor sites. CONCLUSIONS Naturally occurring differences in the concentrations of the investigated soluble factors will favor certain donor sites for autologous fat transfer in the field of cartilage repair. Thus, increasing knowledge will enable researchers and clinicians to make autologous fat transfer procedures more reliable and efficient for treatment of articular cartilage defects.
Collapse
|
39
|
Yanasse RH, De Lábio RW, Marques L, Fukasawa JT, Segato R, Kinoshita A, Matsumoto MA, Felisbino SL, Solano B, Dos Santos RR, Payão SLM. Xenotransplantation of human dental pulp stem cells in platelet-rich plasma for the treatment of full-thickness articular cartilage defects in a rabbit model. Exp Ther Med 2019; 17:4344-4356. [PMID: 31186677 PMCID: PMC6507499 DOI: 10.3892/etm.2019.7499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Stem cells in platelet-rich plasma (PRP) scaffolds may be a promising treatment for cartilage repair. Human dental pulp stem cell (hDPSC) subpopulations have been identified to have substantial angiogenic, neurogenic and regenerative potential when compared with other stem cell sources. The present study evaluated the potential of hDPSCs in a PRP scaffold to regenerate full-thickness cartilage defects in rabbits. Full-thickness articular cartilage defects were created in the patellar groove of the femur of 30 rabbits allocated into three experimental groups: Those with an untreated critical defect (CTL), those treated with PRP (PRP) and those treated with stem cells in a PRP scaffold (PRP+SC). The patellar grooves of the femurs from the experimental groups were evaluated macroscopically and histologically at 6 and 12 weeks post-surgery. The synovial membranes were also collected and evaluated for histopathological analysis. The synovial lining cell layer was enlarged in the CTL group compared with the PRP group at 6 weeks (P=0.037) but not with the PRP+SC group. All groups exhibited low-grade synovitis at 6 weeks and no synovitis at 12 weeks. Notably, macroscopic grades for the area of articular cartilage repair for the PRP+SC group were significantly improved compared with those in the CTL (P=0.001) and PRP (P=0.049) groups at 12 weeks. Furthermore, histological scores (modified O'Driscoll scoring system) of the patellar groove articular cartilage in the PRP+SC and PRP groups, in which the articular cartilage was primarily hyaline-like, were significantly higher compared with those in the CTL group at 12 weeks (P=0.002 and P=0.007, respectively). The present results support the therapeutic use of hDPSCs for the treatment of full-thickness articular cartilage defects.
Collapse
Affiliation(s)
- Ricardo Hideki Yanasse
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Roger William De Lábio
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Leonardo Marques
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Josianne Tomazini Fukasawa
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Rosimeire Segato
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Angela Kinoshita
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Mariza Akemi Matsumoto
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Sergio Luis Felisbino
- Department of Morphology, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP 17519-050, Brazil
| | - Bruno Solano
- Center for Biotechnology and Cell Therapy, Monte Tabor Hospital São Rafael, Salvador, BA 17519-050, Brazil
| | - Ricardo Ribeiro Dos Santos
- Center for Biotechnology and Cell Therapy, Monte Tabor Hospital São Rafael, Salvador, BA 17519-050, Brazil
| | - Spencer Luiz Marques Payão
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil.,Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| |
Collapse
|
40
|
Domínguez Pérez JM, Fernández-Sarmiento JA, Aguilar García D, Granados Machuca MDM, Morgaz Rodríguez J, Navarrete Calvo R, Pérez Arévalo J, Carrillo Poveda JM, Alentorn-Geli E, Laiz Boada P, Cugat Bertomeu R. Cartilage regeneration using a novel autologous growth factors-based matrix for full-thickness defects in sheep. Knee Surg Sports Traumatol Arthrosc 2019; 27:950-961. [PMID: 30132050 DOI: 10.1007/s00167-018-5107-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the chondrogenic-regenerative properties of a novel autologous-made matrix composed of hyaline cartilage chips combined with a growth factors-based clot for full-thickness defects in sheep. METHODS A full-thickness, 8-mm diameter cartilage defect was created in the weight-bearing area of the medial femoral condyle in 6 sheep. Treatment consisted of surgical implantation of an autologous-based matrix of hyaline cartilage chips combined with a clot of plasma poor in platelets and intraarticular injection of plasma rich in growth factors. Outcome measures at 1, 3 and 6 months included macroscopic International Cartilage Repair Society (ICRS) score, histological and immunohistochemical analysis for collagen expression, and transmission electron microscopy study. RESULTS The 6-month macroscopic evaluation showed nearly normal (11.1 ± 0.7) cartilage repair assessment. The ICRS score was significantly higher at 6 months compared to 3 months (5.5 ± 1.3; p < 0.0001) and 1 (1.1 ± 0.4; p < 0.0001) month. At 6 months, hyaline cartilage tissue filling the defect was observed with adequate integration of the regenerated cartilage at the surrounding healthy cartilage margin. At 6 months, mature chondrons and cartilage matrix contained collagen fibers with masked fibrillary structure, and the expression of collagen in the newly formed cartilage was similar in intensity and distribution pattern compared to the healthy adjacent cartilage. CONCLUSIONS This novel treatment enhanced chondrogenesis and regenerated hyaline cartilage at 6 months with nearly normal macroscopic ICRS assessment. Histological analysis showed equivalent structure to mature cartilage tissue in the defect and a collagen expression pattern in the newly formed cartilage similar to that found in adjacent healthy articular cartilage. The present technique may have clinical application for chondral injuries in humans because this procedure is cheap (no need for allograft, or expensive instrumentation/biomaterials/techniques), easy and fast-performing through a small arthrotomy, and safe (no rejection possibility because the patients' own tissue, cells, and plasma are used).
