1
|
Sykopetrites V, Sica E, Moalli R, Cocozza D, Razza S, Cristofari E. Robot-assisted vs. manual cochlear implant electrode array insertion in four children. Eur Arch Otorhinolaryngol 2025:10.1007/s00405-024-09195-7. [PMID: 39825199 DOI: 10.1007/s00405-024-09195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE Evaluate the feasibility and safety of a robotic electrode insertion in pediatric cochlear implantation and compare the results with manually inserted electrodes in the same subject. METHODS Retrospective case series review of four children who underwent bilateral cochlear implantation with the same array: on one side, the array was inserted using the robot, while on the other side the array was inserted manually. Behavioural and electrophysiological measures were compared. RESULTS The duration of surgery when the robot was adopted was significantly longer than when a manual insertion was performed (161.15 ± 27.59 minutes vs. 122.6 ± 37.71 min, paired t-test: p = 0.029). Moreover, robotic electrode insertion was significantly slower (average insertion speed 0.3 mm/second vs. 0.52 ± 0.17 mm/s, paired t-test: p = 0.0055). On radiologic examination, none of the arrays was misplaced. Impedance, both at activation and at one year of cochlear implant use, was significantly lower on the robotic side in monopolar mode compared to the manual side (mean 9.64 ± 2.41kΩ and 9.97 ± 1.39 kΩ vs. 10.43 ± 2.69 kΩ and 10.94 ± 1.11 kΩ, paired t test, p = 0.0251 and p = 0.0061, respectively). Both the threshold stimulation level and the most comfortable loud stimulation level were significantly lower in the robotic inserted ear compared to the manually inserted ear (mean 108.1 ± 5.98 and 169 ± 4.84 vs. 112.1 ± 7.43 and 172.7 ± 6.83, respectively, paired t test p < 0.0001). CONCLUSIONS Although we present a small group of cases, our results show how robot-based array insertion is associated with lower impedance and stimulation levels compared to manually inserted arrays.
Collapse
Affiliation(s)
- Vittoria Sykopetrites
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy.
| | - Eleonora Sica
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Raffaella Moalli
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Davide Cocozza
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Sergio Razza
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Eliana Cristofari
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| |
Collapse
|
2
|
Rahman MT, Mostaert B, Eckard P, Fatima SM, Scheperle R, Razu I, Hunger B, Olszewski RT, Gu S, Garcia C, Khan NA, Bennion DM, Oleson J, Kirk JR, Enke YL, Gay RD, Morell RJ, Hirose K, Hoa M, Claussen AD, Hansen MR. Cochlear implants with dexamethasone-eluting electrode arrays reduce foreign body response in a murine model of cochlear implantation and human subjects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315311. [PMID: 39417118 PMCID: PMC11483020 DOI: 10.1101/2024.10.11.24315311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The inflammatory foreign body response (FBR) following cochlear implantation (CI) can negatively impact CI outcomes, including increased electrode impedances. This study aims to investigate the long-term efficacy of dexamethasone eluting cochlear implant and locally delivered dexamethasone, a potent anti-inflammatory glucocorticoid on the intracochlear FBR and electrical impedance post-implantation in a murine model and human subjects. The left ears of CX3CR1 +/GFP Thy1 +/YFP (macrophage-neuron dual reporter) mice were implanted with dexamethasone-eluting cochlear implants (Dex-CI) or standard implant (Standard-CI) while the right ear served as unoperated control. Another group of dual reporter mice was implanted with a standard CI electrode array followed by injection of dexamethasone in the middle ear to mimic current clinical practice (Dex-local). Mouse implants were electrically stimulated with serial measurement of electrical impedance. Human subjects were implanted with either standard or Dex-CI followed by serial impedance measurements. Dex-CI reduced electrical impedance in the murine model and human subjects and inflammatory FBR in the murine model for an extended period. Dex-local in the murine model is ineffective for long-term reduction of FBR and electrode impedance. Our data suggest that dexamethasone eluting arrays are more effective than the current clinical practice of locally applied dexamethasone in reducing FBR and electrical impedance.
Collapse
|
3
|
Wei C, Gao Z, Mau R, Eickner T, Jüttner G, Fiedler N, Seitz H, Lenarz T, Scheper V. Molded Round Window Niche Implant as a Dexamethasone Delivery System in a Cochlear Implant-Trauma Animal Model. Pharmaceutics 2024; 16:1236. [PMID: 39339272 PMCID: PMC11434969 DOI: 10.3390/pharmaceutics16091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Preserving residual hearing after cochlear implant (CI) surgery remains a crucial challenge. The application of dexamethasone (DEX) has been proven to positively affect residual hearing. To deliver DEX in a localized and controlled way, a round window niche implant (RNI), allowing drug diffusion via the round window membrane into the cochlea, may be used. To prove this concept, an RNI for guinea pigs as a CI-trauma model was manufactured by molding and tested for its drug release in vitro and biological effects in vivo. METHODS The RNIs were molded using silicone containing 10% DEX. Release was analyzed over time using high-performance liquid chromatography (HPLC). Fourteen adult guinea pigs were randomly assigned to two groups (CI or CI + RNI group). All animals received a unilateral CI electrode insertion trauma followed by CI insertion. The CI + RNI group was additionally implanted with an RNI containing 10% DEX. Animals were followed up for 4 weeks. Acoustically evoked auditory brainstem response and impedance measurement, micro-computed tomography (µCT) imaging, and histology were performed for evaluation. RESULTS DEX was released for more than 250 days in vitro, with an initial burst followed by a slower release over time. Comparing the hearing threshold shift (from day 0 to day 28) of the CI and CI + RNI groups, significant differences were observed at 32 and 40 kHz. The impedance shift at basal contacts was lower in the CI + RNI group than in the CI group. Moreover, the fibrosis in the lower basal turn was reduced in the CI + RNI group in contrast to the CI group. CONCLUSIONS The RNI containing 10% DEX has anti-inflammatory potential concerning fibrosis inhibition and has beneficial effects on hearing preservation at high frequencies.
Collapse
Affiliation(s)
- Chunjiang Wei
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (C.W.); (Z.G.)
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Ziwen Gao
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (C.W.); (Z.G.)
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Robert Mau
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, University Medical Center Rostock, University of Rostock, Friedrich-Barnewitz Straße 4, 18119 Rostock, Germany
| | - Gabor Jüttner
- Kunststoff-Zentrum in Leipzig gGmbH, Erich-Zeigner-Allee 44, 04229 Leipzig, Germany
| | - Nicklas Fiedler
- Institute for Biomedical Engineering, University Medical Center Rostock, University of Rostock, Friedrich-Barnewitz Straße 4, 18119 Rostock, Germany
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (C.W.); (Z.G.)
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (C.W.); (Z.G.)
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
4
|
Nagy R, Rovó L, Bere Z, Molnár F, Perényi Á, Posta B, Tóbiás Z, Beinschroth N, Csanády M. [Direction of cochlear implant developments used for the correction of perimodiolar discrimination location]. Orv Hetil 2024; 165:1452-1460. [PMID: 39277852 DOI: 10.1556/650.2024.33117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Bevezetés: A cochlearis implantátum egy hallásjavító eszköz,
amely elektromos impulzusokkal közvetlenül stimulálja az idegsejteket. A
beültetett elektródasor ideális elhelyezése elengedhetetlen a készüléket viselők
számára. Számos hazai és nemzetközi vizsgálat igazolt szignifikáns összefüggést
a műtét után helyreállított elektromos hallás minőségével. Az optimális
beültetés során az elektródákat a lehető legközelebb helyezzük el a ganglion
spirale sejtjeihez, így az összpontosított stimuláció javíthatja a beszédértést
és a beszédkészséget. Célkitűzés: Célunk az elektródasor
elhelyezkedésének vizsgálata és a cochlea középtengelyéhez mért legkisebb
távolságának optimalizálása, mindemellett a kedvezőbb pozíció virtuális elemzése
és a behelyezett elektródák alakjának digitalizált újratervezése.
Módszer: Kutatásunkhoz 10 perimodiolaris beültetett
elektródasor pozicionálási eredményét dolgoztuk fel. Az intraoperatív képalkotó
eljárások eredményeit elektrofiziológiás módszerekkel (impedancia,
idegiválasz-telemetriai vizsgálat) vetettük össze. Eredmények:
Méréseink alapján virtuálisan megalkotott elektródasorokat vetettünk össze,
amelyek különböző szögben deformált (0°, 15°, 30°, 45°) bazális szakasszal
rendelkeznek. Az elektrofiziológiás és a képalkotó technikák megerősítik, hogy
az elektródasor kedvezőbb helyzetbe kerül, amennyiben az közelebb tud
helyezkedni a cochlea középtengelyéhez. Következtetés: Az
újraformált elektródasorok pozicionálása drasztikus hatással lehet a későbbi
beszédértésre, a beszéd minőségére és a készülék energiafogyasztására. Orv
Hetil. 2024; 165(37): 1452–1460.
