1
|
Zhu YB, Liu TL, Dai Q, Liu SF, Xiong P, Huang H, Yuan Y, Zhang TN, Chen Y. Characteristics and Risk Factors for Pediatric Sepsis. Curr Med Sci 2024; 44:648-656. [PMID: 38748371 DOI: 10.1007/s11596-024-2870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes. METHODS This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses. RESULTS A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1β (IL-1β) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1β levels were independent risk factors for poor prognosis in children with sepsis. CONCLUSION Lower Hb, ALB, and PLT counts and elevated IL-1β are independent risk factors for poor prognosis in children with sepsis.
Collapse
Affiliation(s)
- Yong-Bing Zhu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tong-Lin Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Dai
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Fan Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Xiong
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Huang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Yuan
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-Nan Zhang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Chen
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Golomidov AV, Grigoriev EV, Moses VG, Moses KB. Pathogenesis, Prognosis and Outcomes of Multiple Organ Failure in Newborns (Review). GENERAL REANIMATOLOGY 2022; 18:37-49. [DOI: 10.15360/1813-9779-2022-6-37-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Multiple organ failure (MOF) is the leading cause of neonatal mortality in intensive care units. The prevalence of MOF in newborns is currently unclear, since its incidence varies in asphyxia, sepsis, prematurity, and comorbidity, and depends on the level of development and funding of health care in different countries. Sepsis and acute respiratory distress syndrome prevail among the causes of MOF in this category of patients.Aim of the review. To summarize the available literature data on the pathogenesis, therapeutic strategies and outcomes of MOF in newborns.Material and methods. We searched PubMed, Scopus, Web of Science, and RSCI databases using the following keywords: «newborns, multiple organ failure, etiology, pathogenesis, premature, diagnosis, treatment, respiratory support, cardiotonic support», without language limitations. A total of 144 full-text sources were selected for analysis, 70% of which were published in the last five years and 50% were published in the last three years. Criteria for exclusion were low information value and outdated data.Results. The prevalence of MOF in neonates is currently unclear. This could be due to common association of neonatal MOF (as well as the adult one) with various diseases; thus, its incidence is not the same for asphyxia, sepsis, prematurity, and comorbidities. There is no precise data on neonatal mortality in MOF, but according to some reports, it may be as high as 13-50%.In newborns, MOF can be caused by two major causes, intrapartum/postnatal asphyxia and sepsis, but could also be influenced by other intranatal factors such as intrauterine infections and acute interruption of placental blood flow.The key element in the pathogenesis of neonate MOF is cytokinemia, which triggers universal critical pathways. Attempts to identify different clinical trajectories of critical illness in various categories of patients have led to the discovery of MOF phenotypes with specific patterns of systemic inflammatory response. This scientific trend is very promising for the creation of new classes of drugs and individual therapeutic pathways in neonates with MOF of various etiologies.The pSOFA scale is used to predict the outcome of neonatal MOF, however, the nSOFA scale has higher validity in premature infants with low birth weight.Central nervous system damage is the major MOF-associated adverse outcome in newborns, with gestational age and the timing of treatment initiation being key factors affecting risk of MOF development in both full-term and premature infants.Conclusion. The study of cellular messengers of inflammation, MOF phenotypes, mitochondrial insufficiency, and immunity in critically ill infants with MOF of various etiologies is a promising area of research. The pSOFA scale is suggested for predicting the outcome of MOF in full-term infants, while the nSOFA scale should be used in premature infants with low birth weight.
Collapse
Affiliation(s)
| | - E. V. Grigoriev
- Research Institute for Complex Problems of Cardiovascular Diseases
| | | | - K. B. Moses
- S.V. Belyaeva Kuzbass Regional Clinical Hospital
| |
Collapse
|
3
|
Yang Y, Xiao Z, Huang J, Gong L, Lu X. Role of Extracorporeal Membrane Oxygenation in Adults and Children With Refractory Septic Shock: A Systematic Review and Meta-Analysis. Front Pediatr 2022; 9:791781. [PMID: 35127592 PMCID: PMC8814621 DOI: 10.3389/fped.2021.791781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The benefits of extracorporeal membrane oxygenation in patients with refractory septic shock remain controversial. Current guidelines on the management of refractory septic shock recommend the consideration of extracorporeal membrane oxygenation as a salvage therapy. The difference between adults and children with septic refractory shock treated with extracorporeal membrane oxygenation has not been previously analyzed. We aimed to review peer-reviewed publications on the role of extracorporeal membrane oxygenation in adults and children with refractory septic shock. METHODS Studies reporting on mortality in both adults and children with refractory septic shock supported with extracorporeal membrane oxygenation published in PubMed, Cochrane Library, and Embase databases were included in the meta-analysis. Study eligibility was independently assessed by two authors, and disagreements were resolved by a third author. The outcome measure was survival at discharge. Subgroup analysis included the adult and pediatric groups. RESULTS Of the 293 articles screened, 14 original articles were identified for systematic review and meta-analysis. The cumulative estimate of survival (14 studies, 535 patients) in the cohort was 39% (95% confidence interval [CI]: 27-51%). During the subgroup analysis, the cumulative estimate of survival at discharge in the adult group (6 studies, 276 patients) in the cohort was 18% (95% CI: 10-27%), and that in the pediatric group (8 studies, 259 patients) was 53% (95% CI: 47-59%). CONCLUSIONS The survival rate of adults with refractory septic shock requiring extracorporeal membrane oxygenation was 18%, and children with refractory septic shock requiring extracorporeal membrane oxygenation had a higher survival rate (53%) than adults.
