1
|
Ren X, Wang W, Li W, Sun L, Liu T, Zhou H, Han T, Sun C, Lu X, Tian W. Circadian rest-activity rhythms and multimorbidity and mortality risks among menopausal women: a trajectory analysis of a UK Biobank cohort. BMC Public Health 2025; 25:1304. [PMID: 40197377 PMCID: PMC11974044 DOI: 10.1186/s12889-025-22536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Menopausal women undergo substantial physiological changes that can impact their overall health. OBJECTIVES We examined relationships between circadian rest-activity rhythms (CRARs) and multimorbidity progression in this population. METHODS We used UK Biobank data, involving 10,138 participants, who were initially free of chronic conditions. We primarily focused on the relative amplitude (RA) of CRARs, tracking incident first chronic conditions (FCC), multimorbidity, and all-cause mortality. Multimorbidity was indicated by the presence of any 2/35 chronic conditions during the follow-up period. We used a multi-state model to assess the RA impact on the multimorbidity progression trajectory, encompassing transition from health to an FCC, to consequent multimorbidity, and ultimately to mortality, in parallel with sensitivity analyses to ensure results stability and reliability. RESULTS During a mean 8.13-year follow-up period, we identified 855 incident multimorbidity cases and recorded 88 deaths. In a multi-state model, a lower RA was associated with an increased risk of transition from health to FCC onset [hazard ratio (HR): 1.18, 95% confidence interval (CI): 1.07-1.31] and also from an FCC to multimorbidity development (HR: 1.34, 95% CI: 1.12-1.61), even after adjusting for several confounding factors. CONCLUSIONS Among menopausal women, circadian rhythm disturbance increased the risk of transitioning from health to a single chronic condition, as well as transitioning from a single chronic condition to multimorbidity.
Collapse
Affiliation(s)
- Xiyun Ren
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Wentong Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Wei Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Lishuang Sun
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Tianyu Liu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Haibo Zhou
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Tianshu Han
- Key Laboratory of Precision Nutrition and Health, Ministry of Education. Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Changhao Sun
- Key Laboratory of Precision Nutrition and Health, Ministry of Education. Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology &Department of Epidemiologynational Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P.R. China.
| | - Wenjing Tian
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, Harbin, 150081, P.R. China.
| |
Collapse
|
2
|
Osum M, Kalkan R. Circadian rhythm, epigenetics and disease interaction. Glob Med Genet 2025; 12:100006. [PMID: 39925445 PMCID: PMC11800305 DOI: 10.1016/j.gmg.2024.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 02/11/2025] Open
Abstract
Identifying the circadian clock first provided the genetic basis for behaviour, and our understanding of circadian rhythms has since expanded to provide molecular insight into disease and physiology. The synchronization of central and peripheral clocks and robust daily rhythms can be achieved in a wide range of physiological systems and homeostatic responses can be supplemented. The rhythmical epigenome, which works as a central regulator, determines the circadian transcription of cell types. The rhythmical epigenome imposes oscillation on biological systems that momentarily split metabolism within 24 h. Interactions between the endogenous circadian system govern blood pressure, sleep, obesity and postural variations. Human health is dependent on the circadian rhythm. It can depict disease dynamics as well as overall drug efficacy monitoring to optimize the therapy effect. Circadian rhythms can collectively drive various metabolic activities, but dietary habits, sleep patterns, and other factors can also influence the circadian rhythm. The synergy of circadian rhythm and metabolism can bring new insights and personalized analysis for disease development causes and prevention. The understanding of the molecular clock and disease relationship can be exploited to determine treatment timing as well as new therapy targets.
Collapse
Affiliation(s)
- Meyrem Osum
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Cyprus
| | - Rasime Kalkan
- Faculty of Medicine, European University of Lefke, Mersin 10, Lefke 99728, Northern Cyprus, Turkey
| |
Collapse
|
3
|
Jiménez-Pastor JM, Morales-Cané I, Rodríguez-Cortés FJ, López-Coleto L, Valverde-León R, Arévalo-Buitrago P, Medina-Valverde MJ, De la Fuente-Martos C, Acuña-Castroviejo D, Meira E Cruz M, Luque RM, Sarmento-Cabral A, López-Soto PJ. Interaction between clock genes, melatonin and cardiovascular outcomes from ICU patients. Intensive Care Med Exp 2025; 13:19. [PMID: 39961935 PMCID: PMC11832861 DOI: 10.1186/s40635-025-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Circadian rhythms, driven by biological clocks, help organisms align their physiological functions with environmental changes, promoting homeostasis. The central clock in the suprachiasmatic nucleus coordinates peripheral clocks via neurohumoral feedback involving proteins like CLOCK, BMAL1, CRY 1/2, and PER 1-3. In the ICU, these circadian processes often face disruptions from constant lighting, noise, and irregular sleep-wake cycles, impairing sleep quality and worsening stress responses. These disruptions can lead to adverse clinical effects, including higher cardiovascular complication rates. This study examines how ICU stays affect circadian rhythm regulators and their association with cardiovascular outcomes. RESULTS Significant differences were identified in melatonin levels and the expression of BMAL1, PER1, RORA, and NR1D1 between ICU stays of ≤7 days and >7 days. The APACHE-II severity scale influenced melatonin and the expression of CLOCK, PER2, CRY2, and RORA. Nonlinear relationships were observed between melatonin, clock genes, heart rate, and blood pressure (systolic and diastolic). In certain groups, molecular and physiological data showed correlations exceeding 90%. CONCLUSIONS These findings highlight a robust association between circadian disruption, as measured by melatonin and clock genes, and cardiovascular physiological rhythms in ICU patients.
Collapse
Affiliation(s)
- Jose M Jiménez-Pastor
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Nursing, Pharmacology and Physiotherapy, University of Córdoba, Córdoba, Spain
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Ignacio Morales-Cané
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Nursing, Pharmacology and Physiotherapy, University of Córdoba, Córdoba, Spain
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Francisco J Rodríguez-Cortés
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Nursing, Pharmacology and Physiotherapy, University of Córdoba, Córdoba, Spain
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Luna López-Coleto
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Nursing, Pharmacology and Physiotherapy, University of Córdoba, Córdoba, Spain
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Rocío Valverde-León
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Nursing, Pharmacology and Physiotherapy, University of Córdoba, Córdoba, Spain
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Pedro Arévalo-Buitrago
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Nursing, Pharmacology and Physiotherapy, University of Córdoba, Córdoba, Spain
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - María J Medina-Valverde
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Carmen De la Fuente-Martos
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Intensive Care Medicine, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
| | - Miguel Meira E Cruz
- Sleep Unit, Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine, Lisbon, Portugal
- Centro Europeu do Sono, Lisbon, Portugal
| | - Raúl M Luque
- GC27 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital (HURS), Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - André Sarmento-Cabral
- GC27 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.
- Reina Sofía University Hospital (HURS), Córdoba, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain.
| | - Pablo J López-Soto
- GC31 Group, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Nursing, Pharmacology and Physiotherapy, University of Córdoba, Córdoba, Spain.
- Department of Nursing, Reina Sofia University Hospital, 14004, Cordoba, Spain.
| |
Collapse
|
4
|
Shao F, Wang Z, Ye L, Wu R, Wang J, Yu QX, Wusiman D, Tuo Z, Yoo KH, Shu Z, Wei W, Li D, Cho WC, Liu Z, Feng D. Basic helix-loop-helix ARNT like 1 regulates the function of immune cells and participates in the development of immune-related diseases. BURNS & TRAUMA 2025; 13:tkae075. [PMID: 39830193 PMCID: PMC11741524 DOI: 10.1093/burnst/tkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
The circadian clock is an internal timekeeper system that regulates biological processes through a central circadian clock and peripheral clocks controlling various genes. Basic helix-loop-helix ARNT-like 1 (BMAL1), also known as aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL1), is a key component of the circadian clock. The deletion of BMAL1 alone can abolish the circadian rhythms of the human body. BMAL1 plays a critical role in immune cell function. Dysregulation of BMAL1 is linked to immune-related diseases such as autoimmune diseases, infectious diseases, and cancer, and vice versa. This review highlights the significant role of BMAL1 in governing immune cells, including their development, differentiation, migration, homing, metabolism, and effector functions. This study also explores how dysregulation of BMAL1 can have far-reaching implications and potentially contribute to the onset of immune-related diseases such as autoimmune diseases, infectious diseases, cancer, sepsis, and trauma. Furthermore, this review discusses treatments for immune-related diseases that target BMAL1 disorders. Understanding the impact of BMAL1 on immune function can provide insights into the pathogenesis of immune-related diseases and help in the development of more effective treatment strategies. Targeting BMAL1 has been demonstrated to achieve good efficacy in immune-related diseases, indicating its promising potential as a targetable therapeutic target in these diseases.