Collapse
Affiliation(s)
- Roland Nagy
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
- 2 Szegedi Tudományegyetem, Interdiszciplináris Kutatásfejlesztési és Innovációs Kiválósági Központ Szeged Magyarország
| | - László Rovó
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
- 2 Szegedi Tudományegyetem, Interdiszciplináris Kutatásfejlesztési és Innovációs Kiválósági Központ Szeged Magyarország
| | - Zsófia Bere
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
- 2 Szegedi Tudományegyetem, Interdiszciplináris Kutatásfejlesztési és Innovációs Kiválósági Központ Szeged Magyarország
| | - Fiona Molnár
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
| | - Ádám Perényi
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
| | - Bálint Posta
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
| | - Zoltán Tóbiás
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
| | - Ninett Beinschroth
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
| | - Miklós Csanády
- 1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos krt. 111., 6725 Magyarország
| |
Collapse
|
5
|
Geerardyn A, Zhu M, Verhaert N, Quesnel AM. Intracochlear Trauma and Local Ossification Patterns Differ Between Straight and Precurved Cochlear Implant Electrodes. Otol Neurotol 2024; 45:245-255. [PMID: 38270168 PMCID: PMC10922381 DOI: 10.1097/mao.0000000000004102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
HYPOTHESIS Trauma to the osseous spiral lamina (OSL) or spiral ligament (SL) during cochlear implant (CI) insertion segregates with electrode type and induces localized intracochlear ossification and fibrosis. BACKGROUND The goal of atraumatic CI insertion is to preserve intracochlear structures, limit reactive intracochlear tissue formation, and preserve residual hearing. Previous qualitative studies hypothesized a localized effect of trauma on intracochlear tissue formation; however, quantitative studies failed to confirm this. METHODS Insertional trauma beyond the immediate insertion site was histologically assessed in 21 human temporal bones with a CI. Three-dimensional reconstructions were generated and virtually resectioned perpendicular to the cochlear spiral at high resolution. The cochlear volume occupied by ossification or fibrosis was determined at the midpoint of the trauma and compared with regions proximal and distal to this point. RESULTS Seven cases, all implanted with precurved electrodes, showed an OSL fracture beyond the immediate insertion site. Significantly more intracochlear ossification was observed at the midpoint of the OSL fracture, compared with the -26 to -18 degrees proximal and 28 to 56 degrees distal to the center. No such pattern was observed for fibrosis. In the 12 cases with a perforation of the SL (9 straight and 3 precurved electrodes), no localized pattern of ossification or fibrosis was observed around these perforations. CONCLUSION OSL fractures were observed exclusively with precurved electrodes in this study and may serve as a nidus for localized intracochlear ossification. Perforation of the SL, in contrast, predominantly occurred with straight electrodes and was not associated with localized ossification.
Collapse
Affiliation(s)
| | - MengYu Zhu
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | | | | |
Collapse
|
6
|
Geerardyn A, Zhu M, Klabbers T, Huinck W, Mylanus E, Nadol JB, Verhaert N, Quesnel AM. Human Histology after Structure Preservation Cochlear Implantation via Round Window Insertion. Laryngoscope 2024; 134:945-953. [PMID: 37493203 DOI: 10.1002/lary.30900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Current surgical techniques aim to preserve intracochlear structures during cochlear implant (CI) insertion to maintain residual cochlear function. The optimal technique to minimize damage, however, is still under debate. The aim of this study is to histologically compare insertional trauma and intracochlear tissue formation in humans with a CI implanted via different insertion techniques. METHODS One recent temporal bone from a donor who underwent implantation of a full-length CI (576°) via round window (RW) insertion was compared with nine cases implanted via cochleostomy (CO) or extended round window (ERW) approach. Insertional trauma was assessed on H&E-stained histological sections. 3D reconstructions were generated and virtually re-sectioned to measure intracochlear volumes of fibrosis and neo-ossification. RESULTS The RW insertion case showed electrode translocation via the spiral ligament. 2/9 CO/ERW cases showed no insertional trauma. The total volume of the cochlea occupied by fibro-osseous tissue was 10.8% in the RW case compared with a mean of 30.6% (range 8.7%-44.8%, N = 9) in the CO/ERW cases. The difference in tissue formation in the basal 5 mm of scala tympani, however, was even more pronounced when the RW case (12.3%) was compared with the cases with a CO/ERW approach (mean of 93.8%, range 81% to 100%, N = 9). CONCLUSIONS Full-length CI insertions via the RW can be minimally traumatic at the cochlear base without inducing extensive fibro-osseous tissue formation locally. The current study further supports the hypothesis that drilling of the cochleostomy with damage to the endosteum incites a local tissue reaction. LEVEL OF EVIDENCE 4: Case-control study Laryngoscope, 134:945-953, 2024.
Collapse
Affiliation(s)
- Alexander Geerardyn
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, U.S.A
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, U.S.A
- ExpORL, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - MengYu Zhu
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, U.S.A
| | - Tim Klabbers
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Wendy Huinck
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Emmanuel Mylanus
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, U.S.A
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, U.S.A
| | - Nicolas Verhaert
- ExpORL, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, U.S.A
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, U.S.A
| |
Collapse
|
7
|
Kwok BYC, Young AS, Kong JHK, Birman CS, Flanagan S, Greenberg SL, Gibson WP, Argaet EC, Fratturo L, Pogson JM, Taylor RL, Rosengren SM, Halmagyi GM, Welgampola MS. Post Cochlear Implantation Vertigo: Ictal Nystagmus and Audiovestibular Test Characteristics. Otol Neurotol 2024; 45:65-74. [PMID: 37853785 DOI: 10.1097/mao.0000000000004037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVE To investigate ictal nystagmus and audiovestibular characteristics in episodic spontaneous vertigo after cochlear implantation (CI). STUDY DESIGN Retrospective and prospective case series. PATIENTS Twenty-one CI patients with episodic spontaneous vertigo after implantation were recruited. INTERVENTIONS Patient-initiated home video-oculography recordings were performed during one or more attacks of vertigo, using miniature portable home video-glasses. To assess canal and otolith function, video head-impulse tests (vHITs) and vestibular-evoked myogenic potential tests were conducted. MAIN OUTCOME MEASURES Nystagmus slow-phase velocities (SPVs), the presence of horizontal direction-changing nystagmus, and post-CI audiovestibular tests. RESULTS Main final diagnoses were post-CI secondary endolymphatic hydrops (48%) and exacerbation of existing Ménière's disease (29%). Symptomatic patients demonstrated high-velocity horizontal ictal-nystagmus (SPV, 44.2°/s and 68.2°/s in post-CI secondary endolymphatic hydrop and Ménière's disease). Direction-changing nystagmus was observed in 80 and 75%. Two were diagnosed with presumed autoimmune inner ear disease (SPV, 6.6°/s and 172.9°/s). One patient was diagnosed with probable vestibular migraine (15.1°/s).VHIT gains were 0.80 ± 0.20 (lateral), 0.70 ± 0.17 (anterior), and 0.62 ± 0.27 (posterior) in the implanted ear, with abnormal values in 33, 35, and 35% of each canal. Bone-conducted cervical and ocular vestibular-evoked myogenic potentials were asymmetric in 52 and 29% of patients (all lateralized to the implanted ear) with mean asymmetry ratios of 51.2 and 35.7%. Reversible reduction in vHIT gain was recorded in three acutely symptomatic patients. CONCLUSION High-velocity, direction-changing nystagmus time-locked with vertigo attacks may be observed in post-CI implant vertigo and may indicate endolymphatic hydrops. Fluctuating vHIT gain may be an additional marker of a recurrent peripheral vestibulopathy.
Collapse
Affiliation(s)
| | | | | | | | - Sean Flanagan
- Department of Otolaryngology, Head and Neck, and Skull Base Surgery, St Vincent's Public Hospital, Sydney
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mussoi BS, Meibos A, Woodson E, Sydlowski S. The association between electrode impedance and short-term outcomes in cochlear implant recipients of slim modiolar and slim straight electrode arrays. Cochlear Implants Int 2024; 25:59-68. [PMID: 38081181 DOI: 10.1080/14670100.2023.2290768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
OBJECTIVES Electrode impedance measurements from cochlear implants (CI) reflect the status of the electrode array as well as the surrounding cochlear environment, and could provide a clinical index of functional changes with the CI. The goals of this study were to examine (1) the impact of electrode array type on electrode impedance, and (2) the relationship between electrode impedance and short-term hearing preservation and speech recognition outcomes. METHODS Retrospective study of 115 adult hearing preservation CI recipients of a slim modiolar or slim straight array. Common ground electrode impedances, pre- and post-operative hearing thresholds and CNC word recognition scores were retrieved. RESULTS Electrode impedances were significantly higher for recipients of the straight electrode array. Within individuals, electrode impedances were stable after the first week post-activation. However, increased standard deviation of electrode impedances was associated with greater loss of low frequency hearing at initial activation, and with poorer speech recognition at 6 months post-implantation. CONCLUSIONS Results demonstrate that electrode impedances depend on the type of implanted array. Findings also suggest that there may be a role for the variability in electrode impedance across electrodes as an indicator of changes in the intracochlear environment that contribute to outcomes with a CI.
