1
|
Wen J, Wu Y, Zhang F, Wang Y, Yang A, Lu W, Zhao X, Tao H. Neonatal hypoxia leads to impaired intestinal function and changes in the composition and metabolism of its microbiota. Sci Rep 2025; 15:15285. [PMID: 40312410 PMCID: PMC12045951 DOI: 10.1038/s41598-025-00041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Neonatal hypoxia, a prevalent complication during the perinatal period, poses a serious threat to the health of newborns. The intestine, as one of the most metabolically active organs under stress conditions, is particularly vulnerable and susceptible to hypoxic injury. Using a neonatal hypoxic mouse model, we systematically investigated hypoxia-induced intestinal barrier damage and underlying mechanisms. Hypoxia caused significant structural abnormalities in the ileum and distal colon of neonatal mice, including increased numbers of F4/80+ cells (p = 0.0031), swollen mucus particles (p = 0.0119), and disrupted tight junction. At the genetic level, hypoxia caused dysregulation of the expression of genes involved in intestinal barrier function, including antimicrobial activity, immune response, intestinal motility, and nutrient absorption. Further 16 S rDNA sequencing revealed hypoxia-driven gut microbiota dysbiosis with general reduced microbial abundance and diversity (Chao1 = 0.1143, Shannon = 0.0571, and Simpson = 0.3429). Structural dysbiosis of the gut microbiota consequently perturbed metabolic homeostasis, especially enhancing the activity of glycolipid metabolism. Notably, results showed that hypoxia may interfere with neurotransmitter metabolism, thereby increasing the risk of neurological disorders.
Collapse
Affiliation(s)
- Jun Wen
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China
| | - Yue Wu
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China
| | - Fengfeng Zhang
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China
| | - Yanchu Wang
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China
| | - Aifen Yang
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China
| | - Wenwen Lu
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China
| | - Xiaofeng Zhao
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China.
| | - Huaping Tao
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, 311121, PR China.
| |
Collapse
|
2
|
Tao YL, Wang JR, Liu M, Liu YN, Zhang JQ, Zhou YJ, Li SW, Zhu SF. Progress in the study of the correlation between sepsis and intestinal microecology. Front Cell Infect Microbiol 2024; 14:1357178. [PMID: 39391883 PMCID: PMC11464487 DOI: 10.3389/fcimb.2024.1357178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Sepsis, a disease with high incidence, mortality, and treatment costs, has a complex interaction with the gut microbiota. With advances in high-throughput sequencing technology, the relationship between sepsis and intestinal dysbiosis has become a new research focus. However, owing to the intricate interplay between critical illness and clinical interventions, it is challenging to establish a causal relationship between sepsis and intestinal microbiota imbalance. In this review, the correlation between intestinal microecology and sepsis was summarized, and new therapies for sepsis intervention based on microecological target therapy were proposed, and the shortcomings of bacterial selection and application timing in clinical practice were addressed. In conclusion, current studies on metabolomics, genomics and other aspects aimed at continuously discovering potential probiotics are all providing theoretical basis for restoring intestinal flora homeostasis for subsequent treatment of sepsis.
Collapse
Affiliation(s)
- Yan-Lin Tao
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Ran Wang
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miao Liu
- Department of Respiratory Medicine, Dingzhou People’s Hospital, Dingzhou, Heibei, China
| | - Ya-Nan Liu
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shu-Fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis. Ann Intensive Care 2024; 14:147. [PMID: 39298039 DOI: 10.1186/s13613-024-01377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Sepsis-associated organ dysfunction involves multiple inflammatory mechanisms and complex metabolic reprogramming of cellular function. These mechanisms cooperate through multiple organs and systems according to a complex set of long-distance communications mediated by cellular pathways, solutes, and neurohormonal actions. In sepsis, the concept of organ crosstalk involves the dysregulation of one system, which triggers compensatory mechanisms in other systems that can induce further damage. Despite the abundance of studies published on organ crosstalk in the last decade, there is a need to formulate a more comprehensive framework involving all organs to create a more detailed picture of sepsis. In this paper, we review the literature published on organ crosstalk in the last 10 years and explore how these relationships affect the progression of organ failure in patients with septic shock. We explored these relationships in terms of the heart-kidney-lung, gut-microbiome-liver-brain, and adipose tissue-muscle-bone crosstalk in sepsis patients. A deep connection exists among these organs based on crosstalk. We also review how multiple therapeutic interventions administered in intensive care units, such as mechanical ventilation, antibiotics, anesthesia, nutrition, and proton pump inhibitors, affect these systems and must be carefully considered when managing septic patients. The progression to multiple organ dysfunction syndrome in sepsis patients is still one of the most frequent causes of death in critically ill patients. A better understanding and monitoring of the mechanics of organ crosstalk will enable the anticipation of organ damage and the development of individualized therapeutic strategies.
