1
|
Becker ER, Wetmore GC, Goodman MD, Rodriquez D, Branson RD. Review of Ventilation in Traumatic Brain Injury. Respir Care 2025; 70:450-457. [PMID: 40028858 DOI: 10.1089/respcare.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Acute brain injury is a prominent admitting diagnosis of critically ill patients, often requiring endotracheal intubation to protect the airway and resulting in respiratory failure and the need for mechanical ventilation. Following brain injury, a primary focus is avoidance of secondary insults including both hypercarbia and hypoxemia. Hyperoxemia may also result in unanticipated neurologic consequences. Brain-lung crosstalk refers to complex relationships that drive iatrogenic injury in both organs, mediated by inflammation, immunosuppression, and autonomic dysfunction. In an effort to further reduce secondary brain injury, care must be taken from time of intubation to extubation to preserve cerebral blood flow and adequate oxygen delivery. This review describes timing and methodology for intubation of a patient with brain injury, the controversies and current recommendations related to mechanical ventilation settings, and the difficulty of decision-making with extubation and tracheostomy.
Collapse
Affiliation(s)
- Ellen R Becker
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Gregory C Wetmore
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael D Goodman
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dario Rodriquez
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard D Branson
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Joram N, Thiagarajan RR, Bembea M, Cho SM, Guerguerian AM, Lorusso R, Polito A, Raman L, Sanford E, Shah N, Zaaqoq A, Hoskote A, Di Nardo M. Can we reduce the risk of neurological injury in critically ill children on initiation of ECLS? A narrative review of potential modifiable factors. Perfusion 2025; 40:29S-38S. [PMID: 40263906 DOI: 10.1177/02676591251329555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Neurological morbidity and mortality remain high in children requiring extracorporeal membrane oxygenation (ECMO). Although the severity of illness at the time of ECMO initiation and the nature of the underlying disease are strongly linked to the development of acute brain injury, several important factors are associated with neurological complications during ECMO support. Many of these factors, particularly those encountered during the early phase of ECMO initiation (first 24 hours), may be modifiable and represent potential targets for interventional studies aiming for improvement of neurological outcomes in pediatric ECMO patients. In this review from the European Extracorporeal Life Support Organization (EuroELSO) Working Group on Neurologic Monitoring and Outcome, we aim to summarize current knowledge on modifiable factors associated with brain injury during ECMO and their potential impact on outcome.
Collapse
Affiliation(s)
- N Joram
- Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - R R Thiagarajan
- Division of Cardiac Critical Care, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S M Cho
- Neuroscience Critical Care Division, Departments of Neurology, Neurosurgery, and Anaesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A M Guerguerian
- Department of Critical Care Medicine, The Hospital for Sick Children, University of Toronto, ON, Canada
| | - R Lorusso
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - A Polito
- Pediatric Intensive Care Unit, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospital, Geneva, Switzerland
| | - L Raman
- Department of Pediatrics, Childrens Health, Dallas, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Sanford
- Department of Pediatric Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - N Shah
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - A Zaaqoq
- University of Virginia, Charlottesville, VA, USA
| | - A Hoskote
- Department of Cardiac Intensive Care, Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, & UCL, Institute of Cardiovascular Science London, UK
| | - M Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
von Knorring C, Gjordeni M, Thomsson T, Lindström AC, Pansell J. Intracranial pressure estimated non-invasively and postoperative outcomes in surgery in the Trendelenburg position with pneumoperitoneum. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2025; 5:8. [PMID: 39962515 PMCID: PMC11834181 DOI: 10.1186/s44158-025-00229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Surgery in the Trendelenburg position (TP) with pneumoperitoneum (PP) is beneficial in several aspects but is associated with postoperative complications, such as postoperative nausea and vomiting (PONV). The mechanism behind this is unknown, but an increase in intracranial pressure (ICP) has been suggested. There are several studies of non-invasively estimated ICP during surgery in TP with PP. The association between perioperative estimated ICP and postoperative complications has not yet been reviewed. METHODS We performed a scoping review of peer-reviewed clinical studies reporting on both perioperative estimation of ICP and postoperative complications in patients undergoing surgery in TP with PP. The literature search was performed in February 2025 on PubMed, CINAHL, and Web of Science. RESULTS AND CONCLUSIONS Ten of 12 included studies suggested associations between perioperative elevation of estimated ICP and postoperative complications, most notably PONV. This may have clinical implications since elevated ICP can be treated. Future research should focus on the association between perioperative ICP estimation and postoperative complications and the effects of ICP-lowering strategies on postoperative outcomes.