Collapse
Affiliation(s)
- Bruna S Mussoi
- Speech Pathology and Audiology, Kent State University, Kent, OH, USA
| | - Alex Meibos
- School of Speech-Language Pathology and Audiology, The University of Akron, Akron, OH, USA
| | - Erika Woodson
- Head and Neck Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Sydlowski
- Head and Neck Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
10
|
Rahman MT, Mostaert BJ, Hunger B, Saha U, Claussen AD, Razu I, Nasrin F, Khan NA, Eckard P, Coleman S, Oleson J, Kirk JR, Hirose K, Hansen MR. Contribution of macrophages to neural survival and intracochlear tissue remodeling responses following cochlear implantation. J Neuroinflammation 2023; 20:266. [PMID: 37974203 PMCID: PMC10652501 DOI: 10.1186/s12974-023-02955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Cochlear implants (CIs) restore hearing to deafened patients. The foreign body response (FBR) following cochlear implantation (post-CI) comprises an infiltration of macrophages, other immune and non-immune cells, and fibrosis into the scala tympani, a space that is normally devoid of cells. This FBR is associated with negative effects on CI outcomes including increased electrode impedances and loss of residual acoustic hearing. This study investigates the extent to which macrophage depletion by an orally administered CSF-1R specific kinase (c-FMS) inhibitor, PLX-5622, modulates the tissue response to CI and neural health. MAIN TEXT 10- to 12-week-old CX3CR1 + /GFP Thy1 + /YFP mice on C57BL/6J/B6 background was fed chow containing 1200 mg/kg PLX5622 or control chow for the duration of the study. 7 days after starting the diet, 3-channel cochlear implants were implanted in the ear via the round window. Serial impedance and neural response telemetry (NRT) measurements were acquired throughout the study. Electric stimulation began 7 days post-CI until 28 days post-CI for 5 h/day, 5 days/week, with programming guided by NRT and behavioral responses. Cochleae harvested at 10, 28 or 56 days post-CI were cryosectioned and labeled with an antibody against α-smooth muscle actin (α-SMA) to identify myofibroblasts and quantify the fibrotic response. Using IMARIS image analysis software, the outlines of scala tympani, Rosenthal canal, modiolus, and lateral wall for each turn were traced manually to measure region volume. The density of nuclei, CX3CR1 + macrophages, Thy1 + spiral ganglion neuron (SGN) numbers, and the ratio of the α-SMA + volume/scala tympani volume were calculated. Cochlear implantation in control diet subjects caused infiltration of cells, including macrophages, into the cochlea. Fibrosis was evident in the scala tympani adjacent to the electrode array. Mice fed PLX5622 chow showed reduced macrophage infiltration throughout the implanted cochleae across all time points. However, scala tympani fibrosis was not reduced relative to control diet subjects. Further, mice treated with PLX5622 showed increased electrode impedances compared to controls. Finally, treatment with PLX5622 decreased SGN survival in implanted and contralateral cochleae. CONCLUSION The data suggest that macrophages play an important role in modulating the intracochlear tissue response following CI and neural survival.
Collapse
Affiliation(s)
- Muhammad Taifur Rahman
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brian J Mostaert
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Bryce Hunger
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Utsow Saha
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander D Claussen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ibrahim Razu
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Farjana Nasrin
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Nashwaan Ali Khan
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Peter Eckard
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah Coleman
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Jacob Oleson
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | | | - Keiko Hirose
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
11
|
Schraivogel S, Aebischer P, Wagner F, Weder S, Mantokoudis G, Caversaccio M, Wimmer W. Postoperative Impedance-Based Estimation of Cochlear Implant Electrode Insertion Depth. Ear Hear 2023; 44:1379-1388. [PMID: 37157125 PMCID: PMC10583924 DOI: 10.1097/aud.0000000000001379] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/01/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Reliable determination of cochlear implant electrode positions shows promise for clinical applications, including anatomy-based fitting of audio processors or monitoring of electrode migration during follow-up. Currently, electrode positioning is measured using radiography. The primary objective of this study is to extend and validate an impedance-based method for estimating electrode insertion depths, which could serve as a radiation-free and cost-effective alternative to radiography. The secondary objective is to evaluate the reliability of the estimation method in the postoperative follow-up over several months. DESIGN The ground truth insertion depths were measured from postoperative computed tomography scans obtained from the records of 56 cases with an identical lateral wall electrode array. For each of these cases, impedance telemetry records were retrieved starting from the day of implantation up to a maximum observation period of 60 mo. Based on these recordings, the linear and angular electrode insertion depths were estimated using a phenomenological model. The estimates obtained were compared with the ground truth values to calculate the accuracy of the model. RESULTS Analysis of the long-term recordings using a linear mixed-effects model showed that postoperative tissue resistances remained stable throughout the follow-up period, except for the two most basal electrodes, which increased significantly over time (electrode 11: ~10 Ω/year, electrode 12: ~30 Ω/year). Inferred phenomenological models from early and late impedance telemetry recordings were not different. The insertion depth of all electrodes was estimated with an absolute error of 0.9 mm ± 0.6 mm or 22° ± 18° angle (mean ± SD). CONCLUSIONS Insertion depth estimations of the model were reliable over time when comparing two postoperative computed tomography scans of the same ear. Our results confirm that the impedance-based position estimation method can be applied to postoperative impedance telemetry recordings. Future work needs to address extracochlear electrode detection to increase the performance of the method.
Collapse
Affiliation(s)
- Stephan Schraivogel
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Aebischer
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Technical University of Munich, Germany; TUM School of Medicine, Klinikum rechts der Isar, Department of Otorhinolaryngology
| |
Collapse
|
12
|
Andonie RR, Wimmer W, Wildhaber RA, Caversaccio M, Weder S. Real-Time Feature Extraction From Electrocochleography With Impedance Measurements During Cochlear Implantation Using Linear State-Space Models. IEEE Trans Biomed Eng 2023; 70:3137-3146. [PMID: 37195836 DOI: 10.1109/tbme.2023.3276993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Electrocochleography (ECochG) is increasingly used to monitor the inner ear function of cochlear implant (CI) patients during surgery. Current ECochG-based trauma detection shows low sensitivity and specificity and depends on visual analysis by experts. Trauma detection could be improved by including electric impedance data recorded simultaneously with the ECochG. However, combined recordings are rarely used because the impedance measurements produce artifacts in the ECochG. In this study, we propose a framework for automated real-time analysis of intraoperative ECochG signals using Autonomous Linear State-Space Models (ALSSMs). We developed ALSSM based algorithms for noise reduction, artifact removal, and feature extraction in ECochG. Feature extraction includes local amplitude and phase estimations and a confidence metric over the presence of a physiological response in a recording. We tested the algorithms in a controlled sensitivity analysis using simulations and validated them with real patient data recorded during surgeries. The results from simulation data show that the ALSSM method provides improved accuracy in the amplitude estimation together with a more robust confidence metric of ECochG signals compared to the state-of-the-art methods based on the fast Fourier transform (FFT). Tests with patient data showed promising clinical applicability and consistency with the findings from the simulations. We showed that ALSSMs are a valid tool for real-time analysis of ECochG recordings. Removal of artifacts using ALSSMs enables simultaneous recording of ECochG and impedance data. The proposed feature extraction method provides the means to automate the assessment of ECochG. Further validation of the algorithms in clinical data is needed.
Collapse
|
13
|
Schuerch K, Wimmer W, Rummel C, Caversaccio MD, Weder S. Objective evaluation of intracochlear electrocochleography: repeatability, thresholds, and tonotopic patterns. Front Neurol 2023; 14:1181539. [PMID: 37621854 PMCID: PMC10446839 DOI: 10.3389/fneur.2023.1181539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Intracochlear electrocochleography (ECochG) is increasingly being used to measure residual inner ear function in cochlear implant (CI) recipients. ECochG signals reflect the state of the inner ear and can be measured during implantation and post-operatively. The aim of our study was to apply an objective deep learning (DL)-based algorithm to assess the reproducibility of longitudinally recorded ECochG signals, compare them with audiometric hearing thresholds, and identify signal patterns and tonotopic behavior. Methods We used a previously published objective DL-based algorithm to evaluate post-operative intracochlear ECochG signals collected from 21 ears. The same measurement protocol was repeated three times over 3 months. Additionally, we measured the pure-tone thresholds and subjective loudness estimates for correlation with the objectively detected ECochG signals. Recordings were made on at least four electrodes at three intensity levels. We extracted the electrode positions from computed tomography (CT) scans and used this information to evaluate the tonotopic characteristics of the ECochG responses. Results The objectively detected ECochG signals exhibited substantial repeatability over a 3-month period (bias-adjusted kappa, 0.68; accuracy 83.8%). Additionally, we observed a moderate-to-strong dependence of the ECochG thresholds on audiometric and subjective hearing levels. Using radiographically determined tonotopic measurement positions, we observed a tendency for tonotopic allocation with a large variance. Furthermore, maximum ECochG amplitudes exhibited a substantial basal shift. Regarding maximal amplitude patterns, most subjects exhibited a flat pattern with amplitudes evenly distributed over the electrode carrier. At higher stimulation frequencies, we observed a shift in the maximum amplitudes toward the basal turn of the cochlea. Conclusions We successfully implemented an objective DL-based algorithm for evaluating post-operative intracochlear ECochG recordings. We can only evaluate and compare ECochG recordings systematically and independently from experts with an objective analysis. Our results help to identify signal patterns and create a better understanding of the inner ear function with the electrode in place. In the next step, the algorithm can be applied to intra-operative measurements.
