1
|
Gan Z, Klein CJMI, Keijer J, van Schothorst EM. Quantitative interpretation and modeling of continuous nonprotein respiratory quotients. Am J Physiol Endocrinol Metab 2025; 328:E289-E296. [PMID: 39853301 DOI: 10.1152/ajpendo.00459.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
The respiratory exchange ratio (RER), which is the ratio of total carbon dioxide produced over total oxygen consumed, serves as a qualitative measure to determine the substrate usage of a particular organism on the whole body level. Quantification of RER by its direct conversion into %glucose- (%Gox) and %lipid oxidation (%Lox) at a given timepoint can be done by utilizing nonprotein respiratory quotient tables. These tables, however, are limited to specific increments, and intermediate RER values are not covered by these tables. RER data are mostly continuous, which requires faithful interpolation, which we aimed for here. We first determined, statistically and schematically, that linear interpolation would lead to incorrect values. Therefore, we constructed a new mathematical model as an interpolating strategy to translate continuous RER values into correct values of %Gox and %Lox. We validated our new mathematical model against the original table by Péronnet and Massicotte (Can J Sport Sci 16: 23-29, 1991), against a linear interpolation of these data, as well as against a model based on an exponential approach using a dataset of a nutritional intervention study in mice. This showed that our model outperforms the other methods, providing more accurate data. We conclude that applying our mathematical model will lead to an increase in data quality and offer a very simple, straightforward approach to obtain the best %Gox and %Lox levels from continuous RER values.NEW & NOTEWORTHY With the here proposed mathematical model, we provide a new tool to convert continuous RER data into more accurate estimations of %Gox and %Lox. It circumvents the use of nonprotein respiratory quotient tables and thereby aids and simplifies by automating the conversions. The model can further be implemented into software commonly used for indirect calorimetry measurements and thereby provides %Gox and %Lox data in real-time during a running experiment.
Collapse
Affiliation(s)
- Zhuohui Gan
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christian J M I Klein
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- TSE Systems GmbH, Berlin, Germany
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
2
|
Engelen MPKJ, Simbo SY, Ruebush LE, Thaden JJ, Ten Have GAM, Harrykissoon RI, Zachria AJ, Calder PC, Pereira SL, Deutz NEP. Functional and metabolic effects of omega-3 polyunsaturated fatty acid supplementation and the role of β-hydroxy-β-methylbutyrate addition in chronic obstructive pulmonary disease: A randomized clinical trial. Clin Nutr 2024; 43:2263-2278. [PMID: 39181037 DOI: 10.1016/j.clnu.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Short-term (4 weeks) supplementation with n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has recently been shown to improve protein metabolism in a dose dependent way in normal weight patients with Chronic Obstructive Pulmonary Disease (COPD). Furthermore, EPA/DHA supplementation was able to increase extremity lean soft tissue but not muscle function. No studies are available combining n-3 PUFAs and the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) supplementation in chronic clinical conditions. Whether adding HMB to daily EPA/DHA supplementation for 10 weeks enhances muscle and brain health, daily functional performance, and quality of life of patients with COPD by further improving their protein and amino acid homeostasis remains unknown. METHODS Patients with COPD (GOLD: II-IV, n = 46) received daily for 10 weeks, according to a randomized double-blind placebo-controlled three-group design, EPA/DHA (n = 16), EPA/DHA to which HMB was added (n = 14), or placebo (n = 16). The daily dose of 2.0 g of EPA/DHA or soy + corn oil as the placebo was provided via gel capsules, and 3.0 g of Ca-HMB or maltodextrin as placebo as powders. At pre- and post-intervention, a pulse mixture of multiple amino acids was administered to measure postabsorptive net protein breakdown (netPB as primary endpoint) and whole body production (WBP) and conversion rates of the amino acids. As secondary endpoints, lean soft tissue and fat mass were assessed by dual-energy X-ray absorptiometry, upper and lower muscle function by handgrip and single leg isokinetic dynamometry, brain (cognitive, wellbeing) health by assessments, daily functional performance by measuring 6-min walk distance, 4-m gait speed, and postural balance, and quality of life by questionnaire. Plasma enrichments and concentrations were analyzed by LC-MS/MS, and systemic inflammatory profile and metabolic hormones by Luminex. RESULTS HMB + EPA/DHA but not EPA/DHA supplementation increased postabsorptive netPB (p = 0.028), and WBPs of glutamine (p = 0.024), taurine (p = 0.039), and tyrosine (p = 0.036). Both EPA/DHA and HMB + EPA/DHA supplementation resulted in increased WBP of phenylalanine (p < 0.05). EPA/DHA but not HMB + EPA/DHA was able to increase WBP of arginine (p = 0.030), citrulline (p = 0.008), valine (p = 0.038), and conversion of citrulline to arginine (p = 0.009). Whole body and extremity fat mass were reduced after HMB + EPA/DHA supplementation only, whereas lean soft tissue was increased after EPA/DHA (p = 0.049) and HMB + EPA/DHA (p = 0.073). No other significant findings were observed. Reductions in several proinflammatory cytokines were observed in the HMB + EPA/DHA group including IL-2, IL-17, IL-6, IL-12P40, and TNF-β (p < 0.05). CONCLUSIONS Ten weeks of supplementation with 2 g of EPA/DHA daily is sufficient to induce muscle gain in COPD but HMB is needed to induce fat loss. Whether HMB is solely responsible for the fat mass loss or has a synergistic effect with EPA/DHA remains unclear. The increase in net protein breakdown observed with HMB + EPA/DHA supplementation may indicate a beneficial enhanced protein turnover cycling associated with increased lean soft tissue. CLINICAL TRIAL REGISTRY ClinicalTrials.gov; NCT03796455.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA; Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA.