Collapse
Affiliation(s)
- Fanglin Shao
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, First Ring Road, Qingyang District, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, West Gate Street, Linhai City 317000, Zhejiang Province, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Qing-Xin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Huancheng North Road, Jiangbei District, Ningbo, Zhejiang Province, 315211, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, 615 W. State Street, West Lafayette, IN 47907, USA
| | - Zhouting Tuo
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Jinzhai South Road, Shushan District, Hefei, Anhui 230032, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, South Korea
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Shapingba Street, Shapingba District, Chongqing 400044, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Gascoigne Road, Yau Ma Tei, Kowloon, Hong Kong SAR, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, Gower Street, London W1T 6JF, London W1W 7TS, UK
| |
Collapse
|
5
|
Sopori S, Kavinay K, Bhan S, Saxena S, Medha M, Kumar R, Dhar A, Bhat A. CLOCK gene 3'UTR and exon 9 polymorphisms show a strong association with essential hypertension in a North Indian population. BMC Med Genomics 2024; 17:289. [PMID: 39696277 DOI: 10.1186/s12920-024-02056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hypertension (HTN) is a medical condition characterized by persistent systolic and diastolic blood pressures of ≥ 140 mmHg and ≥ 90 mmHg, respectively. With more than 1200 million adult patients aged 30-79 years worldwide according to the latest WHO data, HTN is a major health risk factor; more importantly, 46% of patients are unaware of this condition. Essential hypertension (EH), also known as primary hypertension, is the predominant subtype and has a complex etiology that involves both genetic and non-genetic factors. Majority of living organisms are influenced by the light and dark cycle of a day and respond to these changes through an intricate clock referred to as the "biological clock" or "circadian rhythm". The connection between circadian rhythm and blood pressure is well established, with many studies supporting the role of circadian rhythm gene mutation(s)/polymorphism(s) in EH. To date, no such data are available from any Indian population. METHODS This case‒control study was conducted on 405 EH patients and 505 healthy controls belonging to the Jammu region of North India after an informed consent was obtained from the participants. A total of three single nucleotide variants, two in the CLOCK gene (rs1801260 and rs34789226) and one in the BMAL1/ARNTL gene (rs6486121), were selected for genotyping. Genotyping was performed via the RFLP technique, and the applicable statistical analyses were performed via the SPSS and SNPStats programs. RESULTS Logistic regression analysis revealed a statistically significant association of both CLOCK gene variants rs1801260 (T > C 3'UTR) and rs34789226 (C > T Exon 9) and a nonsignificant association of the BMAL1/ARNTL intronic variant rs6486121 (C > T) with EH. The 3'UTR variant showed a statistically significant association under the codominant (p < 0.0001), dominant (p < 0.0001), and recessive (p = 0.0004) models. In contrast, the exon 9 variant showed a statistically significant negative association under the codominant (p = 0.003) and dominant (p = 0.015) models only. The rs6486121/rs1801260 and rs1801260/rs34789226/rs6486121 haplotypes showed significant differences in their distribution between cases and controls (p < 0.0001). Certain genotypes and haplotypes were found more common in hypertensive males than females. CONCLUSION This is a first report linking circadian rhythm gene polymorphisms with EH in any Indian population. The statistically significant association of the CLOCK gene 3'UTR and exon 9 polymorphisms with EH, highlight the potential role of this gene and probably other genes of the circadian pathway in the etiology of EH in the study population. Additionally, our study also revealed that certain genotypes are making males more susceptible to EH.
Collapse
Affiliation(s)
- Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Kavinay Kavinay
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Shreya Saxena
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Medha Medha
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, 182320, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India.
| |
Collapse
|
6
|
Choi Y, Yook JS, Cho EJ, Jeong I, Kim J, Zempo-Miyaki A, Chang E, Park DH, Kwak HB. Adolescent obesity and short sleep duration as independent risk factors for hypertension: a population-based cohort study. J Hum Hypertens 2024; 38:687-693. [PMID: 39174671 DOI: 10.1038/s41371-024-00946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Prevalence of hypertension in adolescents has increased worldwide and is considered a risk factor for hypertension and cardiovascular disease in adulthood. Although obesity and sleep deficiency increase this risk, the combined effects of these factors on hypertension remain unclear. This study aimed to examine the combined effects of obesity and sleep duration on hypertension in adolescents. This study was conducted using data from the 2016 to 2018 Korean National Health and Nutrition Examination Survey, which included a study population of 1272 adolescents. The participants were categorized into four groups based on sleep duration and body mass index (BMI) percentiles: normal sleep and normal body mass group (reference; normal), only short sleep group (short sleep), only overweight/obesity group (overweight/obesity), and short sleep and overweight/obesity group (short sleep and overweight/obesity). Short sleep duration was defined as <8 h of average sleep duration, and overweight/obesity was defined as a BMI ≥ 85th percentile. Hypertension in adolescents was defined as a systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg. The prevalence of hypertension was 9.2% among Korean adolescents. Short sleep duration with overweight/obesity were associated with a significantly increased risk of hypertension (odds ratio = 6.57; 95% confidence interval: 3.27-13.20) in adolescents, and controlling for the potential confounding variables only partially attenuated this relationship (odds ratio = 5.28; 95% confidence interval: 2.28-12.26). This study demonstrated that the coexistence of short sleep duration and obesity was associated with an increased risk of hypertension in Korean adolescents.
Collapse
Affiliation(s)
- Youngju Choi
- Institute for Specialized Teaching and Research (INSTAR), Inha University, Incheon, Republic of Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
| | - Jang Soo Yook
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
| | - Eun-Jeong Cho
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Ilyoung Jeong
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Junghoon Kim
- Sports and Exercise Medicine Laboratory, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Asako Zempo-Miyaki
- Faculty of Sports and Health Sciences, Ryutsu Keizai University, Ryugasaki, Japan
| | - Eunwook Chang
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea.
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea.
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
7
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
8
|
He SK, Wang JH, Li T, Yin S, Cui JW, Xiao YF, Tang Y, Wang J, Bai YJ. Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1293685. [PMID: 38089624 PMCID: PMC10711275 DOI: 10.3389/fendo.2023.1293685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The circadian rhythm generated by circadian clock genes functions as an internal timing system. Since the circadian rhythm controls abundant physiological processes, the circadian rhythm evolved in organisms is salient for adaptation to environmental change. A disturbed circadian rhythm is a trigger for numerous pathological events. Recently, accumulated data have indicated that kidney stone disease (KSD) is related to circadian rhythm disturbance. However, the mechanism between them has not been fully elucidated. In this narrative review, we summarized existing evidence to illustrate the possible association between circadian rhythm disturbance and KSD based on the epidemiological studies and risk factors that are linked to circadian rhythm disturbance and discuss some chronotherapies for KSD. In summary, KSD is associated with systemic disorders. Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are the major risk factors supported by sufficient data to cause KSD in patients with circadian rhythm disturbance, while others including hypertension, vitamin D deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction need further investigation. Then, some chronotherapies for KSD were confirmed to be effective, but the molecular mechanism is still unclear.
Collapse
Affiliation(s)
- Si-Ke He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian-Wei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
10
|
Wang J, She Q, Du J. Dapagliflozin attenuates myocardial remodeling in hypertension by activating the circadian rhythm signaling pathway. Arch Pharm Res 2023; 46:117-130. [PMID: 36729273 DOI: 10.1007/s12272-023-01430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a new kind of antidiabetic drug which has shown beneficial effects in reducing heart failure-related hospitalization and cardiovascular-related mortality. The mechanisms are complicated. Our study aimed to investigate the effects of dapagliflozin on the myocardium of spontaneously hypertensive rats (SHRs) without heart failure. Wistar-Kyoto rats were used as normal controls. SHRs were randomly divided into the SHR group and the -treated group. After 8 weeks of dapagliflozin treatment, the morphology of heart tissues was examined. The mRNA expression profiles were identified via RNA sequencing (RNA-Seq). Various analysis methods were used to find the differentially expressed genes (DEGs) to predict gene function and coexpression. After dapagliflozin treatment, systolic blood pressure was significantly reduced compared with that in the SHR group. Myocardial remodeling was ameliorated compared with that in the SHR group. After dapagliflozin intervention, 75 DEGs (|log2-fold change | > 0 and Q value < 0.05) were identified in the heart tissues compared to the SHR group. Quantitative real-time PCR analysis confirmed that the expression of the circadian rhythm genes Per3, Bhlhe41, and Nr1d1 was significantly upregulated, while the results were coincident with the RNA-Seq results. Dapagliflozin may effectively inhibit myocardial remodeling and regulate blood pressure. The mechanisms may be related to the activation of the circadian rhythm signaling pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
11
|
Luengas-Martinez A, Paus R, Iqbal M, Bailey L, Ray DW, Young HS. Circadian rhythms in psoriasis and the potential of chronotherapy in psoriasis management. Exp Dermatol 2022; 31:1800-1809. [PMID: 35851722 DOI: 10.1111/exd.14649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023]
Abstract
The physiology and pathology of the skin are influenced by daily oscillations driven by a master clock located in the brain, and peripheral clocks in individual cells. The pathogenesis of psoriasis is circadian-rhythmic, with flares of disease and symptoms such as itch typically being worse in the evening/night-time. Patients with psoriasis have changes in circadian oscillations of blood pressure and heart rate, supporting wider circadian disruption. In addition, shift work, a circadian misalignment challenge, is associated with psoriasis. These features may be due to underlying circadian control of key effector elements known to be relevant in psoriasis such as cell cycle, proliferation, apoptosis and inflammation. Indeed, peripheral clock pathology may lead to hyperproliferation of keratinocytes in the basal layers, insufficient apoptosis of differentiating keratinocytes in psoriatic epidermis, dysregulation of skin-resident and migratory immune cells and modulation of angiogenesis through circadian oscillation of vascular endothelial growth factor A (VEGF-A) in epidermal keratinocytes. Chronotherapeutic effects of topical steroids and topical vitamin D analogues have been reported, suggesting that knowledge of circadian phase may improve the efficacy, and therapeutic index of treatments for psoriasis. In this viewpoint essay, we review the current literature on circadian disruption in psoriasis. We explore the hypothesis that psoriasis is circadian-driven. We also suggest that investigation of the circadian components specific to psoriasis and that the in vitro investigation of circadian regulation of psoriasis will contribute to the development of a novel chronotherapeutic treatment strategy for personalised psoriasis management. We also propose that circadian oscillations of VEGF-A offer an opportunity to enhance the efficacy and tolerability of a novel anti-VEGF-A therapeutic approach, through the timed delivery of anti-VEGF-A drugs.