Collapse
Affiliation(s)
- Klaus Schuerch
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Domenico Caversaccio
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Rahman MT, Mostaert BJ, Hunger B, Saha U, Claussen AD, Razu I, Farjana N, Khan NA, Coleman S, Oleson J, Kirk J, Keiko H, Hansen MR. Contribution of macrophages to intracochlear tissue remodeling responses following cochlear implantation and neural survival. RESEARCH SQUARE 2023:rs.3.rs-3065630. [PMID: 37461619 PMCID: PMC10350110 DOI: 10.21203/rs.3.rs-3065630/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Introduction Cochlear implants (CIs) restore hearing to deafened patients. The foreign body response (FBR) following cochlear implantation (post-CI) comprises an infiltration of macrophages, other immune and non-immune cells, and fibrosis into the scala tympani; a space that is normally devoid of cells. This FBR is associated with negative effects on CI outcomes including increased electrode impedances and loss of residual acoustic hearing. This study investigates the extent to which macrophage depletion by an orally administered CSF-1R specific kinase (c-FMS) inhibitor, PLX-5622, modulates the tissue response to CI and neural health. Materials and methods 10-12-week-old CX3CR1+/GFP Thy1+/YFP mice on C57Bl6 background with normal hearing were fed chow containing 1200 mg/kg PLX5622 or control chow for the duration of the study. 7-days after starting the diet, 3-channel cochlear implants were implanted ear via the round window. Serial impedance and neural response telemetry (NRT) measurements were acquired throughout the study. Electric stimulation began 7 days post-CI until 28- days post-CI for 5 hrs/day, 5 days/week, with programming guided by NRT and behavioral responses. Cochleae harvested at 10-, 28- or 56-days post-CI were cryosectioned and labeled with antibody against α-smooth muscle actin (α-SMA) to identify myofibroblasts and quantify the fibrotic response. Using IMARIS image analysis software, the outlines of scala tympani, Rosenthal canal, modiolus and lateral wall for each turn were traced manually to measure region volume. Density of nuclei, CX3CR1+ macrophages, Thy1+ spiral ganglion neuron (SGN) numbers and ratio of volume of α-SMA+ space/volume of scala tympani were calculated. Results Cochlear implantation in control diet subjects caused infiltration of cells, including macrophages, into the cochlea: this response was initially diffuse throughout the cochlea and later localized to the scala tympani of the basal turn by 56-days post-CI. Fibrosis was evident in the scala tympani adjacent to the electrode array. Mice fed PLX5622 chow showed reduced macrophage infiltration throughout the implanted cochleae across all timepoints. However, scala tympani fibrosis was not reduced relative to control diet subjects. Further, mice treated with PLX5622 showed increased electrode impedances compared to controls. Finally, treatment with PLX5622 decreased SGN survival in implanted and contralateral cochleae. Discussion The data suggest that macrophages play an important role in modulating the intracochlear tissue response following CI and neural survival.
Collapse
Affiliation(s)
| | - Brain J Mostaert
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Bryce Hunger
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Utsow Saha
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | | | - Ibrahim Razu
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Nasrin Farjana
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Nashwaan Ali Khan
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Sarah Coleman
- Department of Statistics, The University of Iowa, IA
| | - Jackob Oleson
- Department of Statistics, The University of Iowa, IA
| | | | - Hirose Keiko
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| |
Collapse
|
15
|
Schraivogel S, Aebischer P, Weder S, Caversaccio M, Wimmer W. Cochlear implant electrode impedance subcomponents as biomarker for residual hearing. Front Neurol 2023; 14:1183116. [PMID: 37288065 PMCID: PMC10242064 DOI: 10.3389/fneur.2023.1183116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction and objectives Maintaining the structural integrity of the cochlea and preserving residual hearing is crucial for patients, especially for those for whom electric acoustic stimulation is intended. Impedances could reflect trauma due to electrode array insertion and therefore could serve as a biomarker for residual hearing. The aim of this study is to evaluate the association between residual hearing and estimated impedance subcomponents in a known collective from an exploratory study. Methods A total of 42 patients with lateral wall electrode arrays from the same manufacturer were included in the study. For each patient, we used data from audiological measurements to compute residual hearing, impedance telemetry recordings to estimate near and far-field impedances using an approximation model, and computed tomography scans to extract anatomical information about the cochlea. We assessed the association between residual hearing and impedance subcomponent data using linear mixed-effects models. Results The progression of impedance subcomponents showed that far-field impedance was stable over time compared to near-field impedance. Low-frequency residual hearing demonstrated the progressive nature of hearing loss, with 48% of patients showing full or partial hearing preservation after 6 months of follow-up. Analysis revealed a statistically significant negative effect of near-field impedance on residual hearing (-3.81 dB HL per kΩ; p < 0.001). No significant effect of far-field impedance was found. Conclusion Our findings suggest that near-field impedance offers higher specificity for residual hearing monitoring, while far-field impedance was not significantly associated with residual hearing. These results highlight the potential of impedance subcomponents as objective biomarkers for outcome monitoring in cochlear implantation.
Collapse
Affiliation(s)
- Stephan Schraivogel
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Aebischer
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Weiss N. [Cochlear implantation - Adverse effects on the cochlea and the vestibular organ]. Laryngorhinootologie 2023; 102:381-389. [PMID: 37141880 DOI: 10.1055/a-1961-5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cochlear implantation is the treatment of choice for patients with profound hearing loss and deafness. At the same time, inserting a cochlear implant (CI) leaves damage to the inner ear. The preservation of inner ear structure and function has become a central issue in CI surgery. The reasons for this are i) electroacoustic stimulation (EAS), i.e., the option of joint stimulation by a hearing aid and a CI; ii) an improved audiologic outcome in electric-only stimulation; iii) the preservation of structures and residual hearing for potential future therapy options; and iv) the avoidance of side effects, such as vertigo. The exact mechanisms that determine the extent of damage to the inner ear and which factors contribute to preservation of residual hearing are not yet fully understood. In addition to the surgical technique, electrode selection may play a role. This article provides an overview of what is known about the direct and indirect adverse effects of cochlear implantation on the inner ear, of the methods available to monitor inner ear function during cochlear implantation, and of the focus of future research on preservation of inner ear structure and function.
Collapse
|
17
|
Schuerch K, Wimmer W, Dalbert A, Rummel C, Caversaccio M, Mantokoudis G, Gawliczek T, Weder S. An intracochlear electrocochleography dataset - from raw data to objective analysis using deep learning. Sci Data 2023; 10:157. [PMID: 36949075 PMCID: PMC10033652 DOI: 10.1038/s41597-023-02055-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Electrocochleography (ECochG) measures electrophysiological inner ear potentials in response to acoustic stimulation. These potentials reflect the state of the inner ear and provide important information about its residual function. For cochlear implant (CI) recipients, we can measure ECochG signals directly within the cochlea using the implant electrode. We are able to perform these recordings during and at any point after implantation. However, the analysis and interpretation of ECochG signals are not trivial. To assist the scientific community, we provide our intracochlear ECochG data set, which consists of 4,924 signals recorded from 46 ears with a cochlear implant. We collected data either immediately after electrode insertion or postoperatively in subjects with residual acoustic hearing. This data descriptor aims to provide the research community access to our comprehensive electrophysiological data set and algorithms. It includes all steps from raw data acquisition to signal processing and objective analysis using Deep Learning. In addition, we collected subject demographic data, hearing thresholds, subjective loudness levels, impedance telemetry, radiographic findings, and classification of ECochG signals.