Collapse
Affiliation(s)
- André Borges
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal.
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal.
| | - Luís Bento
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal
| |
Collapse
|
4
|
Chen X, Zhu D, Ge R, Bao Z. Fecal transplantation of young mouse donors effectively improves enterotoxicity in elderly recipients exposed to triphenyltin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116140. [PMID: 38417315 DOI: 10.1016/j.ecoenv.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Triphenyltin (TPT) is a widely used biocide known for its high toxicity to various organisms, including humans, and its potential contribution to environmental pollution. The aging process leads to progressive deterioration of physiological functions in the elderly, making them more susceptible to the toxic effects of environmental pollutants. This study aimed to investigate the mitigating effect of fecal transplantation in young mice on the toxicological impairment caused by TPT exposure. For the study, 18-month-old mice were divided into four groups with six replicates each. The control group was fed a basal diet, the TPT group was exposed to 3.75 mg/Kg TPT, the feces group received fecal transplantation from 8-week-old young mice, and the combined group was exposed to 3.75 mg/Kg TPT after receiving fecal transplantation. Compared with the elderly control group, TPT induced significant upregulation of mRNA expression of pro-inflammatory factors (IL-1β, IL-6, TNF-α), while the anti-inflammatory factor gene IL-10 was significantly suppressed. The mRNA expression of intestinal barrier proteins (Claudin, Occludin, Muc2) was also significantly downregulated. However, fecal transplantation in young mice alleviated TPT-induced changes in inflammatory factors, ameliorated oxidative stress, and increased the activities of antioxidant enzymes (including SOD, CAT, GSH-Px). Further analysis using 16 s RNA showed that exposure to TPT led to changes in the composition of the intestinal flora. Untargeted metabolomics observations of feces from older mice revealed that exposure to TPT resulted in altered fecal metabolites. Fecal transplantation in young mice altered the microbiota of TPT-exposed older mice, especially by enhancing the levels of core probiotics. Similar beneficial effects were observed through untargeted metabolomics. Overall, this study highlights the potential benefits of young fecal transplantation in protecting the elderly from the toxicity of TPT, offering a promising approach to improve healthy aging.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Donghui Zhu
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Renshan Ge
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Balsamo F, Li B, Chusilp S, Lee D, Biouss G, Lee C, Maynes JT, Pierro A. Argon inhalation attenuates systemic inflammation and rescues lung architecture during experimental neonatal sepsis. Pediatr Surg Int 2023; 40:21. [PMID: 38108911 DOI: 10.1007/s00383-023-05596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Neonatal sepsis is a systemic inflammatory infection common in premature infants and a leading cause of mortality. Argon is an emerging interest in the field of noble gas therapy. Neonates with severe sepsis are frequently mechanically ventilated creating an opportunity for inhalation therapy. We aimed to investigate argon inhalation as a novel experimental therapy in neonatal sepsis. METHODS Sepsis was established in C57BL/6 neonatal mice by a lipopolysaccharide intraperitoneal injection on postnatal day 9. Septic pup mice were exposed to room air as well as non-septic controls. In the argon group, septic pup mice were exposed to argon (70% Ar, 30% O2) for 6 h in a temperature-controlled environment. RESULTS At 6 h, survival was significantly enhanced when septic mice received argon compared to septic controls. Serum profiles of cytokine release were significantly attenuated as well as lung architecture restored. CONCLUSIONS Our findings suggest that argon inhalation as a novel treatment for neonatal sepsis, reducing mortality and counteracting the acute systemic inflammatory response in the blood and preserving the architecture of the lung. This research can contribute to a paradigm shift in the treatment and outcome of neonates with sepsis.