Collapse
Affiliation(s)
- Juan Manuel Domínguez Pérez
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain. .,Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.
| | - José Andrés Fernández-Sarmiento
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain.,Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain
| | - Daniel Aguilar García
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - María Del Mar Granados Machuca
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Juan Morgaz Rodríguez
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Rocío Navarrete Calvo
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - José Pérez Arévalo
- Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - José María Carrillo Poveda
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Cátedra García Cugat, Universidad CEU Cardenal Herrera, 46115, Valencia, Spain
| | - Eduard Alentorn-Geli
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Mutualidad Catalana de Futbolistas, Federación Española de Fútbol, Ronda Sant Pere 17-21, 08010, Barcelona, Spain
| | - Patricia Laiz Boada
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain
| | - Ramón Cugat Bertomeu
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Mutualidad Catalana de Futbolistas, Federación Española de Fútbol, Ronda Sant Pere 17-21, 08010, Barcelona, Spain
| |
Collapse
|
41
|
Vinod E, Vinod Francis D, Manickam Amirtham S, Sathishkumar S, Boopalan PRJVC. Allogeneic platelet rich plasma serves as a scaffold for articular cartilage derived chondroprogenitors. Tissue Cell 2019; 56:107-113. [PMID: 30736898 DOI: 10.1016/j.tice.2018.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
Limited self-restorative ability of the cartilage has necessitated the use of cell and tissue engineering based therapies. Recent advances in the isolation, expansion and characterization of articular cartilage derived chondroprogenitors(CPs) has gained popularity in its role for cartilage repair. Platelet rich plasma (PRP) is a reliable biological scaffold for in-vitro and in-vivo studies with reported therapeutic applications in cartilage and bone pathologies. The aim of this study was to evaluate whether human allogeneic PRP could serve as a biological scaffold for chondroprogenitors (CPs) in cartilage repair. CPs were isolated from the superficial layer of three osteoarthritic knee joints by fibronectin adhesion assay and characterized using flow cytometric analysis. Allogeneic citrated blood was harvested from three subjects to obtain PRP. CPs at a concentration of one million cells per ml were gelled with PRP using calcium chloride. The PRP-CP scaffolds were subjected for adipogeneic, osteogenic, chondrogeneic differentiation and processed for post differentiation-staining studies (Oil Red O, Von Kossa, Alcian blue staining), immunofluorescence (collagen II) and live dead assays (Calcein AM-Ethidium Homodimer). We show that PRP was able to sustain CP cell viability and differentiate towards adipogenic, osteogenic and chondrogenic lineage under appropriate culture conditions. We also noted positive extracellular matrix production in PRP-CP scaffolds cultured without chondrogenic supplementation. Our results suggest that PRP could be a promising bio-active scaffold due to its synergistic effect in supporting cell proliferation, maintaining cell viability and favoring extracellular matrix production. PRP can be used as biological scaffold for the delivery of CPs in cartilage healing.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India - 632002; Centre for Stem Cell Research, Christian Medical College, Vellore, India - 632002
| | | | | | | | - P R J V C Boopalan
- Department of Orthopaedics, Christian Medical College, Vellore, India - 632004; Centre for Stem Cell Research, Christian Medical College, Vellore, India - 632002.