| | - Sunday Y Simbo
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Laura E Ruebush
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - John J Thaden
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Rajesh I Harrykissoon
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | | | - Nicolaas E P Deutz
- Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Hagve M, Pereira SL, Walker DK, Engelen MPKJ, Deutz NEP. Statin treatment reduces leucine turnover, but does not affect endogenous production of beta-hydroxy-beta-methylbutyrate (HMB). Metabolism 2024; 156:155920. [PMID: 38677663 DOI: 10.1016/j.metabol.2024.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Statins, or hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors, are one of the most commonly prescribed medications for lowering cholesterol. Myopathic side-effects ranging from pain and soreness to critical rhabdomyolysis are commonly reported and often lead to discontinuation. The pathophysiological mechanism is, in general, ascribed to a downstream reduction of Coenzyme Q10 synthesis. HMG-CoA is a metabolite of leucine and its corresponding keto acid α-ketoisocaproic acid (KIC) and β-hydroxy-β-methylbutyrate (HMB), however, little is known about the changes in the metabolism of leucine and its metabolites in response to statins. OBJECTIVE We aimed to investigate if statin treatment has implications on the upstream metabolism of leucine to KIC and HMB, as well as on other branched chain amino acids (BCAA). DESIGN 12 hyperlipidemic older adults under statin treatment were recruited. The study was conducted as a paired prospective study. Included participants discontinued their statin treatment for 4 weeks before they returned for baseline measurements (before). Statin treatment was then reintroduced, and the participants returned for a second study day 7 days after reintroduction (after statin). On study days, participants were injected with stable isotope pulses for measurement of the whole-body production (WBP) of all BCAA (leucine, isoleucine and valine), along with their respective keto acids and HMB. RESULTS We found a reduced leucine WBP (22 %, p = 0.0033), along with a reduction in valine WBP (13 %, p = 0.0224). All other WBP of BCAA and keto acids were unchanged. There were no changes in the WBP of HMB. CONCLUSIONS Our study shows that statin inhibition of HMG-CoA reductase has an upstream impact on the turnover of leucine and valine. Whether this impairment in WBP of leucine may contribute to the known pathophysiological side effects of statins on muscle remains to be further investigated.
Collapse
Affiliation(s)
- Martin Hagve
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | | | - Dillon K Walker
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Deutz NEP, Engelen MPKJ. Compartmental analysis: a new approach to estimate protein breakdown and meal response in health and critical illness. Front Nutr 2024; 11:1388969. [PMID: 38784132 PMCID: PMC11111962 DOI: 10.3389/fnut.2024.1388969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Purpose of review This study aimed to discuss the use of the pulse stable isotope tracer approach to study changes in metabolism in healthy individuals and critically ill patients. Recent findings and conclusion We found that in the postabsorptive state and healthy condition, intracellular protein breakdown and net intracellular protein breakdown, when calculated using the pulse tracer approach, are about double what has previously been reported using the more traditional primed-constant and continuous stable isotope approaches (600 versus 300 grams of protein/day). In critically ill patients, protein breakdown is even higher and calculated to be approximately 900 grams of protein/day, using the pulse tracer approach. Based on these data, we hypothesize that reducing protein breakdown in the postabsorptive state is key when trying to improve the condition of critically ill patients. Moreover, we also used the pulse tracer approach during feeding to better estimate the intracellular metabolic response to feeding. Our first observation is that endogenous protein breakdown does not seem to be reduced during feeding. We also have shown that when consuming a meal with a certain amount of protein, the biological value of that protein meal can be calculated with the pulse tracer approach. In conclusion, using the pulse stable isotope tracer approach to study protein kinetics in the postabsorptive state and during feeding expands our understanding of how dietary proteins can affect human protein metabolism. The intracellular protein synthesis stimulatory effect of a meal is an important factor to consider when calculating the exact protein requirements and needs, particularly in critical illness.