Collapse
Affiliation(s)
- Felicia Balsamo
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Sinobol Chusilp
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Dorothy Lee
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - George Biouss
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Carol Lee
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine , University of Toronto, Toronto, Canada
| | - Agostino Pierro
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
6
|
Wang ZY, Gao PP, Li L, Chen TT, Li N, Qi M, Zhang SN, Xu YP, Wang YH, Zhang SH, Zhang LL, Wei W, Du M, Sun WY. Dextran sulfate sodium-induced gut microbiota dysbiosis aggravates liver injury in mice with S100-induced autoimmune hepatitis. Immunol Lett 2023; 263:70-77. [PMID: 37797724 DOI: 10.1016/j.imlet.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Recently, the incidence of autoimmune hepatitis (AIH) has gradually increased, and the disease can eventually develop into cirrhosis or even hepatoma if left untreated. AIH patients are often characterized by gut microbiota dysbiosis, but whether gut microbiota dysbiosis contributes to the progression of AIH remains unclear. In this study, we investigate the role of gut microbiota dysbiosis in the occurrence and development of AIH in mice with dextran sulfate sodium salt (DSS) induced colitis. C57BL/6J mice were randomly divided into normal group, S100-induced AIH group, and DSS+S100 group (1 % DSS in the drinking water), and the experimental cycle lasted for four weeks. We demonstrate that DSS administration aggravates hepatic inflammation and disruption of the intestinal barrier, and significantly changes the composition of gut microbiota in S100-induced AIH mice, which are mainly characterized by increased abundance of pathogenic bacteria and decreased abundance of beneficial bacteria. These results suggest that DSS administration aggravates liver injury of S100-induced AIH, which may be due to DSS induced gut microbiota dysbiosis, leading to disruption of the intestinal barrier, and then, the microbiota translocate to the liver, aggravating hepatic inflammation.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ling Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ya-Ping Xu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yu-Han Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Min Du
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
7
|
Tao H, Wang J, Bao Z, Jin Y, Xiao Y. Acute chlorothalonil exposure had the potential to influence the intestinal barrier function and micro-environment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165038. [PMID: 37355131 DOI: 10.1016/j.scitotenv.2023.165038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
The intestinal barrier maintains intestinal homeostasis and metabolism and protects against harmful pollutants. Some environmental pollutants seriously affect intestinal barrier function. However, it remains unclear whether or how chlorothalonil (CTL) impacts the intestinal barrier function in animals. Herein, 6-week-old male mice were acutely exposed to different CTL concentrations (100 and 300 mg/kg BW) via intragastric administration once a day for 7 days. Histopathological examination revealed obvious inflammation in the mice' colon and ileum. Most notably, CTL exposure increased the intestinal permeability, particularly in the CTL-300 group. CTL exposure reduced the secretion of colonic epithelial mucus and changed the transcription levels of genes bound up with ion transport and ileal antimicrobial peptide (AMP) secretion, indicating intestinal chemical barrier damage. The results of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and Ki67 staining revealed abnormal apoptosis and increased intestinal epithelial cell proliferation, suggesting that CTL exposure led to cytotoxicity and inflammation. The results of 16S rRNA sequencing revealed that CTL exposure altered the intestinal microbiota composition and reduced its diversity and richness in the colon contents. Thus, acute CTL exposure affected the different intestinal barrier- and gut microenvironment-related endpoints in mice.