| |
Collapse
|
42
|
Growth Factors Release From Concentrated Growth Factors: Effect of β-Tricalcium Phosphate Addition. J Craniofac Surg 2018; 29:2291-2295. [DOI: 10.1097/scs.0000000000004607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
43
|
Abstract
PURPOSE OF REVIEW To assess the utilization and efficacy of platelet-rich plasma (PRP), for the treatment of articular cartilage injury, most commonly characterized by progressive pain and loss of joint function in the setting of osteoarthritis (OA). RECENT FINDINGS PRP modulates the inflammatory and catabolic environment through a locally applied concentrate of platelets, leukocytes, and growth factors. Clinically, PRP has been shown to be possibly a viable treatment adjuvant for a variety of inflammatory and degenerative conditions. Recent efforts have focused on optimizing delivery methods that enable platelets to slowly degranulate their biological constituents, which may promote healing and improve OA symptoms for a longer duration. There are various factors that affect the progression of OA within joints, including inhibition of inflammatory cytokines and altering the level of enzymatic expression. PRP therapy aims to mediate inflammatory and catabolic factors in a degenerative environment through the secretion of anti-inflammatory factors and chemotaxic effects. There are a growing number of studies that have demonstrated the clinical benefit of PRP for non-operative management of OA. Additional randomized controlled trials with long-term follow-up are needed in order to validate PRP's therapeutic efficacy in this setting. Additionally, continued basic research along with well-designed pre-clinical studies and reporting standards are necessary in order to clarify the effectiveness of PRP for cartilage repair and regeneration for future clinical applications.
Collapse
|
44
|
Leong NL, Redondo M, Christian D, Yanke AB, Cole BJ. Biologic Injections in the Treatment of Cartilage Defects. OPER TECHN SPORT MED 2018. [DOI: 10.1053/j.otsm.2018.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Badis D, Omar B. The effectiveness of platelet-rich plasma on the skin wound healing process: A comparative experimental study in sheep. Vet World 2018; 11:800-808. [PMID: 30034173 PMCID: PMC6048094 DOI: 10.14202/vetworld.2018.800-808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
AIM The therapeutic evaluation of the biological effect of platelet-rich plasma (PRP) used as a surgical adjunct to maintain the inflammatory process and to potentiate tissue healing, make the subject of recent research in regenerative medicine. This study was designed to evaluate the healing activity of PRP by its topical application on the skin experimentally injured in a sheep model. MATERIALS AND METHODS The study was conducted on 9 adult and clinically healthy males sheep. PRP was obtained by a protocol of double centrifugation of whole blood from each animal. After sterile skin preparation, full-thickness excisional wounds (20 mm x 20 mm) were created on the back of each animal. The animals were randomly divided into three equal groups of three sheep for each. In Group I, the wounds were treated with PRP, in Group II; wounds were treated with Asiaticoside; in Group III, wounds were treated with saline solution. The different treatments were administered topically every 3 days. Morphometric measurements of the contraction surface of the wounds and histopathological biopsies were carried out at the 3rd, 7th, 14th, 21st, and 28th days of healing. RESULTS The results of the morphometric data obtained revealed that it was significant differences recorded at the 7th and 14th day of healing in favor for animals of Group I. Semi-quantitative histopathological evaluation showed that PRP reduces inflammation during 3 first days post-surgical and promotes epithelialization in 3 weeks of healing. CONCLUSION We concluded that topical administration of PRP obtained by double centrifugation protocol could potentially improve the skin healing process in sheep.
Collapse
Affiliation(s)
- Daikh Badis
- Department of Biology of Organisms, University of Batna 2, Batna, Algeria
- Biotechnology’s Laboratory of the Bioactive Molecules and the Cellular Physiopathology, University of Batna 2, Batna, Algeria
| | - Bennoune Omar
- Department of Veterinary Science, Institute of Agronomic and Veterinary Sciences, University of Batna 1, Batna, Algeria
| |
Collapse
|
46
|
Müller WEG, Neufurth M, Wang S, Ackermann M, Muñoz-Espí R, Feng Q, Lu Q, Schröder HC, Wang X. Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ. Int J Mol Sci 2018; 19:427. [PMID: 29385104 PMCID: PMC5855649 DOI: 10.3390/ijms19020427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The results revealed that the amorphous Ca-polyP particles promote the growth/viability of mesenchymal stem cells, as well as the osteogenic and chondrogenic differentiation of the bone marrow cells in rat femur explants, as revealed by an upregulation of the expression of the transcription factors SOX9 (differentiation towards osteoblasts) and RUNX2 (chondrocyte differentiation). In parallel to this bone anabolic effect, incubation of the femur explants with these particles significantly reduced the expression of the gene encoding the osteoclast bone-catabolic enzyme, cathepsin-K, while the expression of the tartrate-resistant acid phosphatase remained unaffected. The gene expression data were supported by the finding of an increased mineralization of the cells in the femur explants in response to the Ca-polyP particles. Finally, we show that the hybrid particles of polyP complexed with zoledronic acid exhibit both the cytotoxic effect of the bisphosphonate and the morphogenetic and mineralization inducing activity of polyP. Our results suggest that the Ca-polyP nano/microparticles are not only a promising scaffold material for repairing long bone osteo-articular damages but can also be applied, as a hybrid with zoledronic acid, as a drug delivery system for treatment of bone metastases. The polyP particles are highlighted as genuine, smart, bioinspired nano/micro biomaterials.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Johann Joachim Becher Weg 13, 55099 Mainz, Germany.