Collapse
Affiliation(s)
- Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
5
|
Deutz NE, Haines KL, Wischmeier PE, Engelen MP. Amino acid kinetics in the critically ill. Curr Opin Clin Nutr Metab Care 2024; 27:61-69. [PMID: 37997794 PMCID: PMC10841855 DOI: 10.1097/mco.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Stable isotope methods have been used for many years to assess whole body protein and amino acid kinetics in critically ill patients. In recent years, new isotope approaches and tracer insights have been developed. The tracer pulse approach has some advantages above the established primed-continuous tracer infusion approach because of the high amount of metabolic information obtained, easy applicability, and low tracer costs. Effects of disease severity and sex on amino acid kinetics in ICU patients will also be addressed. RECENT FINDINGS Current knowledge was synthesized on specific perturbations in amino acid metabolism in critically ill patients, employing novel methodologies such as the pulse tracer approach and computational modeling. Variations were evaluated in amino acid production and linked to severity of critical illness, as measured by SOFA score, and sex. Production of the branched-chain amino acids (BCAAs), glutamine, tau-methylhistidine and hydroxyproline were elevated in critical illness, likely related to increased transamination of the individual BCAAs or increased breakdown of proteins. Citrulline production was reduced, indicative of impaired gut mucosa function. Sex and disease severity independently influenced amino acid kinetics in ICU patients. SUMMARY Novel tracer and computational approaches have been developed to simultaneously measure postabsorptive kinetics of multiple amino acids that can be used in critical illness. The collective findings lay the groundwork for targeted individualized nutritional strategies in ICU settings aimed at enhancing patient outcomes taking into account disease severity and sex.
Collapse
Affiliation(s)
- Nicolaas E.P. Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University
| | - Krista L. Haines
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Duke University Hospital
| | - Paul E. Wischmeier
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Duke University Hospital
| | | |
Collapse
|
6
|
Engelen MPKJ, Kirschner SK, Coyle KS, Argyelan D, Neal G, Dasarathy S, Deutz NEP. Sex related differences in muscle health and metabolism in chronic obstructive pulmonary disease. Clin Nutr 2023; 42:1737-1746. [PMID: 37542951 DOI: 10.1016/j.clnu.2023.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND & AIMS Sex differences in muscle function and mass, dyspnea, and clinical outcomes have been observed in patients with Chronic Obstructive Pulmonary Disease (COPD) despite a similar level of airflow obstruction. Protein and amino acid metabolism is altered in COPD, however, it remains unclear whether a difference in metabolic signature exists between males and females with COPD that may explain the observed differences in muscle health and clinical outcomes. METHODS In 234 moderate to severe COPD patients (males/females: 113/121) and 182 healthy controls (males/females: 77/105), we assessed, besides presence of comorbidities and clinical features, muscle function by handgrip and leg dynamometry, and body composition by dual-energy x-ray absorptiometry. In the postabsorptive state, a mixture of 18 stable isotopes of amino acids was administered by pulse and arterialized blood was sampled for 2 h. Amino acid concentrations and enrichments were analyzed by LC-MS/MS to calculate whole body (net) protein breakdown (WBnetPB) and whole body production (WBP) rates (μmol/hour) of the amino acids playing a known role in muscle health. Statistics was done by ANCOVA to examine the effects of sex, COPD, and sex-by-COPD interaction with as covariates age and lean mass. Significance was set as p < 0.05. RESULTS Lung function was comparable between males and females with COPD. Being a female and presence of COPD were independently associated with lower appendicular lean mass, muscle strength, and WBnetPB (p < 0.05). Being a male was associated with higher visceral adipose tissue, C-reactive protein (CRP) (p < 0.05), and higher prevalence of heart failure and obstructive sleep apnea. Sex-by-COPD interactions were found indicating lower fat mass (p = 0.0005) and WBPs of phenylalanine (measure of whole body protein turnover) and essential amino acids (p < 0.05), particularly in COPD females. Higher visceral adipose tissue (p = 0.025), CRP (p < 0.0001), and WBP of tau-methylhistidine (p = 0.010) (reflecting enhanced myofibrillar protein breakdown) were observed in COPD males. CONCLUSIONS Presence of sex specific changes in protein and amino acid metabolism and cardiometabolic health in COPD need to be considered when designing treatment regimens to restore muscle health in males and females with COPD. CLINICAL TRIAL REGISTRY www. CLINICALTRIALS gov, NCT01787682, NCT01624792, NCT02157844, NCT02065141, NCT02770092, NCT02780219, NCT03327181, NCT03796455, NCT01173354, NCT01154400.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA; Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA.