Collapse
Affiliation(s)
- Klaus Schuerch
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Adrian Dalbert
- Department of Otorhinolaryngology, Head&Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tom Gawliczek
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
18
|
Electrocochleographic Patterns Predicting Increased Impedances and Hearing Loss after Cochlear Implantation. Ear Hear 2022:00003446-990000000-00095. [PMID: 36550618 DOI: 10.1097/aud.0000000000001319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Different patterns of electrocochleographic responses along the electrode array after insertion of the cochlear implant electrode array have been described. However, the implications of these patterns remain unclear. Therefore, the aim of the study was to correlate different peri- and postoperative electrocochleographic patterns with four-point impedance measurements and preservation of residual hearing. DESIGN Thirty-nine subjects with residual low-frequency hearing which were implanted with a slim-straight electrode array could prospectively be included. Intracochlear electrocochleographic recordings and four-point impedance measurements along the 22 electrodes of the array (EL, most apical EL22) were conducted immediately after complete insertion and 3 months after surgery. Hearing preservation was assessed after 3 months. RESULTS In perioperative electrocochleographic recordings, 22 subjects (56%) showed the largest amplitude around the tip of the electrode array (apical-peak, AP, EL20 or EL22), whereas 17 subjects (44%) exhibited a maximum amplitude in more basal regions (mid-peak, MP, EL18 or lower). At 3 months, in six subjects with an AP pattern perioperatively, the location of the largest electrocochleographic response had shifted basally (apical-to-mid-peak, AP-MP). Latency was analyzed along the electrode array when this could be discerned. This was the case in 68 peri- and postoperative recordings (87% of all recordings, n = 78). The latency increased with increasing insertion depth in AP recordings (n = 38, median of EL with maximum latency shift = EL21). In MP recordings (n = 30), the maximum latency shift was detectable more basally (median EL12, p < 0.001). Four-point impedance measurements were available at both time points in 90% (n = 35) of all subjects. At the 3-month time point, recordings revealed lower impedances in the AP group (n = 15, mean = 222 Ω, SD = 63) than in the MP (n = 14, mean = 295 Ω, SD= 7 6) and AP-MP groups (n = 6, mean = 234 Ω, SD = 129; AP versus MP p = 0.026, AP versus AP-MP p = 0.023, MP versus AP-MP p > 0.999). The amplitudes of perioperative AP recordings showed a correlation with preoperative hearing thresholds (r2=0.351, p = 0.004). No such correlation was detectable in MP recordings (r2 = 0.033, p = 0.484). Audiograms were available at both time points in 97% (n = 38) of all subjects. The mean postoperative hearing loss in the AP group was 13 dB (n = 16, SD = 9). A significantly larger hearing loss was detectable in the MP and AP-MP groups with 28 (n = 17, SD = 10) and 35 dB (n = 6, SD = 13), respectively (AP versus MP p = 0.002, AP versus AP-MP p = 0.002, MP versus AP-MP p = 0.926). CONCLUSION MP and AP-MP response patterns of the electrocochleographic responses along the electrode array after cochlear implantation are correlated with higher four-point impedances and poorer postoperative hearing compared to AP response patterns. The higher impedances suggest that MP and AP-MP patterns are associated with increased intracochlear fibrosis.
Collapse
|
19
|
Razmovski T, Bester C, Collins A, Tan E, O'Leary SJ. Four-Point Impedance Changes After Cochlear Implantation for Lateral Wall and Perimodiolar Implants. Otol Neurotol 2022; 43:e1107-e1114. [PMID: 36351225 DOI: 10.1097/mao.0000000000003732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Monitor four-point impedance in cochlear implant recipients over time and determine if implant type, surgical approach, and electrode positioning affected impedance measurements. STUDY DESIGN Prospective observational. SETTING Hospital. PATIENTS Adult cochlear implant recipients implanted with a perimodiolar or lateral wall cochlear implant. MAIN OUTCOME MEASURES Mean values for four-point impedances were calculated for all electrode contacts at perioperative and 3 months after surgery. Linear mixed models were applied to the impedance data to compare between implant types and time points. The angular insertion depth and electrode position relative to the medial and lateral wall, commonly termed the Intracochlear Position Index (ICPI), were collected and compared with impedance measurements. RESULTS Perioperatively, the four-point impedance was similar between implant types, with perimodiolar implants having marginally higher impedance values in the basal region. At 3 months after surgery, impedances significantly increased in the basal half of the electrode array for both implants, with higher impedance values for CI532 implants. There were no significant differences in insertion angle depth between implant types. The ICPI values for the seven most basal electrodes were similar for both implants; however, CI532 arrays were significantly more medially placed along the remaining apical portion of the array, which is expected. ICPI values did not correlate with impedance measurements for either implant. CONCLUSIONS Four-point impedance increases at 3 months after surgery may reflect fibrous tissue formation after cochlear implantation. The higher impedance values in perimodiolar implants may reflect a more extensive fibrosis formation as a result of surgical approaches used, requiring drilling of the cochlea bone.
Collapse
Affiliation(s)
- Tayla Razmovski
- Department of Surgery (Otolaryngology), The University of Melbourne
| | | | - Aaron Collins
- Department of Surgery (Otolaryngology), The University of Melbourne
| | - Eren Tan
- Department of Surgery (Otolaryngology), The University of Melbourne
| | | |
Collapse
|
20
|
Rahman MT, Chari DA, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 2022; 422:108536. [PMID: 35709579 PMCID: PMC9684357 DOI: 10.1016/j.heares.2022.108536] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Cochlear implants provide effective auditory rehabilitation for patients with severe to profound sensorineural hearing loss. Recent advances in cochlear implant technology and surgical approaches have enabled a greater number of patients to benefit from this technology, including those with significant residual low frequency acoustic hearing. Nearly all cochleae implanted with a cochlear implant electrode array develop an inflammatory and fibrotic response. This tissue reaction can have deleterious consequences for implant function, residual acoustic hearing, and the development of the next generation of cochlear prosthetics. This article reviews the current understanding of the inflammatory/foreign body response (FBR) after cochlear implant surgery, its impact on clinical outcome, and therapeutic strategies to mitigate this response. Findings from both in human subjects and animal models across a variety of species are highlighted. Electrode array design, surgical techniques, implant materials, and the degree and type of electrical stimulation are some critical factors that affect the FBR and inflammation. Modification of these factors and various anti-inflammatory pharmacological interventions have been shown to mitigate the inflammatory/FBR response. Ongoing and future approaches that seek to limit surgical trauma and curb the FBR to the implanted biomaterials of the electrode array are discussed. A better understanding of the anatomical, cellular and molecular basis of the inflammatory/FBR response after cochlear implantation has the potential to improve the outcome of current cochlear implants and also facilitate the development of the next generation of neural prostheses.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Divya A Chari
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Gail Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Ivan Lopez
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
21
|
Four-point Impedance Changes in the Early Post-Operative Period After Cochlear Implantation. Otol Neurotol 2022; 43:e730-e737. [PMID: 35861642 DOI: 10.1097/mao.0000000000003592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Monitoring four-point impedance changes after cochlear implantation with comparison to conventional impedance measurements. Four-point impedance provides information regarding the bulk biological environment surrounding the electrode array, which is not discernible with conventional impedances. STUDY DESIGN Prospective observational. SETTING Hospital. PATIENTS Adult cochlear implant recipients with no measurable hearing before implantation and implanted with a perimodiolar cochlear implant. MAIN OUTCOME MEASURES Mean values for four-point and common ground impedances were calculated for all electrode contacts at intra-operative, 1 day, 1 week, 4 to 6 weeks, and 3 months post implantation. Linear mixed models were applied to the impedance data to compare between impedances and time points. Furthermore, patients were divided into groups dependent on the normalized change in four-point impedance from intra-operative to 1 day post-operative. The normalized change was then calculated for all other time points and compared across the two groups. RESULTS Significant increases in four-point impedance occurred 1 day and 3 months after surgery, particularly in the basal half of the array. Four-point impedance at 1 day was highly predictive of four-point impedance at 3 months. Four-point impedance at the other time points showed marginal or no increases from intra-operative. Patients with an average increase higher than 10% in four-point impedance from intra-operative to 1 day, had significantly higher values at 3 months ( p = 0.012). These patterns were not observed in common ground impedance. CONCLUSION This is the first study to report increases in four-point impedance within 24 hours of cochlear implantation. The increases at 1 day and 3 months align with the natural timeline of an acute and chronic inflammatory responses.
Collapse
|
22
|
Wimmer W, Sclabas L, Caversaccio M, Weder S. Cochlear Implant Electrode Impedance as Potential Biomarker for Residual Hearing. Front Neurol 2022; 13:886171. [PMID: 35832176 PMCID: PMC9271767 DOI: 10.3389/fneur.2022.886171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction and ObjectivesAmong cochlear implant candidates, an increasing number of patients are presenting with residual acoustic hearing. To monitor the postoperative course of structural and functional preservation of the cochlea, a reliable objective biomarker would be desirable. Recently, impedance telemetry has gained increasing attention in this field. The aim of this study was to investigate the postoperative course of the residual acoustic hearing and clinical impedance in patients with long electrode arrays and to explore the applicability of impedance telemetry for monitoring residual hearing.MethodsWe retrospectively analyzed records of 42 cochlear implant recipients with residual hearing covering a median postoperative follow-up of 25 months with repeated simultaneous pure tone audiometry and impedance telemetry. We used a linear mixed-effects model to estimate the relation between clinical electrode impedance and residual hearing. Besides the clinical impedance, the follow-up time, side of implantation, gender, and age at implantation were included as fixed effects. An interaction term between impedance and follow-up time, as well as subject-level random intercepts and slopes, were included.ResultsLoss of residual hearing occurred either during surgery or within the first 6 post-operative months. Electrode contacts inserted further apically (i.e., deeper) had higher impedances, independent of residual hearing. The highest impedances were measured 1 month postoperatively and gradually decreased over time. Basal electrodes were more likely to maintain higher impedance. Follow-up time was significantly associated with residual hearing. Regardless of the time, we found that a 1 kΩ increase in clinical impedance was associated with a 4.4 dB deterioration of residual hearing (p < 0.001).ConclusionPure tone audiometry is the current gold standard for monitoring postoperative residual hearing. However, the association of clinical impedances with residual hearing thresholds found in our study could potentially be exploited for objective monitoring using impedance telemetry. Further analysis including near-field related impedance components could be performed for improved specificity to local immune responses.