Collapse
Affiliation(s)
| | | | | | - Ann-Charlotte Lindström
- Karolinska University Hospital, Solna, Sweden
- Karolinska Institutet, The Institution of Physiology and Pharmacology, Solna, Sweden
| | - Jakob Pansell
- Karolinska University Hospital, Solna, Sweden.
- Karolinska Institutet, The Institution of Clinical Neuroscience, Karolinska Universitetssjukhuset Solna, CIVA E5:67, 171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Schranc Á, Daniels J, Südy R, Fontao F, Bijlenga P, Plourde G, Quintard H. Safety of flow-controlled ventilation with positive and negative end-expiratory pressure in a swine model of intracranial hypertension. Intensive Care Med Exp 2024; 12:117. [PMID: 39671127 PMCID: PMC11645394 DOI: 10.1186/s40635-024-00703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Patients with brain damage often require mechanical ventilation. Although lung-protective ventilation is recommended, the application of increased positive end-expiratory pressure (PEEP) has been associated with elevated intracranial pressure (ICP) due to altered cerebral venous return. This study investigates the effects of flow-controlled ventilation (FCV) using negative end-expiratory pressures (NEEP), on cerebral hemodynamics in a swine model of intracranial hypertension. METHODS A model of intracranial hypertension involving bilateral trepan bolt holes was performed in 14 pigs. Pressure-controlled volume-guaranteed ventilation (PCV-VG) with PEEP and FCV using PEEP and then NEEP were applied. Intracranial pressure and oxygenation, as well as systemic hemodynamics and gas exchange parameters, were continuously monitored. Data were collected at baseline and at varying PEEP levels for both PCV-VG and FCV ventilation modalities. Following this, FCV ventilation and NEEP levels of -3, -6 and -9 cmH2O were applied. RESULTS ICP remained stable with low PEEP levels, but significantly decreased with NEEP. Lower ICP following NEEP improved cerebral perfusion pressure and cerebral tissue oxygenation (p < 0.05 for all). FCV with NEEP at EEP-6 and EEP-9 significantly improved cardiac output and mean arterial pressure (MAP), compared to PCV-VG and FCV using PEEP (p < 0.05, respectively). There were no significant differences in gas exchange parameters between modalities (PCV-VG vs FCV), and between the application of PEEP or NEEP. No significant correlations were observed between ΔICP and ΔMAP. CONCLUSION The application of FCV with NEEP appears to be a safe ventilation mode and offers an additional tool for controlling severe intracranial pressure episodes. These findings warrant validation in future studies and may lead to important potential applications in clinical practice.
Collapse
Affiliation(s)
- Álmos Schranc
- Unit for Anaesthesiological Investigation, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, Switzerland.