Collapse
Affiliation(s)
- Andrea Luengas-Martinez
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Muenster, Germany
- CUTANEON, Hamburg, Germany
| | - Mudassar Iqbal
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Laura Bailey
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Helen S Young
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Yuan L, Li Y, Chen M, Xue L, Wang J, Ding Y, Zhang J, Wu S, Ye Q, Zhang S, Yang R, Zhao H, Wu L, Liang T, Xie X, Wu Q. Antihypertensive Activity of Milk Fermented by Lactiplantibacillus plantarum SR37-3 and SR61-2 in L-NAME-Induced Hypertensive Rats. Foods 2022; 11:foods11152332. [PMID: 35954098 PMCID: PMC9367739 DOI: 10.3390/foods11152332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023] Open
Abstract
Probiotic fermented milk can lower the incidence rate of hypertension and is beneficial to the regulation of the intestinal microecology. However, the underlying molecular mechanism remains elusive. Here, we evaluated the role of the gut microbiota and its metabolites in the antihypertensive effect of milk fermented by the Lactiplantibacillus plantarum strains SR37-3 (PFM-SR37-3) and SR61-2 (PFM-SR61-2) in Ng-nitro-L-arginine methyl ester induced hypertensive rats. The results showed that PFM-SR37-3 and PFM-SR61-2 intervention significantly lowered the blood pressure (BP) of NG-nitro-L-arginine methyl ester induced hypertensive rats and attenuated renal injury. In particular, long-term administration of PFM inhibited a progressive elevation in SBP (170.22 ± 8.40 and 133.28 ± 6.09 by model group and PFM-SR37-3 treated model group, respectively, at the end of the 4 weeks; p < 0.01 PFM-SR37-3 treated model group versus model group) and DBP (133.83 ± 5.91 and 103.00 ± 6.41 by model group and PFM-SR37-3 treated model group, respectively, at the end of the 4 weeks; p < 0.01 PFM-SR37-3 treated model group versus model group). PFM-SR37-3 and PFM-SR61-2 reshaped the gut microbiome and metabolome, and especially regulated the metabolic levels of L-phenylalanine, L-methionine and L-valine in the intestine and blood circulation. The analysis of the target organ’s aortic transcriptome indicated that the protective effects of PFM-SR37-3 and PFM-SR61-2 were accompanied by the modulation of the BP circadian rhythm pathway, which was conducive to cardiovascular function. Vascular transcriptomic analysis showed that circadian rhythm and AMPK might be potential targets of hypertension. In addition, the ACE inhibition rates of Lactiplantibacillus plantarum SR37-3 and Lactiplantibacillus plantarum SR61-2 in vitro were 70.5% and 68.9%, respectively. Our research provides new insights into novel and safe options for hypertension treatment.
Collapse
Affiliation(s)
- Lin Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence:
| |
Collapse
|
13
|
Wu J, Fang S, Lu KT, Kumar G, Reho JJ, Brozoski DT, Otanwa AJ, Hu C, Nair AR, Wackman KK, Agbor LN, Grobe JL, Sigmund CD. Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac017. [PMID: 35493997 PMCID: PMC9045850 DOI: 10.1093/function/zqac017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/13/2023]
Abstract
Human hypertension caused by in-frame deletion of CULLIN3 exon-9 (Cul3∆9) is driven by renal and vascular mechanisms. We bred conditionally activatable Cul3∆9 transgenic mice with tamoxifen-inducible Tie2-CREERT2 mice to test the importance of endothelial Cul3. The resultant mice (E-Cul3∆9) trended towards elevated nighttime blood pressure (BP) correlated with increased nighttime activity, but displayed no difference in daytime BP or activity. Male and female E-Cul3∆9 mice together exhibited a decline in endothelial-dependent relaxation in carotid artery. Male but not female E-Cul3∆9 mice displayed severe endothelial dysfunction in cerebral basilar artery. There was no impairment in mesenteric artery and no difference in smooth muscle function, suggesting the effects of Cul3∆9 are arterial bed-specific and sex-dependent. Expression of Cul3∆9 in primary mouse aortic endothelial cells decreased endogenous Cul3 protein, phosphorylated (S1177) endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Protein phosphatase (PP) 2A, a known Cul3 substrate, dephosphorylates eNOS. Cul3∆9-induced impairment of eNOS activity was rescued by a selective PP2A inhibitor okadaic acid, but not by a PP1 inhibitor tautomycetin. Because NO deficiency contributes to salt-induced hypertension, we tested the salt-sensitivity of E-Cul3∆9 mice. While both male and female E-Cul3∆9 mice developed salt-induced hypertension and renal injury, the pressor effect of salt was greater in female mutants. The increased salt-sensitivity in female E-Cul3∆9 mice was associated with decreased renovascular relaxation and impaired natriuresis in response to a sodium load. Thus, CUL3 mutations in the endothelium may contribute to human hypertension in part through decreased endothelial NO bioavailability, renovascular dysfunction, and increased salt-sensitivity of BP.
Collapse
Affiliation(s)
- Jing Wu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Shi Fang
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA,Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Ko-Ting Lu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Gaurav Kumar
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - John J Reho
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Daniel T Brozoski
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Adokole J Otanwa
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Chunyan Hu
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Kelsey K Wackman
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Justin L Grobe
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | | |
Collapse
|
14
|
Manna S, Ruano CSM, Hegenbarth JC, Vaiman D, Gupta S, McCarthy FP, Méhats C, McCarthy C, Apicella C, Scheel J. Computational Models on Pathological Redox Signalling Driven by Pregnancy: A Review. Antioxidants (Basel) 2022; 11:585. [PMID: 35326235 PMCID: PMC8945226 DOI: 10.3390/antiox11030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is associated with a myriad of diseases including pregnancy pathologies with long-term cardiovascular repercussions for both the mother and baby. Aberrant redox signalling coupled with deficient antioxidant defence leads to chronic molecular impairment. Abnormal placentation has been considered the primary source for reactive species; however, placental dysfunction has been deemed secondary to maternal cardiovascular maladaptation in pregnancy. While various therapeutic interventions, aimed at combating deregulated oxidative stress during pregnancy have shown promise in experimental models, they often result as inconclusive or detrimental in clinical trials, warranting the need for further research to identify candidates. The strengths and limitations of current experimental methods in redox research are discussed. Assessment of redox status and oxidative stress in experimental models and in clinical practice remains challenging; the state-of-the-art of computational models in this field is presented in this review, comparing static and dynamic models which provide functional information such as protein-protein interactions, as well as the impact of changes in molecular species on the redox-status of the system, respectively. Enhanced knowledge of redox biology in during pregnancy through computational modelling such as generation of Systems Biology Markup Language model which integrates existing models to a larger network in the context of placenta physiology.
Collapse
Affiliation(s)
- Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland;
| | - Camino S. M. Ruano
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Jana-Charlotte Hegenbarth
- Department of Molecular Genetics, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 KH Maastricht, The Netherlands;
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Daniel Vaiman
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Rostock University, 18051 Rostock, Germany; (S.G.); (J.S.)
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland;
| | - Céline Méhats
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 K8AF Cork, Ireland;
| | - Clara Apicella
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, Rostock University, 18051 Rostock, Germany; (S.G.); (J.S.)
| |
Collapse
|
15
|
Ding R, Xiao Z, Jiang Y, Yang Y, Ji Y, Bao X, Xing K, Zhou X, Zhu S. Calcitriol ameliorates damage in high-salt diet-induced hypertension: Evidence of communication with the gut-kidney axis. Exp Biol Med (Maywood) 2021; 247:624-640. [PMID: 34894804 DOI: 10.1177/15353702211062507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have established a link between high-salt diet, inflammation, and hypertension. Vitamin D supplementation has shown anti-inflammatory effects in many diseases; gut microbiota is also associated with a wide variety of cardiovascular diseases, but potential role of vitamin D and gut microbiota in high-salt diet-induced hypertension remains unclear. Therefore, we used rats with hypertension induced by a high-salt diet as the research object and analyzed the transcriptome of their tissues (kidney and colon) and gut microbiome to conduct an overall analysis of the gut-kidney axis. We aimed to confirm the effects of high salt and calcitriol on the gut-kidney immune system and the composition of the intestinal flora. We demonstrate that consumption of a high-salt diet results in hypertension and inflammation in the colon and kidney and alteration of gut microbiota composition and function. High-salt diet-induced hypertension was found to be associated with seven microbial taxa and mainly associated with reduced production of the protective short-chain fatty acid butyrate. Calcitriol can reduce colon and kidney inflammation, and there are gene expression changes consistent with restored intestinal barrier function. The protective effect of calcitriol may be mediated indirectly by immunological properties. Additionally, the molecular pathways of the gut microbiota-mediated blood pressure regulation may be related to circadian rhythm signals, which needs to be further investigated. An innovative association analysis of the microbiota may be a key strategy to understanding the association between gene patterns and host.
Collapse
Affiliation(s)
- Ruifeng Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zilong Xiao
- Department of Cardiology, Zhongshan Hospital of Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yufeng Jiang
- Department of Nephrology, 66329Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yi Yang
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Yang Ji
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xunxia Bao
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Kaichen Xing
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Xinli Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
16
|
Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease. J Cardiovasc Pharmacol 2021; 79:254-263. [PMID: 34840256 DOI: 10.1097/fjc.0000000000001178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Molecular circadian clocks exist in almost all cells of the organism and operate for approximately 24 h, maintain the normal physiological and behavioral body processes and regulate metabolism of many cells related to a variety of disease states. Circadian rhythms regulate metabolism, mainly including neurotransmitters, hormones, amino acids and lipids. Circadian misalignment is related to metabolic syndromes, such as obesity, diabetes and hypertension, which have reached an alarming level in modern society. We reviewed the mechanism of the circadian clock and the interaction between circadian rhythm and metabolism, as well as circadian rhythm disturbance on the metabolism of hypertension, obesity and diabetes. Finally, we discuss how to use the circadian rhythm to prevent diseases. Thus, this review is a micro to macro discussion from the perspective of circadian rhythm and aims to provide basic ideas for circadian rhythm research and disease therapies.