Collapse
Affiliation(s)
- Wilhelm Wimmer
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Wilhelm Wimmer
| | - Luca Sclabas
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of ENT—Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Biological Response Dynamics to Cochlear Implantation: Modeling and Modulating the Electrode–Tissue Interface. Ear Hear 2022; 43:1687-1697. [DOI: 10.1097/aud.0000000000001236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Leblans M, Sismono F, Vanpoucke F, van Dinther J, Lerut B, Kuhweide R, Offeciers E, Zarowski A. Novel Impedance Measures as Biomarker for Intracochlear Fibrosis. Hear Res 2022; 426:108563. [DOI: 10.1016/j.heares.2022.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
|
25
|
Lee SY, Jeon H, Kim Y, Choi HY, Carandang M, Yoo HS, Choi BY. Natural course of residual hearing preservation with a slim, modiolar cochlear implant electrode array. Am J Otolaryngol 2022; 43:103382. [PMID: 35151931 DOI: 10.1016/j.amjoto.2022.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/09/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Understanding residual hearing preservation and its natural course following cochlear implantation is important for developing rehabilitation strategies for hearing loss. However, non-uniform evaluation criteria and varying surgical skills pose challenges in fair comparison of the effect of different electrodes on residual hearing preservation. We compared the effect of a slim modiolar electrode (SME) and a slim straight electrode (SSE), implanted by a single surgeon, on progression of residual hearing using different parameters, based on cross-sectional and longitudinal audiological analyses. METHODS Patients with preoperative low-frequency pure-tone average (LFPTA) ≤85 dB at 250 and 500 Hz and who underwent minimally traumatic surgical techniques were included. The progression of residual hearing using threshold shifts, hearing preservation rate according to the HEARRING classification, and maintenance of functional low-frequency hearing potentially qualifying for a hybrid stimulation was analyzed up to five time points throughout the 1-year follow-up period. RESULTS Threshold shifts and hearing preservation rates according to the HEARRING classification of the electrodes were comparable from 3 months through 12 months postoperatively. Maintenance of functional low-frequency hearing, required for the usage of a hybrid stimulation, was similar for both electrodes. A substantial proportion of implantees with SME use a hybrid stimulation, resulting in long-term use. However, a difference in the pattern of postoperative residual hearing preservation between the two electrodes is possible, probably due to differences in their physical characteristics and location. Specifically, correlation analysis exhibited that significantly less tight modiolar proximity negatively affect the residual hearing preservation, albeit only at 3 months postoperatively, among patients with the SME. CONCLUSION Collectively, both SME and SSE implantation showed favorable residual hearing preservation. Our findings further refine the recently proposed hearing preservation with the SME and suggest that the physical characteristics and location of electrodes, in terms of electrode-to-modiolus distance, could affect loss of acoustic hearing in various ways.
Collapse
|
26
|
Tejani VD, Yang H, Kim JS, Hernandez H, Oleson JJ, Hansen MR, Gantz BJ, Abbas PJ, Brown CJ. Access and Polarization Electrode Impedance Changes in Electric-Acoustic Stimulation Cochlear Implant Users with Delayed Loss of Acoustic Hearing. J Assoc Res Otolaryngol 2022; 23:95-118. [PMID: 34686938 PMCID: PMC8782980 DOI: 10.1007/s10162-021-00809-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/25/2021] [Indexed: 02/03/2023] Open
Abstract
Acoustic hearing can be preserved after cochlear implant (CI) surgery, allowing for combined electric-acoustic stimulation (EAS) and superior speech understanding compared to electric-only hearing. Among patients who initially retain useful acoustic hearing, 30-40 % experience a delayed hearing loss that occurs 3 or more months after CI activation. Increases in electrode impedances have been associated with delayed loss of residual acoustic hearing, suggesting a possible role of intracochlear inflammation/fibrosis as reported by Scheperle et al. (Hear Res 350:45-57, 2017) and Shaul et al. (Otol Neurotol 40(5):e518-e526, 2019). These studies measured only total impedance. Total impedance consists of a composite of access resistance, which reflects resistance of the intracochlear environment, and polarization impedance, which reflects resistive and capacitive properties of the electrode-electrolyte interface as described by Dymond (IEEE Trans Biomed Eng 23(4):274-280, 1976) and Tykocinski et al. (Otol Neurotol 26(5):948-956, 2005). To explore the role of access and polarization impedance components in loss of residual acoustic hearing, these measures were collected from Nucleus EAS CI users with stable acoustic hearing and subsequent precipitous loss of hearing. For the hearing loss group, total impedance and access resistance increased over time while polarization impedance remained stable. For the stable hearing group, total impedance and access resistance were stable while polarization impedance declined. Increased access resistance rather than polarization impedance appears to drive the increase in total impedances seen with loss of hearing. Moreover, access resistance has been correlated with intracochlear fibrosis/inflammation in animal studies as observed by Xu et al. (Hear Res 105(1-2):1-29, 1997) and Tykocinski et al. (Hear Res 159(1-2):53-68, 2001). These findings thus support intracochlear inflammation as one contributor to loss of acoustic hearing in our EAS CI population.
Collapse
Affiliation(s)
- Viral D. Tejani
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA ,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA USA
| | - Hyejin Yang
- Department of Biomedical Engineering, University of Ulsan, Ulsan, South Korea
| | - Jeong-Seo Kim
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA ,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA USA
| | - Helin Hernandez
- Department of Biostatistics, University of Iowa, Iowa City, IA USA
| | - Jacob J. Oleson
- Department of Biostatistics, University of Iowa, Iowa City, IA USA
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA ,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA ,Department of Molecular Physiology and Biophysics, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Bruce J. Gantz
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA ,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Paul J. Abbas
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA ,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA USA
| | - Carolyn J. Brown
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA USA ,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA USA
| |
Collapse
|
27
|
Saoji AA, Graham M, Stein A, Koka K. Analysis of electrode impedance and its subcomponents for lateral wall, mid-scala, and perimodiolar electrodes in cochlear implants. Cochlear Implants Int 2021; 23:87-94. [PMID: 34895078 DOI: 10.1080/14670100.2021.2000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Electrode impedances play an important role in cochlear implant patient management. During clinical visits, electrode impedances are calculated from a single point voltage waveform. In the present study, multipoint electrode impedance analysis was performed to study electrode impedance and its subcomponents in patients with three different types of cochlear implant electrode arrays. DESIGN Voltage waveforms were measured at six different time points during the cathodic phase of a biphasic pulse in forty-seven cochlear implant patients with perimodiolar, mid-scala, or lateral wall electrode arrays. Multipoint electrode impedances were used to determine access resistance and polarization impedance. RESULTS Access resistance of approximately 5 kΩ was calculated across the three different electrode arrays. Mid-scala electrodes showed a smaller increase in impedances as a function of pulse duration compared to the other electrodes. Patients with lower impedances showed higher capacitance and lower resistance, suggesting that differences in electrochemical reaction at the electrodes' surface can influence impedances in cochlear implants. CONCLUSIONS Analysis of cochlear implant electrode impedances and their subcomponents provides valuable information about resistance to the flow of current between stimulating and return electrodes, and build an understanding of the contribution of electrochemical processes used to deliver electrical stimulation to the auditory nerve.
Collapse
Affiliation(s)
- Aniket A Saoji
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Madison Graham
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Amy Stein
- Research and Technology, Advanced Bionics, Valencia, CA, USA
| | - Kanthaiah Koka
- Research and Technology, Advanced Bionics, Valencia, CA, USA
| |
Collapse
|
28
|
Heutink F, Klabbers TM, Huinck WJ, Lucev F, van der Woude WJ, Mylanus EAM, Verbist BM. Ultra-High-Resolution CT to Detect Intracochlear New Bone Formation after Cochlear Implantation. Radiology 2021; 302:605-612. [PMID: 34874202 DOI: 10.1148/radiol.211400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Histopathologic studies reported that cochlear implantation, a well-established means to treat severe-to-profound sensorineural hearing loss, may induce inflammation, fibrosis, and new bone formation (NBF) with possible impact on loss of residual hearing and hearing outcome. Purpose To assess NBF in vivo after cochlear implantation with ultra-high-spatial-resolution (UHSR) CT and its implication on long-term residual hearing outcome. Materials and Methods In a secondary analysis of a prospective single-center cross-sectional study, conducted between December 2016 and January 2018, patients with at least 1 year of cochlear implantation experience underwent temporal bone UHSR CT and residual hearing assessment. Two observers evaluated the presence and location of NBF independently, and tetrachoric correlations were used to assess interobserver reliability. In addition, the scalar location of each electrode was assessed. After consensus agreement, participants were classified into two groups: those with NBF (n = 83) and those without NBF (n = 40). The association between NBF and clinical parameters, including electrode design, surgical approach, and long-term residual hearing loss, was tested using the χ2 and Student t tests. Results A total of 123 participants (mean age ± standard deviation, 63 years ± 13; 63 women) were enrolled. NBF was found in 83 of the 123 participants (68%) at 466 of 2706 electrode contacts (17%). Most NBFs (428 of 466, 92%) were found around the 10 most basal contacts, with an interobserver agreement of 86% (2297 of 2683 contacts). Associations between electrode types and surgical approaches were significant (58 of 79 participants with NBF and a precurved electrode vs 24 of 43 with NBF and a straight electrode, P = .04; 64 of 88 participants with NBF and a cochleostomy approach vs 18 of 34 with NBF and a round window approach, P = .03). NBF was least often seen in full scala tympani insertions, but there was no significant association between scalar position and NBF (P = .15). Long-term residual hearing loss was significantly larger in the group with NBF compared with the group without NBF (mean, 22.9 dB ± 14 vs 8.6 dB ± 18, respectively; P = .04). Conclusion In vivo detection of new bone formation (NBF) after cochlear implantation is possible by using ultra-high-spatial-resolution CT. Most cochlear implant recipients develop NBF, predominately located at the base of the cochlea. NBF adversely affects long-term residual hearing preservation. © RSNA, 2021.