| | - John Daniels
- Unit for Anaesthesiological Investigation, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, Switzerland
| | - Roberta Südy
- Unit for Anaesthesiological Investigation, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, Switzerland
| | - Fabienne Fontao
- Unit for Anaesthesiological Investigation, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, Switzerland
| | - Philippe Bijlenga
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, Geneva, Switzerland
| | - Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre Hospitalier de l'Université de Montréal, 1051 rue Sanguinet, Montréal, Canada
| | - Hervé Quintard
- Division of Intensive Care, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, Geneva, Switzerland
| |
Collapse
|
5
|
Barea-Mendoza JA, Molina-Collado Z, Ballesteros-Sanz MÁ, Corral-Ansa L, Misis Del Campo M, Pardo-Rey C, Tihista-Jiménez JA, Corcobado-Márquez C, Martín Del Rincón JP, Llompart-Pou JA, Marcos-Prieto LA, Olazabal-Martínez A, Herrán-Monge R, Díaz-Lamas AM, Chico-Fernández M. Effects of PEEP on intracranial pressure in patients with acute brain injury: An observational, prospective and multicenter study. Med Intensiva 2024; 48:594-601. [PMID: 38816286 DOI: 10.1016/j.medine.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To analyze the impact of positive end-expiratory pressure (PEEP) changes on intracranial pressure (ICP) dynamics in patients with acute brain injury (ABI). DESIGN Observational, prospective and multicenter study (PEEP-PIC study). SETTING Seventeen intensive care units in Spain. PATIENTS Neurocritically ill patients who underwent invasive neuromonitorization from November 2017 to June 2018. INTERVENTIONS Baseline ventilatory, hemodynamic and neuromonitoring variables were collected immediately before PEEP changes and during the following 30 min. MAIN VARIABLES OF INTEREST PEEP and ICP changes. RESULTS One-hundred and nine patients were included. Mean age was 52.68 (15.34) years, male 71 (65.13%). Traumatic brain injury was the cause of ABI in 54 (49.54%) patients. Length of mechanical ventilation was 16.52 (9.23) days. In-hospital mortality was 21.1%. PEEP increases (mean 6.24-9.10 cmH2O) resulted in ICP increase from 10.4 to 11.39 mmHg, P < .001, without changes in cerebral perfusion pressure (CPP) (P = .548). PEEP decreases (mean 8.96 to 6.53 cmH2O) resulted in ICP decrease from 10.5 to 9.62 mmHg (P = .052), without changes in CPP (P = .762). Significant correlations were established between the increase of ICP and the delta PEEP (R = 0.28, P < .001), delta driving pressure (R = 0.15, P = .038) and delta compliance (R = -0.14, P = .052). ICP increment was higher in patients with lower baseline ICP. CONCLUSIONS PEEP changes were not associated with clinically relevant modifications in ICP values in ABI patients. The magnitude of the change in ICP after PEEP increase was correlated with the delta of PEEP, the delta driving pressure and the delta compliance.
Collapse
Affiliation(s)
- Jesús Abelardo Barea-Mendoza
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Zaira Molina-Collado
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - María Ángeles Ballesteros-Sanz
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Luisa Corral-Ansa
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Maite Misis Del Campo
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Cándido Pardo-Rey
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Juan Angel Tihista-Jiménez
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carmen Corcobado-Márquez
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Pedro Martín Del Rincón
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Antonio Llompart-Pou
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Luis Alfonso Marcos-Prieto
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ander Olazabal-Martínez
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rubén Herrán-Monge
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Ana María Díaz-Lamas
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Mario Chico-Fernández
- Intensive Medicine Department, UCI de Trauma y Emergencias, UCITE, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
6
|
Kartal A, Robba C, Helmy A, Wolf S, Aries MJH. How to Define and Meet Blood Pressure Targets After Traumatic Brain Injury: A Narrative Review. Neurocrit Care 2024; 41:369-385. [PMID: 38982005 PMCID: PMC11377672 DOI: 10.1007/s12028-024-02048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) poses a significant challenge to healthcare providers, necessitating meticulous management of hemodynamic parameters to optimize patient outcomes. This article delves into the critical task of defining and meeting continuous arterial blood pressure (ABP) and cerebral perfusion pressure (CPP) targets in the context of severe TBI in neurocritical care settings. METHODS We narratively reviewed existing literature, clinical guidelines, and emerging technologies to propose a comprehensive approach that integrates real-time monitoring, individualized cerebral perfusion target setting, and dynamic interventions. RESULTS Our findings emphasize the need for personalized hemodynamic management, considering the heterogeneity of patients with TBI and the evolving nature of their condition. We describe the latest advancements in monitoring technologies, such as autoregulation-guided ABP/CPP treatment, which enable a more nuanced understanding of cerebral perfusion dynamics. By incorporating these tools into a proactive monitoring strategy, clinicians can tailor interventions to optimize ABP/CPP and mitigate secondary brain injury. DISCUSSION Challenges in this field include the lack of standardized protocols for interpreting multimodal neuromonitoring data, potential variability in clinical decision-making, understanding the role of cardiac output, and the need for specialized expertise and customized software to have individualized ABP/CPP targets regularly available. The patient outcome benefit of monitoring-guided ABP/CPP target definitions still needs to be proven in patients with TBI. CONCLUSIONS We recommend that the TBI community take proactive steps to translate the potential benefits of personalized ABP/CPP targets, which have been implemented in certain centers, into a standardized and clinically validated reality through randomized controlled trials.