Collapse
Affiliation(s)
| | | | | | | | - Xiulan Lu
- Department of Intensive Care Unit of Hunan Children's Hospital, Changsha, China
| |
Collapse
|
4
|
Clark JD, Baden HP, Berkman ER, Bourget E, Brogan TV, Di Gennaro JL, Doorenbos AZ, McMullan DM, Roberts JS, Turnbull JM, Wilfond BS, Lewis-Newby M. Ethical Considerations in Ever-Expanding Utilization of ECLS: A Research Agenda. Front Pediatr 2022; 10:896232. [PMID: 35664885 PMCID: PMC9160718 DOI: 10.3389/fped.2022.896232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Technological advancements and rapid expansion in the clinical use of extracorporeal life support (ECLS) across all age ranges in the last decade, including during the COVID-19 pandemic, has led to important ethical considerations. As a costly and resource intensive therapy, ECLS is used emergently under high stakes circumstances where there is often prognostic uncertainty and risk for serious complications. To develop a research agenda to further characterize and address these ethical dilemmas, a working group of specialists in ECLS, critical care, cardiothoracic surgery, palliative care, and bioethics convened at a single pediatric academic institution over the course of 18 months. Using an iterative consensus process, research questions were selected based on: (1) frequency, (2) uniqueness to ECLS, (3) urgency, (4) feasibility to study, and (5) potential to improve patient care. Questions were categorized into broad domains of societal decision-making, bedside decision-making, patient and family communication, medical team dynamics, and research design and implementation. A deeper exploration of these ethical dilemmas through formalized research and deliberation may improve equitable access and quality of ECLS-related medical care.
Collapse
Affiliation(s)
- Jonna D Clark
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Division of Pediatric Bioethics and Palliative Care, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, WA, United States
| | - Harris P Baden
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Emily R Berkman
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Division of Pediatric Bioethics and Palliative Care, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, WA, United States
| | - Erica Bourget
- Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, WA, United States
| | - Thomas V Brogan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Jane L Di Gennaro
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Ardith Z Doorenbos
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, United States.,Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois, Chicago, IL, United States
| | - D Michael McMullan
- Division of Pediatric Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Joan S Roberts
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Jessica M Turnbull
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Benjamin S Wilfond
- Division of Pediatric Bioethics and Palliative Care, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, WA, United States
| | - Mithya Lewis-Newby
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Division of Pediatric Bioethics and Palliative Care, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, WA, United States
| | | |
Collapse
|
5
|
Cholette JM, Muszynski JA, Ibla JC, Emani S, Steiner ME, Vogel AM, Parker RI, Nellis ME, Bembea MM. Plasma and Platelet Transfusions Strategies in Neonates and Children Undergoing Cardiac Surgery With Cardiopulmonary Bypass or Neonates and Children Supported by Extracorporeal Membrane Oxygenation: From the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding. Pediatr Crit Care Med 2022; 23:e25-e36. [PMID: 34989703 PMCID: PMC8769357 DOI: 10.1097/pcc.0000000000002856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To present the recommendations and consensus statements with supporting literature for plasma and platelet transfusions in critically ill neonates and children undergoing cardiac surgery with cardiopulmonary bypass or supported by extracorporeal membrane oxygenation from the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding. DESIGN Systematic review and consensus conference of international, multidisciplinary experts in platelet and plasma transfusion management of critically ill children. SETTING Not applicable. PATIENTS Critically ill neonates and children following cardiopulmonary bypass or supported by extracorporeal membrane oxygenation. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A panel of nine experts developed evidence-based and, when evidence was insufficient, expert-based statements for plasma and platelet transfusions in critically ill neonates and children following cardiopulmonary bypass or supported by extracorporeal membrane oxygenation. These statements were reviewed and ratified by the 29 Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding experts. A systematic review was conducted using MEDLINE, EMBASE, and Cochrane Library databases, from inception to December 2020. Consensus was obtained using the Research and Development/University of California, Los Angeles Appropriateness Method. Results were summarized using the Grading of Recommendations Assessment, Development, and Evaluation method. We developed one good practice statement, two recommendations, and three expert consensus statements. CONCLUSIONS Whereas viscoelastic testing and transfusion algorithms may be considered, in general, evidence informing indications for plasma and platelet transfusions in neonatal and pediatric patients undergoing cardiac surgery with cardiopulmonary bypass or those requiring extracorporeal membrane oxygenation support is lacking.