| | - Sarah K Kirschner
- Center for Translational Research in Aging & Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Kimberly S Coyle
- Center for Translational Research in Aging & Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - David Argyelan
- Center for Translational Research in Aging & Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Gabriel Neal
- Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA
| | - Srinivasan Dasarathy
- Department of Gastroenterology and Hepatology, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA; Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Deutz NEP, Singer P, Wierzchowska-McNew RA, Viana MV, Ben-David IA, Pantet O, Thaden JJ, Ten Have GAM, Engelen MPKJ, Berger MM. Females have a different metabolic response to critical illness, measured by comprehensive amino acid flux analysis. Metabolism 2023; 142:155400. [PMID: 36717057 DOI: 10.1016/j.metabol.2023.155400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND The trajectory from healthy to critical illness is influenced by numerous factors, including metabolism, which differs substantially between males and females. Whole body protein breakdown is substantially increased in critically ill patients, but it remains unclear whether there are sex differences that could explain the different health outcomes. Hence, we performed a secondary analysis of a study, where we used a novel pulse isotope method in critically ill and matched healthy males and females. METHODS In 51 critically ill ICU patients (26 males, 15 females) and 49 healthy controls (36 males and 27 females), we assessed their general and disease characteristics and collected arterial(ized) blood in the postabsorptive state after pulse administration of 8 ml of a solution containing 18 stable AA tracers. In contrast to the original study, we now fitted the decay curves and calculated non-compartmental whole body amino acid production (WBP) and compartmental measurements of metabolism, including intracellular amino acid production. We measured amino acid enrichments and concentrations by LC-MS/MS and derived statistics using AN(C)OVA. RESULTS Critically ill males and females showed an increase in the WBP of many amino acids, including those related to protein breakdown, but females showed greater elevations, or in the event of a reduction, attenuated reductions. Protein breakdown-independent WBP differences remained between males and females, notably increased glutamine and glutamate WBP. Only severely ill females showed a lower increase in WBP of many amino acids in comparison to moderately ill females, suggesting a suppressed metabolism. Compartmental analysis supported the observations. CONCLUSIONS The present study shows that females have a different response to critical illness in the production of several amino acids and changes in protein breakdown, observations made possible using our innovative stable tracer pulse approach. CLINICAL TRIAL REGISTRY Data are from the baseline measurements of study NCT02770092 (URL: https://clinicaltrials.gov/ct2/show/NCT02770092) and NCT03628365 (URL: https://clinicaltrials.gov/ct2/show/NCT03628365).
Collapse
Affiliation(s)
- Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America.
| | - Pierre Singer
- Dept of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | | | - Marina V Viana
- Dept of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Itai A Ben-David
- Dept of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | - Olivier Pantet
- Dept of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - John J Thaden
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America
| | - Mette M Berger
- Dept of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
8
|
Kirschner SK, Ghane P, Park JK, Simbo SY, Ivanov I, Braga-Neto UM, Ten Have GAM, Thaden JJ, Engelen MPKJ, Deutz NEP. Short-chain fatty acid production in accessible and inaccessible body pools as assessed by novel stable tracer pulse approach is reduced by aging independent of presence of COPD. Metabolism 2023; 141:155399. [PMID: 36642114 DOI: 10.1016/j.metabol.2023.155399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Production rates of the short-chain fatty acids (SCFA) acetate, propionate, and butyrate, which are beneficial metabolites of the intestinal microbiota, are difficult to measure in humans due to inaccessibility of the intestine to perform measurements, and the high first-pass metabolism of SCFAs in colonocytes and liver. We developed a stable tracer pulse approach to estimate SCFA whole-body production (WBP) in the accessible pool representing the systemic circulation and interstitial fluid. Compartmental modeling of plasma enrichment data allowed us to additionally calculate SCFA kinetics and pool sizes in the inaccessible pool likely representing the intestine with microbiota. We also studied the effects of aging and the presence of Chronic Obstructive Pulmonary Disease (COPD) on SCFA kinetics. METHODS In this observational study, we designed a two-compartmental model to determine SCFA kinetics in 31 young (20-29 y) and 71 older (55-87 y) adults, as well as in 33 clinically stable patients with moderate to very severe COPD (mean (SD) FEV1, 46.5 (16.2)% of predicted). Participants received in the fasted state a pulse containing stable tracers of acetate, propionate, and butyrate intravenously and blood was sampled four times over a 30 min period. We measured tracer-tracee ratios by GC-MS and used parameters obtained from two-exponential curve fitting to calculate non-compartmental SCFA WBP and perform compartmental analysis. Statistics were done by ANCOVA. RESULTS Acetate, propionate, and butyrate WBP and fluxes between the accessible and inaccessible pools were lower in older than young adults (all q < 0.0001). Moreover, older participants had lower acetate (q < 0.0001) and propionate (q = 0.019) production rates in the inaccessible pool as well as smaller sizes of the accessible and inaccessible acetate pools (both q < 0.0001) than young participants. WBP, compartmental SCFA kinetics, and pool sizes did not differ between COPD patients and older adults (all q > 0.05). Overall and independent of the group studied, calculated production rates in the inaccessible pool were on average 7 (acetate), 11 (propionate), and 16 (butyrate) times higher than non-compartmental WBP, and sizes of inaccessible pools were 24 (acetate), 31 (propionate), and 55 (butyrate) times higher than sizes of accessible pools (all p < 0.0001). CONCLUSION Non-compartmental production measurements of SCFAs in the accessible pool (i.e. systemic circulation) substantially underestimate the SCFA production in the inaccessible pool, which likely represents the intestine with microbiota, as assessed by compartmental analysis.