Collapse
Affiliation(s)
- Ahmet Kartal
- University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel J H Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
- Institute of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| |
Collapse
|
7
|
Fischer S, Heubner L, May S, Amirkhiz PS, Kuhle J, Benkert P, Ziemssen T, Spieth P, Akgün K. Serum neurofilament light chain as a sensitive biomarker for neuromonitoring during extracorporeal membrane oxygenation. Sci Rep 2024; 14:20956. [PMID: 39251725 PMCID: PMC11384786 DOI: 10.1038/s41598-024-71603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
The use of extracorporeal membrane oxygenation (ECMO) has grown rapidly, driven by the COVID-19 pandemic. Despite its widespread adoption, neurological complications pose a significant risk, impacting both mortality and survivors' quality of life. Detecting these complications is challenging due to sedation and the heterogeneous nature of ECMO-associated neurological injury. Still, consensus of neurologic monitoring during ECMO is lacking since utilization and effectiveness of current neuromonitoring methods are limited. Especially in view of the heterogeneous nature of neurological injury during ECMO support an easily acquirable biomarker tracing neuronal damage independently from the underlying pathomechanism would be favorable. In a single-center prospective study on 34 severe acute respiratory distress syndrome (ARDS) patients undergoing ECMO, we explored the potential of serum neurofilament light chain levels (NfL) as a biomarker for neurological complications and its predictive power towards the overall outcome of ECMO patients. Individuals experiencing neurological complications (41%) demonstrated a notable rise in NfL levels (Tbaseline median 92.95 pg/ml; T24h median 132 pg/ml (IQR 88.6-924 pg/ml), p = 0.008; T7d median 248 pg/ml (IQR 157-1090 pg/ml), p = 0.001). Moreover, under ECMO therapy, these patients exhibited markedly elevated concentrations compared to those without neurological complications (T24h median 70.75 pg/ml (IQR 22.2-290 pg/ml), p = 0.023; T7d median 128 pg/ml (IQR 51.8-244 pg/ml), p = 0.002). There was no significant difference in the NfL dynamics between surviving patients and those who died during or shortly after ECMO therapy. While NfL indicates neuro-axonal damage during intensive care with ECMO therapy, we could not identify any correlation between survival outcome and the levels of NfL, indicating that NfL may not serve as a prognostic marker for survival. Nevertheless, additional studies involving a larger patient cohort are required.