Collapse
Affiliation(s)
- Huaping Tao
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Juntao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Leonhardt J, Dorresteijn MJ, Neugebauer S, Mihaylov D, Kunze J, Rubio I, Hohberger FS, Leonhardt S, Kiehntopf M, Stahl K, Bode C, David S, Wagener FADTG, Pickkers P, Bauer M. Immunosuppressive effects of circulating bile acids in human endotoxemia and septic shock: patients with liver failure are at risk. Crit Care 2023; 27:372. [PMID: 37759239 PMCID: PMC10523742 DOI: 10.1186/s13054-023-04620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Sepsis-induced immunosuppression is a frequent cause of opportunistic infections and death in critically ill patients. A better understanding of the underlying mechanisms is needed to develop targeted therapies. Circulating bile acids with immunosuppressive effects were recently identified in critically ill patients. These bile acids activate the monocyte G-protein coupled receptor TGR5, thereby inducing profound innate immune dysfunction. Whether these mechanisms contribute to immunosuppression and disease severity in sepsis is unknown. The aim of this study was to determine if immunosuppressive bile acids are present in endotoxemia and septic shock and, if so, which patients are particularly at risk. METHODS To induce experimental endotoxemia in humans, ten healthy volunteers received 2 ng/kg E. coli lipopolysaccharide (LPS). Circulating bile acids were profiled before and after LPS administration. Furthermore, 48 patients with early (shock onset within < 24 h) and severe septic shock (norepinephrine dose > 0.4 μg/kg/min) and 48 healthy age- and sex-matched controls were analyzed for circulating bile acids. To screen for immunosuppressive effects of circulating bile acids, the capability to induce TGR5 activation was computed for each individual bile acid profile by a recently published formula. RESULTS Although experimental endotoxemia as well as septic shock led to significant increases in total bile acids compared to controls, this increase was mild in most cases. By contrast, there was a marked and significant increase in circulating bile acids in septic shock patients with severe liver failure compared to healthy controls (61.8 µmol/L vs. 2.8 µmol/L, p = 0.0016). Circulating bile acids in these patients were capable to induce immunosuppression, as indicated by a significant increase in TGR5 activation by circulating bile acids (20.4% in severe liver failure vs. 2.8% in healthy controls, p = 0.0139). CONCLUSIONS Circulating bile acids capable of inducing immunosuppression are present in septic shock patients with severe liver failure. Future studies should examine whether modulation of bile acid metabolism can improve the clinical course and outcome of sepsis in these patients.
Collapse
Affiliation(s)
- Julia Leonhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany.
| | - Mirrin J Dorresteijn
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine, Alrijne Hospital, Leiderdorp, the Netherlands
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Diana Mihaylov
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Julia Kunze
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Frank-Stephan Hohberger
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Jena University Hospital, Jena, Germany
| | - Silke Leonhardt
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Michael Kiehntopf
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Lindner M, Radke DI, Elke G. [Bacterial gut microbiota-key player in sepsis]. Med Klin Intensivmed Notfmed 2023; 118:107-113. [PMID: 36807754 DOI: 10.1007/s00063-023-00993-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/19/2023]
Abstract
The gut microbiota is comprised of over 1200 different bacteria and forms a symbiotic community with the human organism, the holobiont. It plays an important role in the maintenance of homeostasis, e.g., of the immune system and essential metabolic processes. Disturbances in the balance of this reciprocal relationship are called dysbiosis and, in the field of sepsis, are associated with incidence of disease, extent of the systemic inflammatory response, severity of organ dysfunction, and mortality. In addition to providing guiding principles in the fascinating relationship between "human and microbe," this article summarizes recent findings regarding the role of the bacterial gut microbiota in sepsis, which is one a very relevant in intensive care medicine.
Collapse
Affiliation(s)
- Matthias Lindner
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3 Haus 12, 24105, Kiel, Deutschland.
| | - David I Radke
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3 Haus 12, 24105, Kiel, Deutschland
| | - Gunnar Elke
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3 Haus 12, 24105, Kiel, Deutschland
| |
Collapse
|
10
|
Zhou Y, He H, Cui N, Wang X, Long Y, Liu D. Elevated pulsatility index of the superior mesenteric artery indicated prolonged mechanical ventilation in patients after cardiac valve surgery. Front Surg 2023; 9:1049753. [PMID: 36684265 PMCID: PMC9852328 DOI: 10.3389/fsurg.2022.1049753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 01/09/2023] Open
Abstract
Purpose This study examined whether alterations in Doppler parameters of superior mesenteric artery (SMA) are associated with prolonged mechanical ventilation (PMV) in patients who underwent cardiac valve surgery. Methods Hemodynamic and SMA Doppler parameters were collected at intensive care unit(ICU) admission. The duration of mechanical ventilation was monitored. PMV was defined as mechanical ventilation ≥96 h. Results A total of 132 patients admitted to ICU after cardiac valve surgery were evaluated for enrollment, of whom 105 were included. Patients were assigned to the control (n = 63) and PMV (n = 42) groups according to the mechanical ventilation duration. The pulsatility index(SMA-PI) and resistive index of SMA (SMA-RI) were 3.97 ± 0.77 and 0.88 (0.84-0.90) in the PMV group after cardiac valve surgery, which was lower than the SMA-PI (2.95 ± 0.71, p < 0.0001) and SMA-RI of controls (0.8, 0.77-0.88, p < 0.0001). SMA-PI at admission had favorable prognostic significance for PMV (AUC = 0.837, p < 0.0001). Conclusions An elevated SMA-PI is common in patients after cardiac valve surgery with PMV. Increased SMA-PI could help predict PMV after cardiac valve surgery. Using point-of-care ultrasound to measure SMA-PI at ICU admission is an acceptable and reproducible method for identifying patients with PMV.