Collapse
Affiliation(s)
- Floris Heutink
- From the Departments of Otorhinolaryngology (F.H., T.M.K., W.J.H., E.A.M.M.) and Radiology (W.J.v.d.W., B.M.V.), Radboud University Medical Center, Philips van Leydenlaan 16, Route 377, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands (F.H., T.M.K., W.J.H., E.A.M.M.); Department of Radiology, Civil Hospital, Vigevano, Italy (F.L.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (B.M.V.)
| | - Tim M Klabbers
- From the Departments of Otorhinolaryngology (F.H., T.M.K., W.J.H., E.A.M.M.) and Radiology (W.J.v.d.W., B.M.V.), Radboud University Medical Center, Philips van Leydenlaan 16, Route 377, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands (F.H., T.M.K., W.J.H., E.A.M.M.); Department of Radiology, Civil Hospital, Vigevano, Italy (F.L.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (B.M.V.)
| | - Wendy J Huinck
- From the Departments of Otorhinolaryngology (F.H., T.M.K., W.J.H., E.A.M.M.) and Radiology (W.J.v.d.W., B.M.V.), Radboud University Medical Center, Philips van Leydenlaan 16, Route 377, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands (F.H., T.M.K., W.J.H., E.A.M.M.); Department of Radiology, Civil Hospital, Vigevano, Italy (F.L.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (B.M.V.)
| | - Federica Lucev
- From the Departments of Otorhinolaryngology (F.H., T.M.K., W.J.H., E.A.M.M.) and Radiology (W.J.v.d.W., B.M.V.), Radboud University Medical Center, Philips van Leydenlaan 16, Route 377, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands (F.H., T.M.K., W.J.H., E.A.M.M.); Department of Radiology, Civil Hospital, Vigevano, Italy (F.L.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (B.M.V.)
| | - Willem Jan van der Woude
- From the Departments of Otorhinolaryngology (F.H., T.M.K., W.J.H., E.A.M.M.) and Radiology (W.J.v.d.W., B.M.V.), Radboud University Medical Center, Philips van Leydenlaan 16, Route 377, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands (F.H., T.M.K., W.J.H., E.A.M.M.); Department of Radiology, Civil Hospital, Vigevano, Italy (F.L.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (B.M.V.)
| | - Emmanuel A M Mylanus
- From the Departments of Otorhinolaryngology (F.H., T.M.K., W.J.H., E.A.M.M.) and Radiology (W.J.v.d.W., B.M.V.), Radboud University Medical Center, Philips van Leydenlaan 16, Route 377, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands (F.H., T.M.K., W.J.H., E.A.M.M.); Department of Radiology, Civil Hospital, Vigevano, Italy (F.L.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (B.M.V.)
| | - Berit M Verbist
- From the Departments of Otorhinolaryngology (F.H., T.M.K., W.J.H., E.A.M.M.) and Radiology (W.J.v.d.W., B.M.V.), Radboud University Medical Center, Philips van Leydenlaan 16, Route 377, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands (F.H., T.M.K., W.J.H., E.A.M.M.); Department of Radiology, Civil Hospital, Vigevano, Italy (F.L.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (B.M.V.)
| |
Collapse
|
29
|
Atturo F, Portanova G, Russo FY, Seta DD, Mariani L, Borel S, Greco A, Mosnier I, Mancini P. Cochlear implant in immune mediated inner ear diseases: Impedance variations and clinical outcomes. Cochlear Implants Int 2021; 23:70-79. [PMID: 34844527 DOI: 10.1080/14670100.2021.1992149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Immune-mediated inner ear disease (IMIED) might cause severe/profound hearing loss and these patients are considered ideal candidates to cochlear implant (CI) surgery. The aim of the study was to evaluate impedance changes over time. METHOD The Study Group (SG) was composed of CI IMIED patients (31 ears) and a Control Group (CG) of CI patients with hearing loss not related to their immune system (31 ears). Audiological performance and impedance values were measured and compared amongst groups at 3, 6, 12 and 18 months following the fitting sessions. RESULTS Speech perception was significantly better for SG in word and sentence recognition in quiet. Impedance values were, on average, significantly higher for apical and middle electrode segments in SG compared to CG at the 3- month follow-up and were maintained over time. Additionally, a subset of SG patients (active patients) experienced significantly greater impedance fluctuation corresponding to clinical symptom reactivation. CONCLUSION IMIED patients achieve good audiological performance. However, the relapsing inflammation could change the inner ear environment, causing impedance fluctuations and, consequently, more frequent CI fittings. Additionally, impedance evaluation could be utilized as an early warning sign of IMIED recurrence and as an aid to therapeutic decision-making.
Collapse
Affiliation(s)
- Francesca Atturo
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Ginevra Portanova
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | | | - Daniele De Seta
- Unit of Otorhinolaryngology, Department of Surgery, University of Cagliari, Cagliari, Italy
| | - Laura Mariani
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Stephanie Borel
- Service ORL, Otologie, Implants Auditifs et Chirurgie de la Base du Crâne, AP-HP, GHU Pitié-Salpêtrière, Paris, France
| | - Antonio Greco
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Isabelle Mosnier
- Service ORL, Otologie, Implants Auditifs et Chirurgie de la Base du Crâne, AP-HP, GHU Pitié-Salpêtrière, Paris, France
| | - Patrizia Mancini
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
30
|
Effects of in vivo repositioning of slim modiolar electrodes on electrical thresholds and speech perception. Sci Rep 2021; 11:15135. [PMID: 34302030 PMCID: PMC8302625 DOI: 10.1038/s41598-021-94668-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
The slim modiolar electrode has been reported to ensure better modiolar proximity than previous conventional perimodiolar electrodes and consistently high scala tympani localization. Nonetheless, variability in modiolar proximity exists even among slim modiolar electrodes, still leaving room for further improvement of modiolar proximity, which may positively affect functional outcomes. Given this, the pull-back maneuver was reported to increase the modiolar proximity of slim modiolar electrodes in a cadaveric study, but in vivo repositioning effects remain to be established. Here we identified that the pull-back maneuver led to better modiolar proximity than conventional insertion while maintaining a similar angular insertion depth. Notably, the reduced electrode-modiolus distance from the pull-back maneuver was associated with significantly lower impedances across electrodes postoperatively as well as reduced intraoperative electrophysiological thresholds than conventional insertion. Among adult cochlear implant recipients, this maneuver resulted in significantly better sentence recognition scores at three months postoperatively when compared to those with a conventional insertion; however, this benefit was not observed at later intervals. Collectively, slim modiolar electrodes with the pull-back maneuver further enhance the modiolar proximity, possibly leading to better open-set sentence recognition, at least in the early postoperative stage.
Collapse
|
31
|
Real Time Monitoring During Cochlear Implantation: Increasing the Accuracy of Predicting Residual Hearing Outcomes. Otol Neurotol 2021; 42:e1030-e1036. [PMID: 33859138 DOI: 10.1097/mao.0000000000003177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Real-time electrocochleography (rt-ECochG) is a method to detect intracochlear potential changes during cochlear implantation (CI). Steep amplitude drops of the cochlear microphonic (CM) signal (so called "ECochG events") have been correlated with worse residual hearing outcomes. However, the sensitivity and specificity of monitoring CM amplitude on its own are too low to use it as a biomarker. The aim of this article was to establish if additional signal components would help to better predict postoperative hearing outcomes. DESIGN AND SETTING Single-center, prospective cohort study at a tertiary referral hospital. PARTICIPANTS AND INTERVENTIONS Between 2017 and 2020, we included 73 adult patients receiving a lateral wall cochlear implant electrode. During electrode insertion, rt-ECochG measurements were performed. MAIN OUTCOMES We calculated a multiple regression analysis for patients with one ECochG event. The dependant variable was the relative acoustic hearing result 4 weeks after surgery. Independent variables were CM latency, a ratio of the auditory nerve neurophonic to the CM (the ANN/CM index) as well as CM signal recovery. RESULTS The change of the ANN/CM index linearly correlated with acoustic hearing outcomes 4 weeks after surgery. Adding this factor led to a statistically significant increase in the variance accounted for by the regression model. CONCLUSIONS When monitoring the implantation process with rt-ECochG, prediction of postoperative hearing thresholds is improved by addition of the ANN/CM index to a model that includes CM amplitude fluctuation.