Collapse
|
17
|
Aging disrupts the temporal organization of antioxidant defenses in the heart of male rats and phase shifts circadian rhythms of systolic blood pressure. Biogerontology 2021; 22:603-621. [PMID: 34554336 DOI: 10.1007/s10522-021-09938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Aging is one of the main risk factors for cardiovascular diseases, and oxidative stress is a key element responsible for the development of age-related pathologies. In addition, the alteration of circadian rhythms also contributes to cardiovascular pathology, but the underlying mechanisms are not well defined. We investigated the aging consequences on the temporal patterns of antioxidant defenses, the molecular clock machinery, and the blood pressure, in the heart of male rats maintained under constant darkness (free running) conditions. Male Holtzman rats from young adult (3-month-old) and older (22-month-old) groups were maintained under constant darkness (12-h dark:12-h dark, DD) condition during fifteen days before the experiment. After the DD period, heart ventricle samples were isolated every 4-h throughout a 24-h period. We observed circadian rhythms of catalase (CAT) and glutathione peroxidase (GPx) mRNA expression, as well as ultradian rhythms of Nrf2 mRNA levels, in the heart of young adult rats. We also found circadian oscillations of CAT and GPx enzymatic activities, reduced glutathione (GSH) and BMAL1 protein in the same group. Interestingly, aging abolished the rhythms of CAT and GPx enzymatic activities, phase-shifted the rhythm's acrophases of GSH and BMAL1 protein levels and turned circadian the ultradian oscillation of Nrf2 expression. Moreover, aging phase-shifted the circadian pattern of systolic blood pressure. In conclusion, aging modifies the temporal organization of antioxidant defenses and blood pressure, probably, as a consequence of a disruption in the circadian rhythm of the clock's transcriptional regulator, BMAL1, in heart.
Collapse
|
18
|
Abstract
Sleep is essential for healthy being and healthy functioning of human body as a whole, as well as each organ and system. Sleep disorders, such as sleep-disordered breathing, insomnia, sleep fragmentation, and sleep deprivation are associated with the deterioration in human body functioning and increased cardiovascular risks. However, owing to the complex regulation and heterogeneous state sleep per se can be associated with cardiovascular dysfunction in susceptible subjects. The understanding of sleep as a multidimensional concept is important for better prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia.
| | - Mikhail Bochkarev
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| | - Yurii Sviryaev
- Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| |
Collapse
|
19
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
20
|
Škrlec I, Talapko J, Juzbašić M, Steiner R. Sex Differences in Circadian Clock Genes and Myocardial Infarction Susceptibility. J Cardiovasc Dev Dis 2021; 8:53. [PMID: 34066863 PMCID: PMC8151899 DOI: 10.3390/jcdd8050053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The growing body of evidence shows a significant difference in the circadian rhythm of cardiovascular disease based on biological sex. The incidence of cardiovascular disease varies between women and men. Additionally, biological sex is vital for the timely application of therapy-chronotherapy, which benefits both sexes. This study aimed to examine the potential difference of single nucleotide polymorphisms (SNPs) of the circadian rhythm genes ARNTL, CLOCK, CRY2 and PER2 in women and men with myocardial infarction. A cross-sectional study was conducted, including 200 patients with myocardial infarction. Altogether, ten single nucleotide polymorphisms in the ARNTL, CLOCK, CRY2 and PER2 genes were analyzed. The Chi-square test yielded statistically significant differences in CLOCK gene rs11932595 polymorphism in a recessive genotype model between women and men with a p-value of 0.03 and an odds ratio 2.66, and a corresponding 95% confidence interval of 1.07 to 6.66. Other analyzed polymorphisms of the circadian rhythm genes ARNTL, CRY2, and PER2 did not significantly differ between the sexes. According to the study's current results, the CLOCK gene's genetic variability might affect myocardial infarction concerning biological sex.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Robert Steiner
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia;
- Clinical Department of Cardiovascular Diseases and Intensive Care, Clinic for Internal Medicine, University Hospital Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
21
|
Role of High Energy Breakfast "Big Breakfast Diet" in Clock Gene Regulation of Postprandial Hyperglycemia and Weight Loss in Type 2 Diabetes. Nutrients 2021; 13:nu13051558. [PMID: 34063109 PMCID: PMC8148179 DOI: 10.3390/nu13051558] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Postprandial hyperglycemia (PPHG) is strongly linked with the future development of cardiovascular complications in type 2 diabetes (T2D). Hence, reducing postprandial glycemic excursions is essential in T2D treatment to slow progressive deficiency of β-cell function and prevent cardiovascular complications. Most of the metabolic processes involved in PPHG, i.e., β-cell secretory function, GLP-1 secretion, insulin sensitivity, muscular glucose uptake, and hepatic glucose production, are controlled by the circadian clock and display daily oscillation. Consequently, postprandial glycemia displays diurnal variation with a higher glycemic response after meals with the same carbohydrate content, consumed at dusk compared to the morning. T2D and meal timing schedule not synchronized with the circadian clock (i.e., skipping breakfast) are associated with disrupted clock gene expression and is linked to PPHG. In contrast, greater intake in the morning (i.e., high energy breakfast) than in the evening has a resetting effect on clock gene oscillations and beneficial effects on weight loss, appetite, and reduction of PPHG, independently of total energy intake. Therefore, resetting clock gene expression through a diet intervention consisting of meal timing aligned to the circadian clock, i.e., shifting most calories and carbohydrates to the early hours of the day, is a promising therapeutic approach to improve PPHG in T2D. This review will focus on recent studies, showing how a high-energy breakfast diet (Bdiet) has resetting and synchronizing actions on circadian clock genes expression, improving glucose metabolism, postprandial glycemic excursions along with weight loss in T2D.
Collapse
|
22
|
Assessment of Selected Clock Proteins (CLOCK and CRY1) and Their Relationship with Biochemical, Anthropometric, and Lifestyle Parameters in Hypertensive Patients. Biomolecules 2021; 11:biom11040517. [PMID: 33808431 PMCID: PMC8067097 DOI: 10.3390/biom11040517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circadian rhythms misalignment is associated with hypertension. The aim of the study was to evaluate the concentration of selected clock proteins-cryptochrome 1 (CRY1) and circadian locomotor output cycles kaput (CLOCK) to determine their relationships with biochemical and anthropometric parameters and lifestyle elements (diet, physical activity, and quality of sleep) in hypertensive patients. METHODS In 31 females with hypertension (HT) and 55 non-hypertensive women (NHT) the CRY1 and CLOCK concentrations, total antioxidant status (TAS), lipid profile, and glycemia were analyzed. Blood pressure and anthropometric measurements, nutritional, exercise, and sleep analyses were performed. RESULTS In the HT group, the CRY1 level was 37.38% lower than in the NHT group. No differences were noted in CLOCK concentration between groups. BMI, FBG, and TG were higher in the HT group compared to the NHT group, while TC, LDL, and HDL levels were similar. The study showed no relationship between CRY1 or CLOCK concentrations and glucose or lipids profile, amount of physical activity, or sleep quality, although CRY1 was associated with some anthropometric indicators. In the HT group, increased CLOCK and CRY1 values were associated with a high TAS level. CONCLUSIONS The serum level of CRY1 could be considered in a detailed diagnostic of hypertension risk in populations with abnormal anthropometric indices.
Collapse
|
23
|
Hou Q, Zhang S, Li Y, Wang H, Zhang D, Qi D, Li Y, Jiang H. New insights on association between circadian rhythm and lipid metabolism in spontaneously hypertensive rats. Life Sci 2021; 271:119145. [PMID: 33548288 DOI: 10.1016/j.lfs.2021.119145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
AIMS The aim of this study is to provide new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in spontaneously hypertensive rats. MATERIALS AND METHODS An untargeted lipidomics using ultrahigh performance liquid chromatography-mass spectrometry metabolomics was used to identify the differentially expressed lipid metabolites over 24 h in Spontaneously hypertensive rats (SHR) with reference to Wistar-Kyoto rats (WKY). The expression of circadian clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2) and lipid metabolism related genes (Rev-erbα, Pparα and Sirt1) was analysed RT-qPCR. KEY FINDINGS Ten lipid metabolites with significant differences in their levels in SHR compared to WKY were identified. The levels of MG (25:0), PA (36:3) and PE (38:2) were lower and the levels of LysoPCs (20:0 and 20:3) and TGs (54:5, 59:12, 28:0, 60:10 and 60:13) were found to be higher in SHR. SHR showed obvious disorders in the expression of circadian genes and lipid metabolism associated genes. A strong association between the levels of lipid metabolites and circadian genes and lipid metabolism associated genes was found. SIGNIFICANCE Rhythm genes may further affect the 24-hour lipid metabolism level of spontaneously hypertensive rats by mediating lipid metabolism associated genes. This research provides new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in SHR.