Collapse
|
11
|
Are Cirrhotic Patients Receiving Invasive Mechanical Ventilation at Risk of Abundant Microaspiration. J Clin Med 2022; 11:jcm11205994. [PMID: 36294314 PMCID: PMC9604551 DOI: 10.3390/jcm11205994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Previous studies have identified cirrhosis as a risk factor for ventilator-associated pneumonia (VAP). The aim of our study was to determine the relationship between cirrhosis and abundant gastric-content microaspiration in intubated critically ill patients. We performed a matched cohort study using data from three randomized controlled trials on abundant microaspiration in patients under mechanical ventilation. Each cirrhotic patient was matched with three to four controls for gender, age ± 5 years and simplified acute physiology score II (SAPS II) ± 5 points. Abundant microaspiration was defined by significant levels of pepsin and alpha-amylase in >30% of tracheal aspirates. All tracheal aspirates were collected for the first 48 h of the study period. The percentage of patients with abundant gastric-content microaspiration was the primary outcome. The abundant microaspiration of oropharyngeal secretions, VAP incidence, the duration of mechanical ventilation, length of intensive care unit (ICU) stay and mortality were the secondary outcomes. A. total of 39 cirrhotic patients were matched to 138 controls. The percentage of patients with abundant gastric-content microaspiration did not differ between the two groups (relative risk: 0.91 (95% CI: 0.75 to 1.10)). There was no significant difference between the two groups in terms of the abundant microaspiration of oropharyngeal secretions, VAP, the duration of mechanical ventilation, the length of ICU stay and mortality. Our results suggest that cirrhosis is not associated with abundant gastric-content microaspiration.
Collapse
|
12
|
Wang Z, Li F, Liu J, Luo Y, Guo H, Yang Q, Xu C, Ma S, Chen H. Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Front Immunol 2022; 13:913178. [PMID: 35774796 PMCID: PMC9237221 DOI: 10.3389/fimmu.2022.913178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Severe acute pancreatitis (SAP), one of the most serious abdominal emergencies in general surgery, is characterized by acute and rapid onset as well as high mortality, which often leads to multiple organ failure (MOF). Acute lung injury (ALI), the earliest accompanied organ dysfunction, is the most common cause of death in patients following the SAP onset. The exact pathogenesis of ALI during SAP, however, remains unclear. In recent years, advances in the microbiota-gut-lung axis have led to a better understanding of SAP-associated lung injury (PALI). In addition, the bidirectional communications between intestinal microbes and the lung are becoming more apparent. This paper aims to review the mechanisms of an imbalanced intestinal microbiota contributing to the development of PALI, which is mediated by the disruption of physical, chemical, and immune barriers in the intestine, promotes bacterial translocation, and results in the activation of abnormal immune responses in severe pancreatitis. The pathogen-associated molecular patterns (PAMPs) mediated immunol mechanisms in the occurrence of PALI via binding with pattern recognition receptors (PRRs) through the microbiota-gut-lung axis are focused in this study. Moreover, the potential therapeutic strategies for alleviating PALI by regulating the composition or the function of the intestinal microbiota are discussed in this review. The aim of this study is to provide new ideas and therapeutic tools for PALI patients.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| |
Collapse
|
13
|
Potruch A, Schwartz A, Ilan Y. The role of bacterial translocation in sepsis: a new target for therapy. Therap Adv Gastroenterol 2022; 15:17562848221094214. [PMID: 35574428 PMCID: PMC9092582 DOI: 10.1177/17562848221094214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is a leading cause of death in critically ill patients, primarily due to multiple organ failures. It is associated with a systemic inflammatory response that plays a role in the pathogenesis of the disease. Intestinal barrier dysfunction and bacterial translocation (BT) play pivotal roles in the pathogenesis of sepsis and associated organ failure. In this review, we describe recent advances in understanding the mechanisms by which the gut microbiome and BT contribute to the pathogenesis of sepsis. We also discuss several potential treatment modalities that target the microbiome as therapeutic tools for patients with sepsis.
Collapse
|