Collapse
Affiliation(s)
- Sarah K Kirschner
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Parisa Ghane
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA; Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Jaekwan K Park
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Sunday Y Simbo
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Ivan Ivanov
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA; Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, USA
| | - Ulisses M Braga-Neto
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Gabriëlla A M Ten Have
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - John J Thaden
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Wierzchowska-McNew RA, Engelen MPKJ, Thaden JJ, Ten Have GAM, Deutz NEP. Obesity- and sex-related metabolism of arginine and nitric oxide in adults. Am J Clin Nutr 2022; 116:1610-1620. [PMID: 36166849 DOI: 10.1093/ajcn/nqac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND There is growing interest in the supplementation of arginine (Arg) and citrulline (Cit) in obesity due to their potential anti-obesogenic and anti-inflammatory properties. However, there is no consensus on the metabolic changes in Arg kinetics in obesity. OBJECTIVES This exploratory cross-sectional study aimed to investigate the association between obesity, sex, and sex-by-obesity interaction on whole-body Arg kinetics in a large group of human subjects. METHODS We studied 83 nonobese [BMI (kg/m2) <30] and 80 morbidly obese (BMI >30) middle-aged individuals (40% males) enrolled in the MEDIT (Metabolism of Disease with Isotope Tracers) trial. After body-composition measurement by DXA, we collected arterial(ized) blood samples for amino acid (AA) concentrations, markers of inflammation [high-sensitivity C-reactive protein (hs-CRP)], liver function, and glucose in a postabsorptive state. We administered a pulse of AA stable tracers and measured whole-body production (WBP) of Arg, Cit, ornithine (Orn), phenylalanine, and tyrosine, and calculated their clearance (disposal capacity) and metabolite interconversions [markers for NO and de novo Arg production, systemic Arg hydrolysis, and whole-body protein breakdown (wbPB)]. We measured plasma enrichments by LC-MS/MS and statistics by Fisher's exact test or analysis of (co)variance. Significance was set at P < 0.05. RESULTS Obese individuals were normoglycemic and characterized by low-grade inflammation (P < 0.0001) and greater wbPB (P = 0.0298). We found lower plasma Cit concentration (P < 0.0001) in the obese group but no differences in the WBP of Arg, Cit, and Orn. Furthermore, we observed overproduction of NO (P < 0.0001) in obesity but lower de novo Arg production (P = 0.0007). The WBP of Arg was lower in females for almost all Arg-related AAs, except for plasma Cit and NO production. CONCLUSIONS Alterations in Arg metabolism are present in morbid obesity. Further studies are needed to investigate if these changes could be related to factors such as increased Arg requirement in obesity or metabolic adaptation.