Collapse
Affiliation(s)
- Stefanie Fischer
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Lars Heubner
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Stephanie May
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Puya Shalchi Amirkhiz
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Peter Spieth
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
8
|
Spatenkova V, Mlcek M, Mejstrik A, Cisar L, Kuriscak E. Standard versus individualised positive end-expiratory pressure (PEEP) compared by electrical impedance tomography in neurocritical care: a pilot prospective single centre study. Intensive Care Med Exp 2024; 12:67. [PMID: 39103646 DOI: 10.1186/s40635-024-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Individualised bedside adjustment of mechanical ventilation is a standard strategy in acute coma neurocritical care patients. This involves customising positive end-expiratory pressure (PEEP), which could improve ventilation homogeneity and arterial oxygenation. This study aimed to determine whether PEEP titrated by electrical impedance tomography (EIT) results in different lung ventilation homogeneity when compared to standard PEEP of 5 cmH2O in mechanically ventilated patients with healthy lungs. METHODS In this prospective single-centre study, we evaluated 55 acute adult neurocritical care patients starting controlled ventilation with PEEPs close to 5 cmH2O. Next, the optimal PEEP was identified by EIT-guided decremental PEEP titration, probing PEEP levels between 9 and 2 cmH2O and finding the minimal amount of collapse and overdistension. EIT-derived parameters of ventilation homogeneity were evaluated before and after the PEEP titration and after the adjustment of PEEP to its optimal value. Non-EIT-based parameters, such as peripheral capillary Hb saturation (SpO2) and end-tidal pressure of CO2, were recorded hourly and analysed before PEEP titration and after PEEP adjustment. RESULTS The mean PEEP value before titration was 4.75 ± 0.94 cmH2O (ranging from 3 to max 8 cmH2O), 4.29 ± 1.24 cmH2O after titration and before PEEP adjustment, and 4.26 ± 1.5 cmH2O after PEEP adjustment. No statistically significant differences in ventilation homogeneity were observed due to the adjustment of PEEP found by PEEP titration. We also found non-significant changes in non-EIT-based parameters following the PEEP titration and subsequent PEEP adjustment, except for the mean arterial pressure, which dropped statistically significantly (with a mean difference of 3.2 mmHg, 95% CI 0.45 to 6.0 cmH2O, p < 0.001). CONCLUSION Adjusting PEEP to values derived from PEEP titration guided by EIT does not provide any significant changes in ventilation homogeneity as assessed by EIT to ventilated patients with healthy lungs, provided the change in PEEP does not exceed three cmH2O. Thus, a reduction in PEEP determined through PEEP titration that is not greater than 3 cmH2O from an initial value of 5 cmH2O is unlikely to affect ventilation homogeneity significantly, which could benefit mechanically ventilated neurocritical care patients.
Collapse
Affiliation(s)
- Vera Spatenkova
- Neurocenter, Neurointensive Care Unit, Regional Hospital Liberec, Husova 357/10, 460 01, Liberec, Czech Republic.
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic.
- Department of Anaesthesia and Intensive Care, Third Faculty of Medicine, Charles University, Srobarova 50, 100 34, Prague, Czech Republic.
- Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Mikulas Mlcek
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic
| | - Alan Mejstrik
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic
- 2nd Department of Medicine-Department of Cardiovascular Medicine, Charles University in Prague, U nemocnice 2, 128 08, Prague, Czech Republic
| | - Lukas Cisar
- Technical Department, Regional Hospital Liberec, Husova 357/10, 460 01, Liberec, Czech Republic
| | - Eduard Kuriscak
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic
| |
Collapse
|
9
|
Sanfilippo F, Uryga A, Ball L, Battaglini D, Iavarone IG, Smielewski P, Beqiri E, Czosnyka M, Patroniti N, Robba C. The Effect of Recruitment Maneuvers on Cerebrovascular Dynamics and Right Ventricular Function in Patients with Acute Brain Injury: A Single-Center Prospective Study. Neurocrit Care 2024; 41:38-48. [PMID: 38351299 PMCID: PMC11335957 DOI: 10.1007/s12028-024-01939-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Optimization of ventilatory settings is challenging for patients in the neurointensive care unit, requiring a balance between precise gas exchange control, lung protection, and managing hemodynamic effects of positive pressure ventilation. Although recruitment maneuvers (RMs) may enhance oxygenation, they could also exert profound undesirable systemic impacts. METHODS The single-center, prospective study investigated the effects of RMs (up-titration of positive end-expiratory pressure) on multimodal neuromonitoring in patients with acute brain injury. Our primary focus was on intracranial pressure and secondarily on cerebral perfusion pressure (CPP) and other neurological parameters: cerebral autoregulation [pressure reactivity index (PRx)] and regional cerebral oxygenation (rSO2). We also assessed blood pressure and right ventricular (RV) function evaluated using tricuspid annular plane systolic excursion. Results are expressed as the difference (Δ) from baseline values obtained after completing the RMs. RESULTS Thirty-two patients were enrolled in the study. RMs resulted in increased intracranial pressure (Δ = 4.8 mm Hg) and reduced CPP (ΔCPP = -12.8 mm Hg) and mean arterial pressure (difference in mean arterial pressure = -5.2 mm Hg) (all p < 0.001). Cerebral autoregulation worsened (ΔPRx = 0.31 a.u.; p < 0.001). Despite higher systemic oxygenation (difference in partial pressure of O2 = 4 mm Hg; p = 0.001) and unchanged carbon dioxide levels, rSO2 marginally decreased (ΔrSO2 = -0.5%; p = 0.031), with a significant drop in arterial content and increase in the venous content. RV systolic function decreased (difference in tricuspid annular plane systolic excursion = -0.1 cm; p < 0.001) with a tendency toward increased RV basal diameter (p = 0.06). Grouping patients according to ΔCPP or ΔPRx revealed that those with poorer tolerance to RMs had higher CPP (p = 0.040) and a larger RV basal diameter (p = 0.034) at baseline. CONCLUSIONS In patients with acute brain injury, RMs appear to have adverse effects on cerebral hemodynamics. These findings might be partially explained by RM's impact on RV function. Further advanced echocardiography monitoring is required to prove this hypothesis.
Collapse
Affiliation(s)
- Filippo Sanfilippo
- Department of General Surgery and Medico-Surgical Specialties, School of Anaesthesia and Intensive Care, University of Catania, Catania, Italy
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Largo Rosanna Benzi, 16100, Genoa, Italy
| | - Denise Battaglini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Largo Rosanna Benzi, 16100, Genoa, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Nicolò Patroniti
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Largo Rosanna Benzi, 16100, Genoa, Italy.
| |
Collapse
|
10
|
Wahlster S, Sharma M, Taran S, Town JA, Stevens RD, Cinotti R, Asehnoune K, Robba C. Associations between Driving Pressure and Clinical Outcomes in Acute Brain Injury: A Subanalysis of ENIO. Am J Respir Crit Care Med 2024; 209:1400-1404. [PMID: 38502247 PMCID: PMC11146561 DOI: 10.1164/rccm.202402-0402le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Sarah Wahlster
- Department of Neurology
- Department of Neurological Surgery, and
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| | | | - Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James A. Town
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Robert D. Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raphaël Cinotti
- Department of Anesthesiology and Critical Care, Centre Hospitalier Universitaire Nantes, Nantes University, Nantes, France
| | - Karim Asehnoune
- Department of Anesthesiology and Critical Care, Centre Hospitalier Universitaire Nantes, Nantes University, Nantes, France
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; and
- Anesthesia and Critical Care, San Martino Policlinico Hospital, Scientific Institute for Research, Hospitalization and Healthcare for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
11
|
Robateau Z, Lin V, Wahlster S. Acute Respiratory Failure in Severe Acute Brain Injury. Crit Care Clin 2024; 40:367-390. [PMID: 38432701 DOI: 10.1016/j.ccc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute respiratory failure is commonly encountered in severe acute brain injury due to a multitude of factors related to the sequelae of the primary injury. The interaction between pulmonary and neurologic systems in this population is complex, often with competing priorities. Many treatment modalities for acute respiratory failure can result in deleterious effects on cerebral physiology, and secondary brain injury due to elevations in intracranial pressure or impaired cerebral perfusion. High-quality literature is lacking to guide clinical decision-making in this population, and deliberate considerations of individual patient factors must be considered to optimize each patient's care.