Collapse
Affiliation(s)
- Jill M Cholette
- Department of Pediatrics, University of Rochester Golisano Children's Hospital, Rochester, NY
| | - Jennifer A Muszynski
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Juan C Ibla
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Sitaram Emani
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA
| | - Marie E Steiner
- Divisions of Critical Care and Hematology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN
| | - Adam M Vogel
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - Robert I Parker
- Professor Emeritus, Department of Pediatrics, Hematology/Oncology, Renaissance School of Medicine, SUNY at Stony Brook, Stony Brook, NY
| | - Marianne E Nellis
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, NY Presbyterian Hospital - Weill Cornell Medicine, New York, NY
| | - Melania M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Van de Voorde P, Turner NM, Djakow J, de Lucas N, Martinez-Mejias A, Biarent D, Bingham R, Brissaud O, Hoffmann F, Johannesdottir GB, Lauritsen T, Maconochie I. [Paediatric Life Support]. Notf Rett Med 2021; 24:650-719. [PMID: 34093080 PMCID: PMC8170638 DOI: 10.1007/s10049-021-00887-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
The European Resuscitation Council (ERC) Paediatric Life Support (PLS) guidelines are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations of the International Liaison Committee on Resuscitation (ILCOR). This section provides guidelines on the management of critically ill or injured infants, children and adolescents before, during and after respiratory/cardiac arrest.
Collapse
Affiliation(s)
- Patrick Van de Voorde
- Department of Emergency Medicine, Faculty of Medicine UG, Ghent University Hospital, Gent, Belgien
- Federal Department of Health, EMS Dispatch Center, East & West Flanders, Brüssel, Belgien
| | - Nigel M. Turner
- Paediatric Cardiac Anesthesiology, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, Niederlande
| | - Jana Djakow
- Paediatric Intensive Care Unit, NH Hospital, Hořovice, Tschechien
- Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Medical Faculty of Masaryk University, Brno, Tschechien
| | | | - Abel Martinez-Mejias
- Department of Paediatrics and Emergency Medicine, Hospital de Terassa, Consorci Sanitari de Terrassa, Barcelona, Spanien
| | - Dominique Biarent
- Paediatric Intensive Care & Emergency Department, Hôpital Universitaire des Enfants, Université Libre de Bruxelles, Brüssel, Belgien
| | - Robert Bingham
- Hon. Consultant Paediatric Anaesthetist, Great Ormond Street Hospital for Children, London, Großbritannien
| | - Olivier Brissaud
- Réanimation et Surveillance Continue Pédiatriques et Néonatales, CHU Pellegrin – Hôpital des Enfants de Bordeaux, Université de Bordeaux, Bordeaux, Frankreich
| | - Florian Hoffmann
- Pädiatrische Intensiv- und Notfallmedizin, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Ludwig-Maximilians-Universität, München, Deutschland
| | | | - Torsten Lauritsen
- Paediatric Anaesthesia, The Juliane Marie Centre, University Hospital of Copenhagen, Kopenhagen, Dänemark
| | - Ian Maconochie
- Paediatric Emergency Medicine, Faculty of Medicine Imperial College, Imperial College Healthcare Trust NHS, London, Großbritannien
| |
Collapse
|
7
|
Van de Voorde P, Turner NM, Djakow J, de Lucas N, Martinez-Mejias A, Biarent D, Bingham R, Brissaud O, Hoffmann F, Johannesdottir GB, Lauritsen T, Maconochie I. European Resuscitation Council Guidelines 2021: Paediatric Life Support. Resuscitation 2021; 161:327-387. [PMID: 33773830 DOI: 10.1016/j.resuscitation.2021.02.015] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
These European Resuscitation Council Paediatric Life Support (PLS) guidelines, are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. This section provides guidelines on the management of critically ill infants and children, before, during and after cardiac arrest.
Collapse
Affiliation(s)
- Patrick Van de Voorde
- Department of Emergency Medicine Ghent University Hospital, Faculty of Medicine UG, Ghent, Belgium; EMS Dispatch Center, East & West Flanders, Federal Department of Health, Belgium.
| | - Nigel M Turner
- Paediatric Cardiac Anesthesiology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
| | - Jana Djakow
- Paediatric Intensive Care Unit, NH Hospital, Hořovice, Czech Republic; Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Medical Faculty of Masaryk University, Brno, Czech Republic
| | | | - Abel Martinez-Mejias
- Department of Paediatrics and Emergency Medicine, Hospital de Terassa, Consorci Sanitari de Terrassa, Barcelona, Spain
| | - Dominique Biarent
- Paediatric Intensive Care & Emergency Department, Hôpital Universitaire des Enfants, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Bingham
- Hon. Consultant Paediatric Anaesthetist, Great Ormond Street Hospital for Children, London, UK
| | - Olivier Brissaud
- Réanimation et Surveillance Continue Pédiatriques et Néonatales, CHU Pellegrin - Hôpital des Enfants de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Florian Hoffmann
- Paediatric Intensive Care and Emergency Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Torsten Lauritsen
- Paediatric Anaesthesia, The Juliane Marie Centre, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Ian Maconochie
- Paediatric Emergency Medicine, Imperial College Healthcare Trust NHS, Faculty of Medicine Imperial College, London, UK
| |
Collapse
|