Collapse
Affiliation(s)
- Qingqing Hou
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shiming Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Huanjun Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
24
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
25
|
Neuronal Activity Regulates Blood-Brain Barrier Efflux Transport through Endothelial Circadian Genes. Neuron 2020; 108:937-952.e7. [PMID: 32979312 DOI: 10.1016/j.neuron.2020.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
The blood vessels in the central nervous system (CNS) have a series of unique properties, termed the blood-brain barrier (BBB), which stringently regulate the entry of molecules into the brain, thus maintaining proper brain homeostasis. We sought to understand whether neuronal activity could regulate BBB properties. Using both chemogenetics and a volitional behavior paradigm, we identified a core set of brain endothelial genes whose expression is regulated by neuronal activity. In particular, neuronal activity regulates BBB efflux transporter expression and function, which is critical for excluding many small lipophilic molecules from the brain parenchyma. Furthermore, we found that neuronal activity regulates the expression of circadian clock genes within brain endothelial cells, which in turn mediate the activity-dependent control of BBB efflux transport. These results have important clinical implications for CNS drug delivery and clearance of CNS waste products, including Aβ, and for understanding how neuronal activity can modulate diurnal processes.
Collapse
|
26
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects. Curr Hypertens Rep 2020; 22:50. [PMID: 32661611 PMCID: PMC7359176 DOI: 10.1007/s11906-020-01063-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Blood pressure (BP) follows a circadian rhythm (CR) in normotensive subjects. BP increases in the morning and decreases at night. This review aims at providing an up-to-date overview regarding the molecular mechanisms underlying the circadian regulation of BP. RECENT FINDINGS The suprachiasmatic nucleus (SCN) is the regulatory center for CRs. In SCN astrocytes, the phosphorylated glycogen synthase kinase-3β (pGSK-3β) also follows a CR and its expression reaches a maximum in the morning and decreases at night. pGSK-3β induces the β-catenin migration to the nucleus. During the daytime, the nuclear β-catenin increases the expression of the glutamate excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). In SCN, EAAT2 removes glutamate from the synaptic cleft of glutamatergic neurons and transfers it to the astrocyte cytoplasm where GS converts glutamate into glutamine. Thus, glutamate decreases in the synaptic cleft. This decreases the stimulation of the glutamate receptors AMPA-R and NMDA-R located on glutamatergic post-synaptic neurons. Consequently, activation of NTS is decreased and BP increases. The opposite occurs at night. Despite several studies resulting from animal studies, the circadian regulation of BP appears largely controlled in normotensive subjects by the canonical WNT/β-catenin pathway involving the SCN, astrocytes, and glutamatergic neurons.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, 77104, Meaux, France.
| | - Olivier Schussler
- Department of Thoracic surgery, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Department of Cardiovascular Surgery, Research Laboratory, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Louis Hébert
- Cardiology Institute, Pitié-Salpétrière Hospital, AP-HP, Paris, France
| | - Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| |
Collapse
|
27
|
Li GY, Wang H, Chen H. Association of insulin resistance with polymorphic variants of Clock and Bmal1 genes: A case-control study. Clin Exp Hypertens 2020; 42:371-375. [PMID: 31612734 DOI: 10.1080/10641963.2019.1676769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Background: Little information is available in the literature for the correlation of insulin resistance (IR) and CLOCK gene polymorphism in Chinese population. This study aimed to investigate the relationship of HOMA-IR (homeostasis model assessment of insulin resistance) to polymorphic variants of Clock and Bmal1 genes in Chinese patients with essential hypertension.Methods: A total of 334 outpatients with essential hypertension (103 patients of HOMA-IR positive and 231 patients of HOMA-IR negative) were recruited to analyze Clock T3111C and Bmal1 A1420G genotypes with DNA sequencing approach.Results: Waist circumference, body mass index, glycated hemoglobin, total cholesterol, triglyceride, and plasminogen activator inhibitor-1 were significantly increased, while high-density lipoprotein cholesterol was significantly decreased in patients with HOMA-IR positive (P < .05-0.001 vs. patients with HOMA-IR negative). Twenty-four-hour ambulatory blood pressure monitoring showed that 24-h mean systolic blood pressure (SBP), especially nightime SBP, was higher in patients with HOMA-IR positive (P < .05 vs. patients with HOMA-IR negative). Notably, compared with the negative group, the distribution frequency of C allele of Clock T3111C and GG genotype of Bmal1 A1420G were significantly higher in the HOMA-IR positive group (29.1 vs. 10.8% P < .000 and 43.7 vs. 27.7% P = .007, respectively). Logistic regression analysis showed that C allele of Clock T3111C (OR = 4.128, CI 95% 2.313-7.368, p = .000) and GG genotype of Bmal1 A1420G (OR = 1.983, CI 95% 1.117-3.521, p = .019) were independent risk factors for potential HOMA-IR in Chinese patients with essential hypertension.Conclusion: Our results indicated that Chinese hypertensive patients with C allele of Clock T3111C or GG genotype of Bmal1 A1420G might be susceptible to IR and are more likely to develop high nighttime SBP.
Collapse
Affiliation(s)
- Gui-Yang Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, FJ, China
| | - Huan Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, FJ, China
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fuzhou, FJ, China
| | - Hui Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, FJ, China
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fuzhou, FJ, China
| |
Collapse
|
28
|
Bukosza EN, Kratochwill K, Kornauth C, Schachner H, Aufricht C, Gebeshuber CA. Podocyte RNA sequencing reveals Wnt- and ECM-associated genes as central in FSGS. PLoS One 2020; 15:e0231898. [PMID: 32302353 PMCID: PMC7164636 DOI: 10.1371/journal.pone.0231898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Loss of podocyte differentiation can cause nephrotic-range proteinuria and Focal and Segmental Glomerulosclerosis (FSGS). As specific therapy is still lacking, FSGS frequently progresses to end-stage renal disease. The exact molecular mechanisms of FSGS and gene expression changes in podocytes are complex and widely unknown as marker changes have mostly been assessed on the glomerular level. To gain a better insight, we isolated podocytes of miR-193a overexpressing mice, which suffer from FSGS due to suppression of the podocyte master regulator Wt1. We characterised the podocytic gene expression changes by RNAseq and identified many novel candidate genes not linked to FSGS so far. This included strong upregulation of the receptor tyrosine kinase EphA6 and a massive dysregulation of circadian genes including the loss of the transcriptional activator Arntl. By comparison with podocyte-specific changes in other FSGS models we found a shared dysregulation of genes associated with the Wnt signaling cascade, while classical podocyte-specific genes appeared widely unaltered. An overlap with gene expression screens from human FSGS patients revealed a strong enrichment in genes associated with extra-cellular matrix (ECM) and metabolism. Our data suggest that FSGS progression might frequently depend on pathways that are often overlooked when considering podocyte homeostasis.
Collapse
Affiliation(s)
- Eva Nora Bukosza
- Translational Medicine Institute, Semmelweis University Budapest, Budapest, Hungary
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Kornauth
- Clinical Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph A. Gebeshuber
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Aoyama S, Shibata S. Time-of-Day-Dependent Physiological Responses to Meal and Exercise. Front Nutr 2020; 7:18. [PMID: 32181258 PMCID: PMC7059348 DOI: 10.3389/fnut.2020.00018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
The mammalian circadian clock drives the temporal coordination in cellular homeostasis and it leads the day-night fluctuation of physiological functions, such as sleep/wake cycle, hormonal secretion, and body temperature. The mammalian circadian clock system in the body is classified hierarchically into two classes, the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and the peripheral clocks in peripheral tissues such as the intestine and liver, as well as other brain areas outside the SCN. The circadian rhythm of various tissue-specific functions is mainly controlled by each peripheral clock and partially by the central clock as well. The digestive, absorptive, and metabolic capacities of nutrients also show the day-night variations in several peripheral tissues such as small intestine and liver. It is therefore indicated that the bioavailability or metabolic capacity of nutrients depends on the time of day. In fact, the postprandial response of blood triacylglycerol to a specific diet and glucose tolerance exhibit clear time-of-day effects. Meal frequency and distribution within a day are highly related to metabolic functions, and optimal time-restricted feeding has the potential to prevent several metabolic dysfunctions. In this review, we summarize the time-of-day-dependent postprandial response of macronutrients to each meal and the involvement of circadian clock system in the time-of-day effect. Furthermore, the chronic beneficial and adverse effects of meal time and eating pattern on metabolism and its related diseases are discussed. Finally, we discuss the timing-dependent effects of exercise on the day-night variation of exercise performance and therapeutic potential of time-controlled-exercise for promoting general health.
Collapse
Affiliation(s)
- Shinya Aoyama
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Shigenobu Shibata
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
30
|
Oxidative stress: Normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165354. [DOI: 10.1016/j.bbadis.2018.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 02/03/2023]
|
31
|
Keshvari M, Nejadtaghi M, Hosseini-Beheshti F, Rastqar A, Patel N. Exploring the role of circadian clock gene and association with cancer pathophysiology. Chronobiol Int 2019; 37:151-175. [PMID: 31791146 DOI: 10.1080/07420528.2019.1681440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body's internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.