Collapse
Affiliation(s)
- Raven A Wierzchowska-McNew
- Department of Kinesiology and Sport Management, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Department of Kinesiology and Sport Management, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - John J Thaden
- Department of Kinesiology and Sport Management, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Gabriella A M Ten Have
- Department of Kinesiology and Sport Management, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Nicolaas E P Deutz
- Department of Kinesiology and Sport Management, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Cruthirds CL, Deutz NE, Harrykissoon R, Zachria AJ, Engelen MP. A low postabsorptive whole body protein balance is associated with markers of poor daily physical functioning in Chronic Obstructive Pulmonary Disease. Clin Nutr 2022; 41:885-893. [PMID: 35279559 PMCID: PMC8983572 DOI: 10.1016/j.clnu.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND & AIMS Postabsorptive whole body protein kinetics are related to age, gender, body mass index (BMI), and habitual protein intake level. It is unclear how protein synthesis, breakdown, and postabsorptive protein balance rates are affected in Chronic Obstructive Pulmonary Disease (COPD)) and whether these relate to disease severity, lifestyle characteristics and poor daily functioning. METHODS We studied 91 COPD (GOLD 1-4) and 56 age matched control subjects without COPD or other chronic or acute health disease/condition in the postabsorptive state and measured body composition by Dual-energy X-ray Absorptiometry, and disease severity and comorbidities by medical screening, blood analysis and questionnaires. We assessed whole body production rates of phenylalanine and tyrosine by pulse stable isotope tracer infusion to calculate whole body protein breakdown (PB) and hydroxylation of phenylalanine to tyrosine, representative of postabsorptive protein balance. We measured muscle and cognitive function, and physical performance by isokinetic dynamometry, cognitive assessments, and 6-min walk test. We assessed physical activity level, mood and dietary protein intake by questionnaires. We measured plasma enrichments by LC-MS/MS and statistics by Fisher's exact test or analysis of covariance. Data are mean [95% CI]. RESULTS The COPD patients had moderate to severe airflow obstruction, multiple comorbidities, and elevated values for plasma high sensitivity c-reactive protein (hs-CRP) and glucose. Although PB (3630 [3361, 3900] vs 3504 [3297, 3711] umol/h, p = 0.1649) was not different, postabsorptive protein balance was lower in COPD patients (274.2 [242.4, 306.1] vs 212.9 [194.7, 231.0] umol/h, p < 0.0001), both compared to control subjects. A lower postabsorptive protein balance was associated with age (p < 0.0001) and higher levels for systolic blood pressure (p = 0.0051) and hs-CRP (p = 0.0046) but not with lung function. Furthermore, a lower postabsorptive protein balance level was associated with a lower intake of total calories and protein (p < 0.0001) and lower muscle strength (p = 0.0248), while only in COPD with a lower physical performance (p = 0.0343). We found no association with cognitive function or mood. For all subjects, a cumulative model that included group, gender, age, BMI, systolic blood pressure, hs-CRP, caloric intake, protein intake, and leg strength was able to explain 55% of the variation in postabsorptive protein balance. CONCLUSION These data suggest that systemic inflammation, high blood pressure and low protein intake are risk factors of a lower postabsorptive protein balance in COPD patients. A lower postabsorptive protein balance is associated with markers of poor daily physical functioning.
Collapse
|
11
|
Demmelmair H, Koletzko B. Detailed knowledge of maternal and infant factors and human milk composition could inform recommendations for optimal composition. Acta Paediatr 2022; 111:500-504. [PMID: 34738257 DOI: 10.1111/apa.16174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023]
Abstract
Breastfeeding is best for infants, but quantitative associations between specific milk components and infant biomarkers remain unclear. Methodological limitations include missing milk volume intake, variable milk composition and that standardised, fasted state blood sampling is impossible in infants. Milk protein and fat content appear marginally related to infant serum amino acid and phospholipid concentrations, with some association between milk fatty acid composition and lipid species levels. CONCLUSION: Detailed simultaneous examinations of maternal factors, milk composition and infant biomarkers or outcomes could identify the mechanistic basis of human milk effects and help develop dietary recommendations for optimal human milk composition.
Collapse
Affiliation(s)
- Hans Demmelmair
- Department of Pediatrics Division of Metabolic and Nutritional Medicine Dr von Hauner Children's Hospital University of Munich Medical CentreLudwig‐Maximilians‐Universität Munich Munich Germany
| | - Berthold Koletzko
- Department of Pediatrics Division of Metabolic and Nutritional Medicine Dr von Hauner Children's Hospital University of Munich Medical CentreLudwig‐Maximilians‐Universität Munich Munich Germany
| |
Collapse
|
12
|