Collapse
|
32
|
Parreño M, Di Lella FA, Fernandez F, Boccio CM, Ausili SA. Toward Self-Measures in Cochlear Implants: Daily and “Homemade” Impedance Assessment. Front Digit Health 2020; 2:582562. [PMID: 34713054 PMCID: PMC8521944 DOI: 10.3389/fdgth.2020.582562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cochlear implant (CI) impedance reflects the status of the electro neural interface, potentially acting as a biomarker for inner ear injury. Most impedance shifts are diagnosed retrospectively because they are only measured in clinical appointments, with unknown behavior between visits. Here we study the application and discuss the benefits of daily and remote impedance measures with software specifically designed for this purpose. Methods: We designed software to perform CI impedance measurements without the intervention of health personnel. Ten patients were recruited to self-measure impedance for 30 days at home, between CI surgery and activation. Data were transferred to a secured online server allowing remote monitoring. Results: Most subjects successfully performed measurements at home without supervision. Only a subset of measurements was missed due to lack of patient engagement. Data were successfully and securely transferred to the online server. No adverse events, pain, or discomfort was reported by participants. Discussion: This work overviews a flexible and highly configurable platform for self-measurement CI impedance. This novel approach simplifies the CI standard of care by reducing the number of clinical visits and by proving useful and constant information to CI clinicians.
Collapse
Affiliation(s)
- Matias Parreño
- Department of Otolaryngology, Hospital Italiano, Buenos Aires, Argentina
| | - Federico A. Di Lella
- Department of Otolaryngology, Hospital Italiano, Buenos Aires, Argentina
- *Correspondence: Federico A. Di Lella
| | | | - Carlos M. Boccio
- Department of Otolaryngology, Hospital Italiano, Buenos Aires, Argentina
| | - Sebastian A. Ausili
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
- Sebastian A. Ausili
| |
Collapse
|
33
|
Toward a Better Understanding of Electrocochleography: Analysis of Real-Time Recordings. ACTA ACUST UNITED AC 2020; 41:1560-1567. [DOI: 10.1097/aud.0000000000000871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Saoji AA, Adkins WJ, Olund AP, Graham M, Patel NS, Neff BA, Carlson ML, Driscoll CLW. Increase in cochlear implant electrode impedances with the use of electrical stimulation. Int J Audiol 2020; 59:881-888. [PMID: 32749178 DOI: 10.1080/14992027.2020.1799251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Electrode impedances play a critical role in cochlear implant programming. It has been previously shown that impedances rise during periods of non-use, such as the post-operative recovery period. Then when the device is activated and use is initiated, impedances fall and are typically stable. In this study, we report a new pattern where electrode impedances increase with device use and decrease with device rest. DESIGN Electrode impedances were measured three to four times every day over a span of 1-3 months for two cochlear implant patients. STUDY SAMPLE Two patients with a Nucleus cochlear implant participated in this study. RESULTS Both subjects in this study show wide fluctuations in electrode impedances. By taking serial electrode impedance measurements throughout a day of use, we observe that electrode impedances consistently increase with device use and decrease with device rest. CONCLUSION In this study, we report two cases of electrode impedances increasing as a function of device use. Numerous management strategies were employed to reduce this effect but none prevailed; a clear pathophysiologic mechanism remains elusive. Further study into the cause of this electrode impedance pattern is warranted to establish a management strategy for these cochlear implant users.
Collapse
Affiliation(s)
- Aniket A Saoji
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Weston J Adkins
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Amy P Olund
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Madison Graham
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Neil S Patel
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Brian A Neff
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Matthew L Carlson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Colin L W Driscoll
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| |
Collapse
|
35
|
Abstract
OBJECTIVES To assess the effect on impedance levels of intraoperative reinsertion of a cochlear implant (CI) array compared with matched controls. STUDY DESIGN Retrospective patient review. SETTING Cochlear implant center. PATIENTS CI recipients in the Sydney Cochlear Implant Centre (SCIC) database who required intraoperative array reinsertion and matched controls. Exclusion criteria; known preceding meningitis or labyrinthitis ossificans; electrode array buckling; incomplete "final" insertion. INTERVENTION Cochlear implantation. MAIN OUTCOME MEASURES Impedance values measured intraoperatively, at switch on, 3 months, 6 months, and 12 months postoperatively were analyzed. The Generalized Estimating Equation (GEE) Model was used to compare cases with controls for each device, at each time point, and for each channel. RESULTS Thirty-one reinsertion cases identified; six CI 422 arrays; 14 CI 24RE (ST) arrays, and 11 CI 512 arrays. No increase in impedance levels was found in the reinsertion cases when compared with their matched controls. The only statistical difference in impedance was seen in the CI 422 cohort at switch on with the reinsertion cases having lower impedances (p = 0.03). CONCLUSION This is the first study to examine impedance values in patients who underwent intraoperative CI array reinsertion and to compare them with the impedances of matched controls. No significant increase found in impedances between our reinsertion cases and matched controls, suggesting the reinsertion did not result in any additional trauma or inflammation. This has implications for surgery both in routine cases such as a faulty electrode and also for future design of mechanisms for delivery of intracochlear therapies.
Collapse
|
36
|
Prenzler NK, Salcher R, Lenarz T, Gaertner L, Warnecke A. Dose-Dependent Transient Decrease of Impedances by Deep Intracochlear Injection of Triamcinolone With a Cochlear Catheter Prior to Cochlear Implantation-1 Year Data. Front Neurol 2020; 11:258. [PMID: 32390924 PMCID: PMC7194199 DOI: 10.3389/fneur.2020.00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 02/02/2023] Open
Abstract
Administration of low-dose steroids via a catheter inserted into the cochlea to apply pharmaceuticals to more apical regions was previously shown not to be sufficient for long-term reduction of electrode impedances. The aim of the present study was to investigate the effect of intra-cochlear high-dose triamcinolone application on impedances in cochlear implant recipients. Patients received low-dose (4 mg/ml; n = 5) or high-dose (20 mg/ml; n = 5) triamcinolone via a cochlear catheter just prior to the insertion of a Med-El Flex28 electrode. Impedances were measured at defined time points from intra-operatively up to 12 months after first fitting and retrospectively compared with a control group (no steroid application). Patients who received a high-dose application of crystalloid triamcinolone showed significantly reduced impedances in the first fitting measurements compared to the control group. This effect was no longer detectable in patients of the low-dose group at that time. Looking at the different regions of the electrode, the impedance values were lowered significantly only at the basal and medial contacts. At later time points, there were no significant differences between any of the groups. This is the first study to demonstrate a dose-dependent reduction of impedances by deep intra-cochlear injection of triamcinolone in cochlear implant patients. With a high-dose, single application of triamcinolone using a cochlear catheter prior to insertion of a Flex28 electrode, the impedances can be significantly reduced up to and including the first fitting. Although the effect was longer lasting than when compared to low-dose triamcinolone, it was also not permanent.
Collapse
Affiliation(s)
- Nils K Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Rolf Salcher
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Lutz Gaertner
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| |
Collapse
|
37
|
Foggia MJ, Quevedo RV, Hansen MR. Intracochlear fibrosis and the foreign body response to cochlear implant biomaterials. Laryngoscope Investig Otolaryngol 2019; 4:678-683. [PMID: 31890888 PMCID: PMC6929576 DOI: 10.1002/lio2.329] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To report current knowledge on the topic of intracochlear fibrosis and the foreign body response following cochlear implantation (CI). METHODS A literature search was performed in PubMed to identify peer-reviewed articles. Search components included "cochlear implant," "Foreign body response (FBR)," and "fibrosis." Original studies and review articles relevant to the topic were included. RESULTS Ninety peer-reviewed articles describing the foreign body response or intracochlear fibrosis following CI were included. CONCLUSIONS Intracochlear fibrosis following CI represents a significant limiting factor for the success of CI users. Several strategies have been employed to mitigate the foreign body response within the cochlea including drug delivery systems and modifications in surgical technique and electrode design. A better understanding of the FBR has the potential to improve CI outcomes and the next generation of cochlear prostheses.
Collapse
Affiliation(s)
- Megan J. Foggia
- Department of Otolaryngology—Head & Neck SurgeryUniversity of Iowa Hospitals and ClinicsIowa CityIowa
| | - Rene Vielman Quevedo
- Department of Otolaryngology—Head & Neck SurgeryUniversity of Iowa Hospitals and ClinicsIowa CityIowa
| | - Marlan R. Hansen
- Department of Otolaryngology—Head & Neck SurgeryUniversity of Iowa Hospitals and ClinicsIowa CityIowa
- Department of NeurosurgeryUniversity of Iowa Hospitals and ClinicsIowa CityIowa
| |
Collapse
|