Collapse
Affiliation(s)
- Mahtab Keshvari
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mahdieh Nejadtaghi
- Department of Medical Genetics, faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Rastqar
- Department of Psychiatry and Neuroscience, Université Laval, Quebec, Canada
| | - Niraj Patel
- Centre de Recherche CERVO, Université Laval, Québec, Canada
| |
Collapse
|
32
|
Lin Y, Wang S, Zhou Z, Guo L, Yu F, Wu B. Bmal1 regulates circadian expression of cytochrome P450 3a11 and drug metabolism in mice. Commun Biol 2019; 2:378. [PMID: 31633069 PMCID: PMC6795895 DOI: 10.1038/s42003-019-0607-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolism is a major defense mechanism of the body against xenobiotic threats. Here we unravel a critical role of Bmal1 for circadian clock-controlled Cyp3a11 expression and xenobiotic metabolism. Bmal1 deficiency decreases the mRNA, protein and microsomal activity of Cyp3a11, and blunts their circadian rhythms in mice. A screen for Cyp3a11 regulators identifies two circadian genes Dbp and Hnf4α as potential regulatory mediators. Cell-based experiments confirm that Dbp and Hnf4α activate Cyp3a11 transcription by their binding to a D-box and a DR1 element in the Cyp3a11 promoter, respectively. Bmal1 binds to the P1 distal promoter to regulate Hnf4α transcriptionally. Cellular regulation of Cyp3a11 by Bmal1 is Dbp- and Hnf4α-dependent. Bmal1 deficiency sensitizes mice to toxicities of drugs such as aconitine and triptolide (and blunts circadian toxicity rhythmicities) due to elevated drug exposure. In summary, Bmal1 connects circadian clock and Cyp3a11 metabolism, thereby impacting drug detoxification as a function of daily time.
Collapse
Affiliation(s)
- Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Ziyue Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| |
Collapse
|
33
|
Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol 2019; 317:H1173-H1182. [PMID: 31585045 DOI: 10.1152/ajpheart.00312.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that the gut microbiota contributes to the pathogenesis of hypertension (HTN). The gut microbiota is a highly dynamic organ mediating numerous physiological functions, which can be influenced by external factors such as diet. In particular, a major modifiable risk factor for HTN is dietary sodium intake. Sodium consumption in the United States is significantly greater than that recommended by the federal government and organizations such as the American Heart Association. Because of the emerging connection between the gut microbiota and HTN, the interaction between dietary sodium and gut microbiota has sparked interest. High-sodium diets promote local and systemic tissue inflammation and impair intestinal anatomy compared with low sodium intake in both human and animal studies. It is biologically plausible that the gut microbiota mediates the inflammatory response, as it is in constant interaction with the immune system and is necessary for proper maturation of immune cells. Recent rodent data demonstrate that dietary sodium disrupts gut microbial homeostasis as gut microbiota composition shifts with dietary sodium manipulation. In this review, we will focus on gut microbiota activity in HTN and the influence of high dietary sodium intake with an emphasis on the immune system, bacterial metabolites, and the circadian clock.
Collapse
Affiliation(s)
- Katarina Smiljanec
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
34
|
Zhao Q, Sun H, Yin L, Wang L. miR‑126a‑5p‑Dbp and miR‑31a‑Crot/Mrpl4 interaction pairs crucial for the development of hypertension and stroke. Mol Med Rep 2019; 20:4151-4167. [PMID: 31545431 PMCID: PMC6797943 DOI: 10.3892/mmr.2019.10679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to integrate the mRNA and microRNA (miRNA) expression profiles of spontaneously hypertensive rats (SHR rats) and stroke-prone spontaneously hypertensive rats (SHRSP rats) to screen for potential therapeutic targets for hypertension and stroke. The datasets GSE41452, GSE31457, GSE41453 and GSE53363 were collected from the Gene Expression Omnibus (GEO) database to screen differentially expressed genes (DEGs). The GSE53361 dataset was obtained to analyze differentially expressed miRNAs (DEMs). The DEGs and DEMs were identified between SHR (or SHRSP) rats and normotensive Wistar-Kyoto (WKY) rats using the Linear Models for Microarray (limma) data method. Venn diagrams were used to show the SHR-specific, SHRSP-specific and SHR-SHRSP shared DEGs and DEMs, and these were utilized to construct the protein-protein interaction (PPI) and miRNA-mRNA regulatory networks. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to explore the function of the genes. Subsequently, the connectivity Map (CMAP) database was searched to identify small-molecule drugs. Comparisons between the GSE41452-GSE31457-GSE41453 merged and GSE53363 datasets identified 2 SHR-specific, 8 SHRSP-specific and 15 SHR-SHRSP shared DEGs. Function enrichment analysis showed that SHRSP-specific D-box binding PAR bZIP transcription factor (Dbp) was associated with circadian rhythm, and SHR-SHRSP shared carnitine O-octanoyltransferase (Crot) was involved in fatty acid metabolic processes or the inflammatory response via interacting with epoxide hydrolase 2 (EPHX2). SHR-SHRSP shared mitochondrial ribosomal protein L4 (Mrpl4) may exert roles by interacting with the threonine-tRNA ligase, TARS2. The miRNA regulatory network predicted that upregulated Dbp could be regulated by rno-miR-126a-5p, whereas downregulated Crot and Mrpl4 could be modulated by rno-miR-31a. The CMAP database predicted that small-molecule drugs, including botulin, Gly-His-Lys, and podophyllotoxin, may possess therapeutic potential. In conclusion, the present study has identified Dbp, Crot and Mrpl4 as potential targets for the treatment of hypertension and stroke. Furthermore, the expression of these genes may be reversed by the above miRNAs or drugs.
Collapse
Affiliation(s)
- Qini Zhao
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Huan Sun
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liquan Yin
- Department of Rehabilitation Medicine, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Libo Wang
- Department of Neurology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
35
|
Wu E, Zhang T, Tan C, Peng C, Chisti Y, Wang Q, Gong J. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. Eur J Nutr 2019; 59:1937-1950. [PMID: 31273522 DOI: 10.1007/s00394-019-02044-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/30/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Theabrownin (TB)-containing Pu-erh tea has been shown to be hypolipidemic in rats fed a high-fat diet. Physical exercise such as swinging is also known to reduce obesity. We hypothesized that TB in combination with swinging can synergistically ameliorate obesity and insulin resistance in rats with metabolic syndrome. METHODS TB, rosiglitazone, or lovastatin (controls) was administered by gavage to rats fed a diet high in fat, sugar, and salt. A subgroup of the rats was subjected to a 30-min daily swinging exercise regimen, whereas the other rats did not exercise. RESULTS Theabrownin in combination with swinging was found to significantly improve serum lipid status and prevent development of obesity and insulin resistance in rats. Liver transcriptomics data suggested that theabrownin activated circadian rhythm, protein kinase A, the adenosine monophosphate-activated protein kinase, and insulin signaling pathways by enhancing cyclic adenosine monophosphate levels and, hence, accelerating nutrient metabolism and the consumption of sugar and fat. The serum dopamine levels in rats increased significantly after exercise. In parallel work, intraperitoneal dopamine injections were shown to significantly reduce weight gain and prevent the elevation in triglyceride levels that would otherwise be induced by the high fat-sugar-salt diet. Theabrownin prevented obesity and insulin resistance mainly by affecting the circadian rhythm, while swinging exercise stimulated the overproduction of dopamine to accelerate metabolism of glucose and lipid. CONCLUSIONS Theabrownin and exercise synergistically ameliorated metabolic syndrome in rats and effectively prevented obesity.
Collapse
Affiliation(s)
- Enkai Wu
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Tingting Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China.
| |
Collapse
|
36
|
Canales MT, Holzworth M, Bozorgmehri S, Ishani A, Weiner ID, Berry RB, Beyth RJ, Gumz M. Clock gene expression is altered in veterans with sleep apnea. Physiol Genomics 2019; 51:77-82. [PMID: 30657733 DOI: 10.1152/physiolgenomics.00091.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clock gene dysregulation has been shown to underlie various sleep disorders and may lead to negative cardio-metabolic outcomes. However, the association between sleep apnea (SA) and core clock gene expression is unclear. We performed a cross-sectional analysis of 49 Veterans enrolled in a study of SA outcomes in veterans with chronic kidney disease, not selected for SA or sleep complaints. All participants underwent full polysomnography and next morning whole blood collection for clock gene expression. We defined SA as an apnea-hypopnea index ≥15 events/h; nocturnal hypoxemia(NH) was defined as ≥10% of total sleep time spent at <90% oxygen saturation. We used quantitative real-time PCR to compare the relative gene expression of clock genes between those with and without SA or NH. Clock genes studied were Bmal1, Ck1δ, Ck1ε, Clock, Cry1, Cry2, NPAS2, Per1, Per2, Per3, Rev-Erb-α, RORα, and Timeless. Our cohort was 90% male, mean age was 71 yr (SD 11), mean body mass index was 30 kg/m2 (SD 5); 41% had SA, and 27% had NH. Compared with those without SA, Per3 expression was reduced by 35% in SA ( P = 0.027). Compared with those without NH, NPAS2, Per1, and Rev-Erb-α expression was reduced in NH (50.4%, P = 0.027; 28.7%, P = 0.014; 31%, P = 0.040, respectively). There was no statistical difference in expression of the remaining clock genes by SA or NH status. Our findings suggest that SA or related NH and clock gene expression may be interrelated. Future study of 24 h clock gene expression in SA is needed to establish the role of clock gene regulation on the pathway between SA and cardio-metabolic outcomes.