Pinson MR, Deutz NEP, Harrykissoon R, Zachria AJ, Engelen MPKJ. Disturbances in branched-chain amino acid profile and poor daily functioning in mildly depressed chronic obstructive pulmonary disease patients. BMC Pulm Med 2021; 21:351. [PMID: 34743729 PMCID: PMC8573879 DOI: 10.1186/s12890-021-01719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression is one of the most common and untreated comorbidities in chronic obstructive pulmonary disease (COPD), and is associated with poor health outcomes (e.g. increased hospitalization/exacerbation rates). Although metabolic disturbances have been suggested in depressed non-diseased conditions, comprehensive metabolic phenotyping has never been conducted in those with COPD. We examined whether depressed COPD patients have certain clinical/functional features and exhibit a specific amino acid phenotype which may guide the development of targeted (nutritional) therapies. METHODS Seventy-eight outpatients with moderate to severe COPD (GOLD II-IV) were stratified based on presence of depression using a validated questionnaire. Lung function, disease history, habitual physical activity and protein intake, body composition, cognitive and physical performance, and quality of life were measured. Comprehensive metabolic flux analysis was conducted by pulse stable amino acid isotope administration. We obtained blood samples to measure postabsorptive kinetics (production and clearance rates) and plasma concentrations of amino acids by LC-MS/MS. Data are expressed as mean [95% CI]. Stats were done by graphpad Prism 9.1.0. ɑ < 0.05. RESULTS The COPD depressed (CD, n = 27) patients on average had mild depression, were obese (BMI: 31.7 [28.4, 34.9] kg/m2), and were characterized by shorter 6-min walk distance (P = 0.055), physical inactivity (P = 0.03), and poor quality of life (P = 0.01) compared to the non-depressed COPD (CN, n = 51) group. Lung function, disease history, body composition, cognitive performance, and daily protein intake were not different between the groups. In the CD group, plasma branched chain amino acid concentration (BCAA) was lower (P = 0.02), whereas leucine (P = 0.01) and phenylalanine (P = 0.003) clearance rates were higher. Reduced values were found for tyrosine plasma concentration (P = 0.005) even after adjustment for the large neutral amino acid concentration (= sum BCAA, tyrosine, phenylalanine and tryptophan) as a marker of dopamine synthesis (P = 0.048). CONCLUSION Mild depression in COPD is associated with poor daily performance and quality of life, and a set of metabolic changes in depressed COPD that include perturbation of large neutral amino acids, specifically the BCAAs. Trial registration clinicaltrials.gov: NCT01787682, 11 February 2013-Retrospectively registered; NCT02770092, 12 May 2016-Retrospectively registered; NCT02780219, 23 May 2016-Retrospectively registered; NCT03796455, 8 January 2019-Retrospectively registered.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Nicolaas E P Deutz
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Rajesh Harrykissoon
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review will discuss recent studies showing that patients with chronic wasting diseases suffer from a variety of small intestinal impairments which might negatively impact the colonic microbiota and overall well-being. New insights will be addressed as well as novel approaches to assess intestinal function. RECENT FINDINGS Small intestinal dysfunction can enhance the amount and alter the composition of undigested food reaching the colon. As a result of reduced protein digestion and absorption, a large amount of undigested protein might reach the colon promoting the presence of pathogenic colonic bacteria and a switch from bacterial fiber fermentation to protein fermentation. While microbial metabolites of fiber fermentation, such as short-chain fatty acids (SCFA), are mainly considered beneficial for overall health, metabolites of protein fermentation, i.e. ammonia, branched SCFAs, hydrogen sulfide, polyamines, phenols, and indoles, can exert beneficial or deleterious effects on overall health. Substantial advances have been made in the assessment of small intestinal dysfunction in chronic diseases, but studies investigating the connection to colonic microbial metabolism are needed. A promising new stable isotope approach can enable the measurement of metabolite production by the colonic microbiota. SUMMARY Several studies have been conducted to assess intestinal function in chronic diseases. Impairments in intestinal barrier function, sugar absorption, protein digestion, and absorption, as well as small intestinal bacterial overgrowth were observed and possibly might negatively impact colonic bacterial metabolism. We suggest that improving these perturbations will improve overall patient health.
Collapse
Affiliation(s)
- Sarah K Kirschner
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
14
|
Impact of β-hydroxy-β-methylbutyrate (HMB) on muscle loss and protein metabolism in critically ill patients: A RCT. Clin Nutr 2021; 40:4878-4887. [PMID: 34358832 DOI: 10.1016/j.clnu.2021.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Muscle wasting deteriorates life quality after critical illness and increases mortality. Wasting starts upon admission to intensive care unit (ICU). We aimed to determine whether β-hydroxy-β-methylbutyrate (HMB), a metabolite of leucine, can attenuate this process. METHODS Prospective randomized, placebo-controlled double blind trial. INCLUSION CRITERIA ICU patients depending on mechanical ventilation on day 3 having a functional gastrointestinal tract. They were randomized to HMB (3 g/day) or placebo (maltodextrin) from day 4 on for 30 days. PRIMARY OUTCOME magnitude of loss of skeletal muscle area (SMA) of the quadriceps femoris measured by ultrasound at days 4 and 15. SECONDARY OUTCOMES body composition, change in protein metabolism assessed by amino acids tracer pulse, and global health at 60 days. Data are mean [95% CI]. Statistics by ANCOVA with correction for confounders sex, age and/or BMI. RESULTS Thirty patients completed the trial, aged 65 [59, 71] years, SAPS2 score 48 [43, 52] and SOFA 8.5 [7.4, 9.7]. The loss of total SMA was 11% between days 4 and 15 (p < 0.001), but not different between the groups (p = 0.86). In the HMB group, net protein breakdown (Δ Estimate HMB-Placebo: -153 [-242, -63]; p = 0.0021) and production of several amino acid was significantly reduced, while phase angle increased more (0.66 [0.09, 1.24]; p = 0.0247), and SF-12 global health improved more (Δ Estimate HMB-Placebo: 27.39 [1.594, 53.19], p = 0.04). CONCLUSION HMB treatment did not significantly reduce muscle wasting over 10 days of observation (primary endpoint), but resulted in significantly improved amino acid metabolism, reduced net protein breakdown, a higher phase angle and better global health. CLINICALTRIALS. GOV IDENTIFIER NCT03628365.