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José Beltrán 2, Paterna, 46980 València, Spain.
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiang Lu
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
47
|
Frank RM, Cotter EJ, Strauss EJ, Gomoll AH, Cole BJ. The Utility of Biologics, Osteotomy, and Cartilage Restoration in the Knee. J Am Acad Orthop Surg 2018; 26:e11-e25. [PMID: 29261554 DOI: 10.5435/jaaos-d-17-00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The management of complex cartilage and meniscal pathology in young, athletic patients is extremely challenging. Joint preservation surgery is most difficult in patients with concomitant knee pathologies, including cartilage defects, meniscal deficiency, malalignment, and/or ligamentous insufficiency. Clinical decision making for these patients is further complicated by articular cartilage lesions, which often are incidental findings; therefore, treatment decisions must be based on the confirmed contribution of articular cartilage lesions to symptomatology. Surgical management of any of the aforementioned knee pathologies that is performed in isolation typically results in acceptable patient outcomes; however, concomitant procedures for the management of concomitant knee pathologies often are essential to the success of any single procedure. The use of biologic therapy as an alternative to or to augment more conventional surgical management has increased in popularity in the past decade, and indications for biologic therapy continue to evolve. Orthopaedic surgeons should understand knee joint preservation techniques, including biologic and reconstructive approaches in young, high-demand patients.
Collapse
Affiliation(s)
- Rachel M Frank
- From CU Sports Medicine, Department of Orthopaedics, University of Colorado School of Medicine, Boulder, CO (Dr. Frank), the Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL (Mr. Cotter, and Dr. Cole), New York University, Langone Medical Center, New York, NY (Dr. Strauss), and Brigham and Women's Hospital, Boston, MA (Dr. Gomoll)
| | | | | | | | | |
Collapse
|
48
|
Hussain ZB, Chahla J, LaPrade RF, Mandelbaum BR. Orthobiologics: Today and Tomorrow. CARTILAGE RESTORATION 2018:131-142. [DOI: 10.1007/978-3-319-77152-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Frank RM, Cotter EJ, Nassar I, Cole B. Failure of Bone Marrow Stimulation Techniques. Sports Med Arthrosc Rev 2017; 25:2-9. [PMID: 28045867 DOI: 10.1097/jsa.0000000000000134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Marrow stimulation techniques, including microfracture, are among the most commonly performed cartilage restoration procedures for symptomatic chondral defects of the knee. For the vast majority of patients, marrow stimulation results in reduced pain and improved function, providing overall satisfactory outcomes. In some cases, however, marrow stimulation fails, resulting in symptom recurrence and often, the need for repeat surgery. This review will describe the indications and outcomes of microfracture as a primary surgical treatment for focal chondral defects of the knee, identify patient and procedure-specific factors associated with poor clinical outcomes, and will discuss treatment options and their respective outcomes for patients with a failed prior microfracture surgery.
Collapse
Affiliation(s)
- Rachel M Frank
- *Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL †El-Hadara University Hospital, Alexandria University, Alexandria, Egypt
| | | | | | | |
Collapse
|
50
|
Kraeutler MJ, Chahla J, LaPrade RF, Pascual-Garrido C. Biologic Options for Articular Cartilage Wear (Platelet-Rich Plasma, Stem Cells, Bone Marrow Aspirate Concentrate). Clin Sports Med 2017; 36:457-468. [PMID: 28577706 DOI: 10.1016/j.csm.2017.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological treatments for articular cartilage repair have gained in popularity in the past decade. Advantages of these therapies include minimal invasiveness, improved healing time, and faster recovery. Biological therapies for cartilage repair include platelet-rich plasma, bone marrow aspirate concentrate, and cell-based therapies. These methods have the added benefit of containing growth factors and/or stem cells that aid in recovery and regeneration. The purpose of this article is to review the current cartilage treatment options and the existing literature on outcomes, complications, and safety profile of these products for use in the knee and hip joints.
Collapse
Affiliation(s)
- Matthew J Kraeutler
- Department of Orthopedics, University of Colorado School of Medicine, 1635 Aurora Ct, Aurora, CO 80045, USA
| | - Jorge Chahla
- Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 400, Vail, CO 81657, USA
| | - Robert F LaPrade
- Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 400, Vail, CO 81657, USA
| | - Cecilia Pascual-Garrido
- Department of Orthopedics, Washington University, 660 South Euclid Avenue, Campus Box 8233, St Louis, MO 63110, USA.
| |
Collapse
|