1
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
2
|
Hu CJ, Lu YC, Tsai CY, Chan YH, Lin PH, Lee YS, Yu IS, Lin SW, Liu TC, Hsu CJ, Yang TH, Cheng YF, Wu CC. Insights into phenotypic differences between humans and mice with p.T721M and other C-terminal variants of the SLC26A4 gene. Sci Rep 2021; 11:20983. [PMID: 34697379 PMCID: PMC8545921 DOI: 10.1038/s41598-021-00448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are an important cause of hereditary hearing impairment. Several transgenic mice with different Slc26a4 variants have been generated. However, none have recapitulated the auditory phenotypes in humans. Of the SLC26A4 variants identified thus far, the p.T721M variant is of interest, as it appears to confer a more severe pathogenicity than most of the other missense variants, but milder pathogenicity than non-sense and frameshift variants. Using a genotype-driven approach, we established a knock-in mouse model homozygous for p.T721M. To verify the pathogenicity of p.T721M, we generated mice with compound heterozygous variants by intercrossing Slc26a4+/T721M mice with Slc26a4919-2A>G/919-2A>G mice, which segregated the c.919-2A > G variant with abolished Slc26a4 function. We then performed serial audiological assessments, vestibular evaluations, and inner ear morphological studies. Surprisingly, both Slc26a4T721M/T721M and Slc26a4919-2A>G/T721M showed normal audiovestibular functions and inner ear morphology, indicating that p.T721M is non-pathogenic in mice and a single p.T721M allele is sufficient to maintain normal inner ear physiology. The evidence together with previous reports on mouse models with Slc26a4 p.C565Y and p.H723R variants, support our speculation that the absence of audiovestibular phenotypes in these mouse models could be attributed to different protein structures at the C-terminus of human and mouse pendrin.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Yi-Shan Lee
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, 100, Taiwan
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, 100, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, 201, Sec.2, Shi-Pai Rd, Taipei, 112, Taiwan. .,Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei, 112, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan. .,Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 302, Taiwan.
| |
Collapse
|
3
|
Hu CJ, Lu YC, Yang TH, Chan YH, Tsai CY, Yu IS, Lin SW, Liu TC, Cheng YF, Wu CC, Hsu CJ. Toward the Pathogenicity of the SLC26A4 p.C565Y Variant Using a Genetically Driven Mouse Model. Int J Mol Sci 2021; 22:2789. [PMID: 33801843 PMCID: PMC8001573 DOI: 10.3390/ijms22062789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The increased availability of next generation sequencing has enabled a rapid progress in the discovery of genetic variants associated with vestibular disorders. We have summarized molecular genetics finding in vestibular syndromes during the last 18 months. RECENT FINDINGS Genetic studies continue to shed light on the genetic background of vestibular disorders. Novel genes affecting brain development and otolith biogenesis have been associated with motion sickness. Exome sequencing has made possible to identify three rare single nucleotide variants in PRKCB, DPT and SEMA3D linked with familial Meniere disease. Moreover, superior canal dehiscence syndrome might be related with variants in CDH3 gene, by increasing risk of its development. On the other hand, the association between vestibular schwannoma and enlarged vestibular aqueduct with variants in NF2 and SLC26A4, respectively, seems increasingly clear. Finally, the use of mouse models is allowing further progress in the development gene therapy for hearing and vestibular monogenic disorders. SUMMARY Most of episodic or progressive syndromes show familial clustering. A detailed phenotyping with a complete familial history of vestibular symptoms is required to conduct a genetic study. Progress in these studies will allow us to understand diseases mechanisms and improve their current medical treatments.
Collapse
|
5
|
Roesch S, Bernardinelli E, Nofziger C, Tóth M, Patsch W, Rasp G, Paulmichl M, Dossena S. Functional Testing of SLC26A4 Variants-Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria. Int J Mol Sci 2018; 19:ijms19010209. [PMID: 29320412 PMCID: PMC5796158 DOI: 10.3390/ijms19010209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022] Open
Abstract
The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Charity Nofziger
- PharmGenetix Gmbh, Sonystrasse 20, A-5081 Niederalm Anif, Austria.
| | - Miklós Tóth
- Department of Otorhinolaryngology, Head & Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20251 Hamburg, Germany.
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Markus Paulmichl
- Center for Health and Bioresources, Austrian Institute of Technology, Muthgasse 11, A-1190 Vienna, Austria.