Collapse
Affiliation(s)
- Muna T Canales
- Malcom Randall VA Medical Center , Gainesville, Florida.,Department of Medicine, Division of Nephrology, University of Florida , Gainesville, Florida
| | - Meaghan Holzworth
- Department of Medicine, Division of Nephrology, University of Florida , Gainesville, Florida
| | - Shahab Bozorgmehri
- Department of Medicine, Division of Nephrology, University of Florida , Gainesville, Florida
| | - Areef Ishani
- Minneapolis VA Medical Center and Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - I David Weiner
- Malcom Randall VA Medical Center , Gainesville, Florida.,Department of Medicine, Division of Nephrology, University of Florida , Gainesville, Florida
| | - Richard B Berry
- Malcom Randall VA Medical Center , Gainesville, Florida.,Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida , Gainesville, Florida
| | - Rebecca J Beyth
- Malcom Randall VA Medical Center , Gainesville, Florida.,Department of Medicine, Division of General Internal Medicine, University of Florida , Gainesville, Florida
| | - Michelle Gumz
- Department of Medicine, Division of Nephrology, University of Florida , Gainesville, Florida
| |
Collapse
|
37
|
|
38
|
De Lavallaz L, Musso CG. Chronobiology in nephrology: the influence of circadian rhythms on renal handling of drugs and renal disease treatment. Int Urol Nephrol 2018; 50:2221-2228. [PMID: 30324579 DOI: 10.1007/s11255-018-2001-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/04/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Chronobiology studies the phenomenon of rhythmicity in living organisms. The circadian rhythms are genetically determined and regulated by external synchronizers (the daylight cycle). Several biological processes involved in the pharmacokinetics and pharmacodynamics of drugs are subjected to circadian variations. Chronopharmacology studies how biological rhythms influence pharmacokinetics, pharmacodynamics, and toxicity, and determines whether time-of-day administration modifies the pharmacological characteristics of the drug. Chronotherapy applies chronopharmacological studies to clinical treatments, determining the best biological time for dosing: when the beneficial effects are maximal and the incidence and/or intensity of related side effects and toxicity are minimal. Most water-soluble drugs or drug metabolites are eliminated by urine through the kidney. The rate of drug clearance in the urine depends on several intrinsic variables related to renal function including renal blood flow, glomerular filtration rate, the ability of the kidney to reabsorb or to secrete drugs, urine flow, and urine pH, which influences the degree of urine acidification. Curiously, all these variables present a circadian behavior in different mammalian models. CONCLUSION The circadian rhythms have influence in the renal physiology, pathophysiology, and pharmacology, and these data should be taken into account in clinical nephrology practice.
Collapse
Affiliation(s)
- Lucas De Lavallaz
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carlos G Musso
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Guo L, Yu F, Zhang T, Wu B. The Clock Protein Bmal1 Regulates Circadian Expression and Activity of Sulfotransferase 1a1 in Mice. Drug Metab Dispos 2018; 46:1403-1410. [PMID: 30064996 DOI: 10.1124/dmd.118.082503] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/23/2018] [Indexed: 02/13/2025] Open
Abstract
Sulfotransferase 1a1 (Sult1a1) is a phase II enzyme that contributes extensively to metabolism and detoxification of various drugs and chemicals. Here we aimed to investigate a potential role of the clock protein Bmal1 (brain and muscle Arnt-like protein-1) in circadian regulation of Sult1a1 in mice. The regulatory effects of Bmal1 on Sult1a1 were assessed both in vivo (using Bmal1- deficient mice) and in vitro (using both normal and serum-shocked Hepa-1c1c7 cells). The relative mRNA and protein levels of Sult1a1 in the cells or mouse livers were measured by RT-qPCR and Western blotting, respectively. Sulfation activities of two Sult1a1 substrates (i.e., p-nitrophenol and galangin) were determined using mouse liver S9 fractions. Transcriptional regulation of Sult1a1 by Bmal1 was investigated using luciferase reporter, electrophoretic mobility shift (EMSA), and chromatin immunoprecipitation (ChIP) assays. We first showed that hepatic Sult1a1 was rhythmically expressed at both mRNA and protein levels (higher expressions during the night than the daytime). Consistently, the liver sulfation activities toward two Sult1a1 substrates were circadian time dependent with a higher activity at ZT14 than at ZT2. Furthermore, deletion of Bmal1 in mice blunted the circadian rhythmicity of hepatic Sult1a1 (with reduced expression levels). Likewise, Bmal1 positively regulated Sult1a1 expression in conventionally cultured Hepa-1c1c7 cells, and Bmal1 knockdown blunted expression rhythmicity of Sult1a1 in serum-shocked Hepa-1c1c7 cells. A combination of promoter analysis, EMSA and ChIP assays revealed that Bmal1 stimulated Sult1a1 transcription through its specific binding to the-571- to -554-bp region (an E-box element) in the promoter. In conclusion, Bmal1 activated the transcription of Sult1a1 and controlled circadian expression and activity of the enzyme.
Collapse
Affiliation(s)
- Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (L.G., F.Y., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (L.G., T.Z., B.W.), Jinan University, Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (L.G., F.Y., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (L.G., T.Z., B.W.), Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (L.G., F.Y., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (L.G., T.Z., B.W.), Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (L.G., F.Y., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (L.G., T.Z., B.W.), Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Tain YL, Lin YJ, Chan JYH, Lee CT, Hsu CN. Maternal melatonin or agomelatine therapy prevents programmed hypertension in male offspring of mother exposed to continuous light. Biol Reprod 2018; 97:636-643. [PMID: 29025027 DOI: 10.1093/biolre/iox115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/07/2017] [Indexed: 01/26/2023] Open
Abstract
Hypertension can originate from early-life insults, whereas maternal melatonin therapy can be protective in a variety of models of programmed hypertension. We hypothesize that melatonin or melatonin receptor agonist agomelatine can prevent programmed hypertension in adult offspring induced by maternal exposure to continuous light. Female Sprague-Dawley pregnant rats randomly divided into four groups: controls, rats exposed to continuous light, exposed to continuous light plus treated with agomelatine (50 mg/day i.p.), and exposed to continuous light plus treated with 0.01% melatonin in drinking water throughout pregnancy and lactation period. Male offspring (n = 10/group) from three litters were examined at 12 weeks of age. Maternal continuous light exposure-induced hypertension in male offspring, which was prevented by melatonin or agomelatine therapy. Continuous light exposure did not affect melatonin pathway in adult offspring kidney. Genes that belong to the renin-angiotensin system (RAS), sodium transporters, AMP-activated protein kinase pathway, and circadian rhythm were potentially involved in the maternal exposure to continuous light-induced programmed hypertension. Maternal agomelatine therapy decreased Ace expression but increased Agtr2 and Mas1. Maternal melatonin therapy prevented the increases of Slc9a3, Slc12a3, and Atp1a1 expression induced by maternal continuous light exposure. In conclusion, maternal melatonin or agomelatine therapy prevents programmed hypertension induced by maternal exposure to continuous light. Agomelatine and melatonin reprogram the RAS and sodium transporters differentially, to prevent negative programming of continuous light. Our data highlight candidate genes and pathways in renal programming as targets for therapeutic approaches to prevent programmed hypertension caused by early-life disturbance of the circadian rhythm.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Douma LG, Gumz ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med 2018; 119:108-114. [PMID: 29198725 PMCID: PMC5910276 DOI: 10.1016/j.freeradbiomed.2017.11.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Most bodily functions vary over the course of a 24h day. Circadian rhythms in body temperature, sleep-wake cycles, metabolism, and blood pressure (BP) are just a few examples. These circadian rhythms are controlled by the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks located throughout the body. Light and food cues entrain these clocks to the time of day and this synchronicity contributes to the regulation of a variety of physiological processes with effects on overall health. The kidney, brain, nervous system, vasculature, and heart have been identified through the use of mouse models and clinical trials as peripheral clock regulators of BP. The dysregulation of this circadian pattern of BP, with or without hypertension, is associated with increased risk for cardiovascular disease. The mechanism of this dysregulation is unknown and is a growing area of research. In this review, we highlight research of human and mouse circadian models that has provided insight into the roles of these molecular clocks and their effects on physiological functions. Additional tissue-specific studies of the molecular clock mechanism are needed, as well as clinical studies including more diverse populations (different races, female patients, etc.), which will be critical to fully understand the mechanism of circadian regulation of BP. Understanding how these molecular clocks regulate the circadian rhythm of BP is critical in the treatment of circadian BP dysregulation and hypertension.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
42
|
Zhang D, Pollock DM. Circadian regulation of kidney function: finding a role for Bmal1. Am J Physiol Renal Physiol 2018; 314:F675-F678. [PMID: 29357439 PMCID: PMC6031908 DOI: 10.1152/ajprenal.00580.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Mounting evidence suggests that there is an internal molecular "clock" within the kidney to help maintain normal renal function. Disturbance of the kidney circadian rhythm may pose a threat to water and electrolyte homeostasis and blood pressure regulation, among many other problems. The identification of circadian genes facilitated a more comprehensive appreciation of the importance of "keeping the body on time"; however, our knowledge is very limited with regard to how circadian genes regulate kidney function. In this brief review, we summarize recent progress in circadian control of renal physiology, with a particular focus on aryl hydrocarbon receptor nuclear translocator-like protein (Arntl1; also called Bmal1).
Collapse
Affiliation(s)
- Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
43
|
Pears S, Makris A, Hennessy A. The chronobiology of blood pressure in pregnancy. Pregnancy Hypertens 2018; 12:104-109. [DOI: 10.1016/j.preghy.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 01/31/2023]
|
44
|
Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases. Int J Mol Sci 2018; 19:ijms19020400. [PMID: 29385702 PMCID: PMC5855622 DOI: 10.3390/ijms19020400] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022] Open
Abstract
The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others' recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders.
