Onslev J, Fiorenza M, Thomassen M, Havelund J, Bangsbo J, Færgeman N, Wojtaszewski JFP, Hostrup M. Beta2-agonist Impairs Muscle Insulin Sensitivity in Persons With Insulin Resistance.
J Clin Endocrinol Metab 2024;
110:275-288. [PMID:
38820114 DOI:
10.1210/clinem/dgae381]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
CONTEXT
Given the promising effects of prolonged treatment with beta2-agonist on insulin sensitivity in animals and nondiabetic individuals, the beta2-adrenergic receptor has been proposed as a target to counter peripheral insulin resistance. On the other hand, rodent studies also reveal that beta2-agonists acutely impair insulin action, posing a potential caveat for their use in treating insulin resistance.
OBJECTIVE
To assess the impact of beta2-agonist on muscle insulin action and glucose metabolism and identify the underlying mechanism(s) in 10 insulin-resistant subjects.
METHODS AND PARTICIPANTS
In a crossover design, we assessed the effect of beta2-agonist on insulin-stimulated muscle glucose uptake during a 3-hour hyperinsulinemic isoglycemic clamp with and without intralipid infusion in 10 insulin-resistant, overweight subjects. Two hours into the clamp, we infused beta2-agonist. We collected muscle biopsies before, 2 hours into, and by the end of the clamp and analyzed them using metabolomic and lipidomic techniques.
RESULTS
We establish that beta2-agonist, independently from and additively to intralipid, impairs insulin-stimulated muscle glucose uptake via different mechanisms. In combination, beta2-agonist and intralipid nearly eliminates insulin-dependent muscle glucose uptake. Although both beta2-agonist and intralipid elevated muscle glucose-6-phosphate, only intralipid caused accumulation of downstream muscle glycolytic intermediates, whereas beta2-agonist attenuated incorporation of glucose into glycogen.
CONCLUSION
Our findings suggest that beta2-agonist inhibits glycogenesis, whereas intralipid inhibits glycolysis in skeletal muscle of insulin-resistant individuals. These results should be addressed in future treatment of insulin resistance with beta2-agonist.
Collapse