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| |
Collapse
|
6
|
Aimoni C, Ciorba A, Cerritelli L, Ceruti S, Skarżyński PH, Hatzopoulos S. Enlarged vestibular aqueduct: Audiological and genetical features in children and adolescents. Int J Pediatr Otorhinolaryngol 2017; 101:254-258. [PMID: 28780189 DOI: 10.1016/j.ijporl.2017.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Enlarged Vestibular Aqueduct (EVA) is one of the most common congenital malformations associated with sensorineural or mixed hearing loss. The association between hearing loss and EVA is described in syndromic (i.e. Pendred Syndrome, BOR, Waardenburg) and non-syndromic disorders, as isolate or familiar mutations of the SLC26A4 gene. The audiological phenotype of the EVA syndrome is heterogeneous, the type and entity of hearing loss may vary and vertigo episodes might also be present. OBJECTIVE The aim of this retrospective study was to describe the clinical and genetic features of a group of adolescent subjects presenting an EVA clinical profile, considering the presence of SLC26A4 gene mutations. METHODS 14 Caucasian patients were assessed (24 ears in total; 4 patients presented a monolateral EVA), 10 females and 4 males. Their age at the time of diagnosis was between 1 and 6 years (mean age 2.5 years). Subjects were assessed by an ENT microscopy evaluation with a complete audiometric assessment, CT & MRI scans and genetic tests for the evaluation of the pendrin gene mutations (SLC26A4). RESULTS Considering the presence of SLC26A4 mutations and thyroid function, we could identify three sub-groups of patients: group 1, non syndromic EVA (ns EVA, no SLC26A4 mutation and no thyroid dysfunction); group 2, EVA with DFNB4 (single SLC26A4 gene mutation and no thyroid dysfunction); group 3, EVA with Pendred Syndrome (two pathological mutation of SLC26A4 and thyromegaly with thyroid dysfunction). Patients of group 1 (ns-EVA) showed various degrees of hearing loss from mild (55%) to severe-profound (45%). In groups 2 (DFNB4) and 3 (PDS), the degree of hearing loss is severe to profound in 70-75% of the cases; middle and high frequencies are mainly involved. CONCLUSIONS The phenotypic expressions associated with the EVA clinical profile are heterogeneous. From the available data, it was not possible to identify a representative audiological profile, in any of the three sub-groups. The data suggest that: (i) a later onset of hearing loss is usually related to EVA, in absence of SLC26A4 gene mutations; and (ii) hearing loss is more severe in patients with SLC26A4 gene mutations (groups 2 and 3 of this study).
Collapse
Affiliation(s)
- C Aimoni
- Clinic of Audiology & ENT, University of Ferrara, Italy
| | - A Ciorba
- Clinic of Audiology & ENT, University of Ferrara, Italy.
| | - L Cerritelli
- Clinic of Audiology & ENT, University of Ferrara, Italy
| | - S Ceruti
- Neuroradiology Department, University Hospital of Ferrara, Italy
| | - P H Skarżyński
- Institute of Physiology and Pathology of Hearing, Warsaw, Kajetany, Poland; World Hearing Center, Warsaw, Poland; Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland; Institute of Sensory Organs, Kajetany, Poland
| | - S Hatzopoulos
- Clinic of Audiology & ENT, University of Ferrara, Italy
| |
Collapse
|
7
|
Parzefall T, Frohne A, Koenighofer M, Kirchnawy A, Streubel B, Schoefer C, Frei K, Lucas T. Whole-exome sequencing to identify the cause of congenital sensorineural hearing loss in carriers of a heterozygous GJB2 mutation. Eur Arch Otorhinolaryngol 2017; 274:3619-3625. [PMID: 28821934 PMCID: PMC5591807 DOI: 10.1007/s00405-017-4699-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/01/2022]
Abstract
Bi-allelic variations in the gap junction protein beta-2 (GJB2) gene cause up to 50% of cases of newborn hearing loss. Heterozygous pathogenic GJB2 variations are also fivefold overrepresented in idiopathic patient groups compared to the normal-hearing population. Whether hearing loss in this group is due to unidentified additional variations within GJB2 or variations in other deafness genes is unknown in most cases. Whole-exome sequencing offers an effective approach in the search for causative variations in patients with Mendelian diseases. In this prospective genetic cohort study, we initially investigated a family of Turkish origin suffering from congenital autosomal recessive hearing loss. An index patient and his normal-hearing father, both bearing a single heterozygous pathogenic c.262G>T (p.Ala88Ser) GJB2 transversion as well as the normal-hearing mother were investigated by means of whole-exome sequencing. Subsequently the genetic screening was extended to a hearing-impaired cohort of 24 families of Turkish origin. A homozygous missense c.5492G>T transversion (p.Gly1831Val) in the Myosin 15a gene, previously linked to deafness, was identified as causative in the index family. This very rare variant is not listed in any population in the Genome Aggregation Database. Subsequent screening of index patients from additional families of Turkish origin with recessive hearing loss identified the c.5492G>T variation in an additional family. Whole-exome sequencing may effectively identify the causes of idiopathic hearing loss in patients bearing heterozygous GJB2 variations.
Collapse
Affiliation(s)
- Thomas Parzefall
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Frohne
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Koenighofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Kirchnawy
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Berthold Streubel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christian Schoefer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Klemens Frei
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria. .,Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Trevor Lucas
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|