Collapse
Affiliation(s)
- Zachary Robateau
- Department of Neurology, University of Washington, Seattle, USA.
| | - Victor Lin
- Department of Neurology, University of Washington, Seattle, USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, USA; Department of Neurological Surgery, University of Washington, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| |
Collapse
|
12
|
Fawley JA, Tignanelli CJ, Werner NL, Kasotakis G, Mandell SP, Glass NE, Dries DJ, Costantini TW, Napolitano LM. American Association for the Surgery of Trauma/American College of Surgeons Committee on Trauma clinical protocol for management of acute respiratory distress syndrome and severe hypoxemia. J Trauma Acute Care Surg 2023; 95:592-602. [PMID: 37314843 PMCID: PMC10545067 DOI: 10.1097/ta.0000000000004046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/15/2023]
Abstract
LEVEL OF EVIDENCE Therapeutic/Care Management: Level V.
Collapse
|
13
|
Taran S, Hamad DM, von Düring S, Malhotra AK, Veroniki AA, McCredie VA, Singh JM, Hansen B, Englesakis M, Adhikari NKJ. Factors associated with acute respiratory distress syndrome in brain-injured patients: A systematic review and meta-analysis. J Crit Care 2023; 77:154341. [PMID: 37235919 DOI: 10.1016/j.jcrc.2023.154341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is common in patients with acute brain injury admitted to the ICU. We aimed to identify factors associated with ARDS in this population. METHODS We searched MEDLINE, Embase, Cochrane Central, Scopus, and Web of Science from inception to January 14, 2022. Three reviewers independently screened articles and selected English-language studies reporting risk factors for ARDS in brain-injured adult patients. Data were extracted on ARDS incidence, adjusted and unadjusted risk factors, and clinical outcomes. Risk of bias was reported using the Quality in Prognostic Studies tool. Certainty of evidence was assessed using GRADE. RESULTS We selected 23 studies involving 6,961,284 patients with acute brain injury. The pooled cumulative incidence of ARDS after brain injury was 17.0% (95%CI 10.7-25.8). In adjusted analysis, factors associated with ARDS included sepsis (odds ratio (OR) 4.38, 95%CI 2.37-8.10; high certainty), history of hypertension (OR 3.11, 95%CI 2.31-4.19; high certainty), pneumonia (OR 2.69, 95%CI 2.35-3.10; high certainty), acute kidney injury (OR 1.44, 95%CI 1.30-1.59; moderate certainty), admission hypoxemia (OR 1.67, 95%CI 1.29-2.17; moderate certainty), male sex (OR 1.30, 95%CI 1.06-1.58; moderate certainty), and chronic obstructive pulmonary disease (OR 1.27, 95%CI 1.13-1.44; moderate certainty). Development of ARDS was independently associated with increased odds of in-hospital mortality (OR 3.12, 95% CI 1.39-7.00). CONCLUSIONS Multiple risk factors are associated with ARDS in brain-injured patients. These findings could be used to develop prognostic models for ARDS or as prognostic enrichment strategies for patient enrolment in future clinical trials.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | - Doulia M Hamad
- Department of Surgery, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Stephan von Düring
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Intensive Care Division, Geneva University Hospitals (HUG) and Faculty of Medicine, University of Geneva, Switzerland
| | - Armaan K Malhotra
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Areti Angeliki Veroniki
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Victoria A McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jeffrey M Singh
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Bettina Hansen
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Marina Englesakis
- Library and Health Information Services, University Health Network, Toronto, ON, Canada
| | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|