Collapse
|
45
|
Douma LG, Holzworth MR, Solocinski K, Masten SH, Miller AH, Cheng KY, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Renal Na-handling defect associated with PER1-dependent nondipping hypertension in male mice. Am J Physiol Renal Physiol 2018; 314:F1138-F1144. [PMID: 29357420 DOI: 10.1152/ajprenal.00546.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | | | - Kristen Solocinski
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Sarah H Masten
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Amber H Miller
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Medicine, University of Florida , Gainesville, Florida
| | - I Jeanette Lynch
- Department of Medicine, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Charles S Wingo
- Department of Medicine, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
46
|
Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, Young ME, Pollock JS, Pollock DM. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol Renal Physiol 2018; 314:F89-F98. [PMID: 28971988 PMCID: PMC5866350 DOI: 10.1152/ajprenal.00028.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, Young ME, Pollock JS, Pollock DM. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol Renal Physiol 314: F89-F98, 2018. First published September 27, 2017; doi:10.1152/ajprenal.00028.2017.-Dyssynchrony of circadian rhythms is associated with various disorders, including cardiovascular and metabolic diseases. The cell autonomous molecular clock maintains circadian control; however, environmental factors that may cause circadian dyssynchrony either within or between organ systems are poorly understood. Our laboratory recently reported that the endothelin (ET-1) B (ETB) receptor functions to facilitate Na+ excretion in a time of day-dependent manner. Therefore, the present study was designed to determine whether high salt (HS) intake leads to circadian dyssynchrony within the kidney and whether the renal endothelin system contributes to control of the renal molecular clock. We observed that HS feeding led to region-specific alterations in circadian clock components within the kidney. For instance, HS caused a significant 5.5-h phase delay in the peak expression of Bmal1 and suppressed Cry1 and Per2 expression in the renal inner medulla, but not the renal cortex, of control rats. The phase delay in Bmal1 expression appears to be mediated by ET-1 because this phenomenon was not observed in the ETB-deficient rat. In cultured inner medullary collecting duct cells, ET-1 suppressed Bmal1 mRNA expression. Furthermore, Bmal1 knockdown in these cells reduced epithelial Na+ channel expression. These data reveal that HS feeding leads to intrarenal circadian dyssynchrony mediated, in part, through activation of ETB receptors within the renal inner medulla.
Collapse
Affiliation(s)
- Joshua S Speed
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kaehler Roth
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jermaine G Johnston
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Bryan K Becker
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
47
|
Jakubowicz D, Wainstein J, Landau Z, Raz I, Ahren B, Chapnik N, Ganz T, Menaged M, Barnea M, Bar-Dayan Y, Froy O. Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals With Diabetes: A Randomized Clinical Trial. Diabetes Care 2017; 40:1573-1579. [PMID: 28830875 DOI: 10.2337/dc16-2753] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 07/30/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The circadian clock regulates glucose metabolism by mediating the activity of metabolic enzymes, hormones, and transport systems. Breakfast skipping and night eating have been associated with high HbA1c and postprandial hyperglycemia after lunch and dinner. Our aim was to explore the acute effect of breakfast consumption or omission on glucose homeostasis and clock gene expression in healthy individuals and individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS In a crossover design, 18 healthy volunteers and 18 volunteers with 14.5 ± 1.5 years diabetes, BMI 30.7 ± 1.1 kg/m2, and HbA1c 7.6 ± 0.1% (59.6 ± 0.8 mmol/mol) were randomly assigned to a test day with breakfast and lunch (YesB) and a test day with only lunch (NoB). Postprandial clock and clock-controlled gene expression, plasma glucose, insulin, intact glucagon-like peptide 1 (iGLP-1), and dipeptidyl peptidase IV (DPP-IV) plasma activity were assessed after breakfast and lunch. RESULTS In healthy individuals, the expression level of Per1, Cry1, Rorα, and Sirt1 was lower (P < 0.05) but Clock was higher (P < 0.05) after breakfast. In contrast, in individuals with type 2 diabetes, Per1, Per2, and Sirt1 only slightly, but significantly, decreased and Rorα increased (P < 0.05) after breakfast. In healthy individuals, the expression level of Bmal1, Rorα, and Sirt1 was higher (P < 0.05) after lunch on YesB day, whereas the other clock genes remained unchanged. In individuals with type 2 diabetes, Bmal1, Per1, Per2, Rev-erbα, and Ampk increased (P < 0.05) after lunch on the YesB day. Omission of breakfast altered clock and metabolic gene expression in both healthy and individuals with type 2 diabetes. CONCLUSIONS Breakfast consumption acutely affects clock and clock-controlled gene expression leading to normal oscillation. Breakfast skipping adversely affects clock and clock-controlled gene expression and is correlated with increased postprandial glycemic response in both healthy individuals and individuals with diabetes.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Julio Wainstein
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Zohar Landau
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Itamar Raz
- Diabetes Unit, Hadassah University Hospital, Ein Kerem Hospital, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bo Ahren
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Ganz
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Miriam Menaged
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Maayan Barnea
- Department of Molecular Genetics, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yosefa Bar-Dayan
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
48
|
Moraes MN, de Assis LVM, Magalhães-Marques KK, Poletini MO, de Lima LHRG, Castrucci AMDL. Melanopsin, a Canonical Light Receptor, Mediates Thermal Activation of Clock Genes. Sci Rep 2017; 7:13977. [PMID: 29070825 PMCID: PMC5656685 DOI: 10.1038/s41598-017-13939-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melanopsin (OPN4) is a photo-pigment found in a small subset of intrinsically photosensitive ganglion cells (ipRGCs) of the mammalian retina. These cells play a role in synchronizing the central circadian pacemaker to the astronomical day by conveying information about ambient light to the hypothalamic suprachiasmatic nucleus, the site of the master clock. We evaluated the effect of a heat stimulus (39.5 °C) on clock gene (Per1 and Bmal1) expression in cultured murine Melan-a melanocytes synchronized by medium changes, and in B16-F10 melanoma cells, in the presence of the selective OPN4 antagonist AA92593, or after OPN4 knockdown by small interfering RNA (siRNA). In addition, we evaluated the effects of heat shock on the localization of melanopsin by immunocytochemistry. In both cell lines melanopsin was found in a region capping the nucleus and heat shock did not affect its location. The heat-induced increase of Per1 expression was inhibited when melanopsin was pharmacologically blocked by AA92593 as well as when its protein expression was suppressed by siRNA in both Melan-a and B16-F10 cells. These data strongly suggest that melanopsin is required for thermo-reception, acting as a thermo-opsin that ultimately feeds the local circadian clock in mouse melanocytes and melanoma cells.
Collapse
Affiliation(s)
- Maria Nathália Moraes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Maristela Oliveira Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil. .,Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
49
|
Potucek P, Radik M, Doka G, Kralova E, Krenek P, Klimas J. Combination treatment with valsartan and amlodipine intensifies evening suppression of Bmal1 clock gene in kidneys of spontaneously hypertensive rats. EUROPEAN PHARMACEUTICAL JOURNAL 2017. [DOI: 10.1515/afpuc-2017-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Blood pressure (BP) rhythm is exhibited in a circadian pattern regulated by complex system of endogenous factors. Administration of pharmacological treatment at the right time can influence the efficacy of treatment; but while kidneys play significant role in BP regulation, little is known about their role in chronopharmacotherapy. This study aimed to compare differences between morning and evening dosing with valsartan and amlodipine combination in both short-term and long-term settings and to elucidate the role of kidneys in chronopharmacology. Spontaneously hypertensive rats aged between 8 and 10 weeks were daily treated with 10mg/kg of valsartan and 4 mg/kg of amlodipine, either in the morning or in the evening with treatment duration of 1 and 6 weeks. After short-term treatment, only morning treatment group demonstrated significantly better outcomes in terms of BP control when compared to placebo. After long-term treatment, both treatment groups gained superior results in BP control against placebo; however, no significant difference was seen between morning and evening treatment. Interestingly, clock gene expression in kidney has been significantly modulated only in the evening-treated groups, with treatment intensifying the reduced Bmal1 levels, while Per2 expression was less altered. However, no direct relation with the outcomes of the therapy has been observed, suggesting that pharmacotherapy may serve as an independent modulator of peripheral circadian clock in the kidney.
Collapse
Affiliation(s)
- P. Potucek
- Comenius University in Bratislava , Faculty of Pharmacy, Department of Pharmacology and Toxicology , Bratislava , Slovak Republic
| | - M. Radik
- Comenius University in Bratislava , Faculty of Pharmacy, Department of Pharmacology and Toxicology , Bratislava , Slovak Republic
| | - G. Doka
- Comenius University in Bratislava , Faculty of Pharmacy, Department of Pharmacology and Toxicology , Bratislava , Slovak Republic
| | - E. Kralova
- Comenius University in Bratislava , Faculty of Pharmacy, Department of Pharmacology and Toxicology , Bratislava , Slovak Republic
| | - P. Krenek
- Comenius University in Bratislava , Faculty of Pharmacy, Department of Pharmacology and Toxicology , Bratislava , Slovak Republic
| | - J. Klimas
- Comenius University in Bratislava , Faculty of Pharmacy, Department of Pharmacology and Toxicology , Bratislava , Slovak Republic
| |
Collapse
|
50
|
Yang SL, Ren QG, Wen L, Hu JL, Wang HY. Research progress on circadian clock genes in common abdominal malignant tumors. Oncol Lett 2017; 14:5091-5098. [PMID: 29113149 PMCID: PMC5661368 DOI: 10.3892/ol.2017.6856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/03/2017] [Indexed: 02/01/2023] Open
Abstract
The circadian clock refers to the inherent biological rhythm of an organism, which, is accurately regulated by numerous clock genes. Studies in recent years have reported that the abnormal expression of clock genes is ubiquitous in common abdominal malignant tumors, including liver, colorectal, gastric and pancreatic cancer. In addition, the abnormal expression of certain clock genes is closely associated with clinical tumor parameters or patient prognosis. Studies in clock genes may expand the knowledge about the mechanism of occurrence and development of tumors, and may provide a new approach for tumor therapy. The present study summarizes the research progress in this field.
Collapse
Affiliation(s)
- Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Quan-Guang Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Jian-Li Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Heng-Yi Wang
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|