Collapse
|
15
|
Comprehensive metabolic amino acid flux analysis in critically ill patients. Clin Nutr 2021; 40:2876-2897. [PMID: 33946038 DOI: 10.1016/j.clnu.2021.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 01/16/2023]
Abstract
Amino acid (AA) metabolism is severely disturbed in critically ill ICU patients. To be able to make a more scientifically based decision on the type of protein or AA nutrition to deliver in ICU patients, comprehensive AA phenotyping with measurements of plasma concentrations and whole body production (WBP) is needed. Therefore, we studied ICU patients and matched control subjects using a novel pulse isotope method to obtain in-depth metabolic analysis. In 51 critically ill ICU patients (SOFA~6.6) and 49 healthy controls, we measured REE and body composition/phase-angle using BIA. In the postabsorptive state, we collected arterial (ized) blood for CRP and AA. Then, we administered an 8 mL solution containing 18 stable AA tracers as a pulse and calculated WBP. Enrichments: LC-MS/MS and statistics: t-test, ANCOVA. Compared to healthy, critically ill ICU patients had lower phase-angle (p < 0.00001), and higher CRP (p < 0.0001). Most AA concentrations were lower in ICU patients (p < 0.0001), except tau-methylhistidine and phenylalanine. WBP of most AA were significantly (p < 0.0001) higher with increases in glutamate (160%), glutamine (46%), and essential AA. Remarkably, net protein breakdown was lower. There were only weak relationships between AA concentrations and WBP. Critically ill ICU patients (SOFA 8-16) had lower values for phase angle (p = 0.0005) and small reductions of most plasma AA concentrations, but higher tau-methylhistidine (p = 0.0223) and hydroxyproline (p = 0.0028). Remarkably, the WBP of glutamate and glutamine were lower (p < 0.05), as was their clearance, but WBP of tau-methylhistidine (p = 0.0215) and hydroxyproline (p = 0.0028) were higher. Our study in critically ill ICU patients shows that comprehensive metabolic phenotyping was able to reveal severe disturbances in specific AA pathways, in a disease severity dependent way. This information may guide improving nutritional compositions to improve the health of the critically ill patient. CLINICAL TRIAL REGISTRY: Data are from the baseline measurements of study NCT02770092 (URL: https://clinicaltrials.gov/ct2/show/NCT02770092) and NCT03628365 (URL: https://clinicaltrials.gov/ct2/show/NCT03628365).
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Timing, dose, and route of protein feeding in critically ill patients treated in an ICU is controversial. This is because of conflicting outcomes observed in randomized controlled trials (RCTs). This inconsistency between RCTs may occur as the physiology of protein metabolism and protein handling in the critically ill is substantially different from the healthy with limited mechanistic data to inform design of RCTs. This review will outline the current knowledge and gaps in the understanding of protein absorption and kinetics during critical illness. RECENT FINDINGS Critically ill patients, both children and adults, lose muscle protein because of substantial increases in protein degradation with initially normal, and over time increasing, protein synthesis rates. Critically ill patients appear to retain the capacity to absorb dietary protein and to use it for building body protein; however, the extent and possible benefit of this needs to be elucidated. More sophisticated methods to study protein absorption and digestion have recently been described but these have yet to be used in the critically ill. SUMMARY Adequate understanding of protein absorption and kinetics during critical illness will help the design of better interventional studies in the future. Because of the complexity of measuring protein absorption and kinetics in the critically ill, very few investigations are executed. Recent data using isotope-labelled amino acids suggests that critically ill patients are able to absorb enteral protein and to synthesize new body protein. However, the magnitude of absorption and anabolism that occurs, and possible benefits for the patients need to be elucidated.
Collapse
Affiliation(s)
- Felix Liebau
- Perioperative Medicine and Intensive Care, Karolinska University Hospital
- Division of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Adam M Deane
- Department of Medicine and Radiology, Melbourne Medical School, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Olav Rooyackers
- Perioperative Medicine and Intensive Care, Karolinska University Hospital
- Division of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
17
|
Stoppe C, Wendt S, Mehta NM, Compher C, Preiser JC, Heyland DK, Kristof AS. Biomarkers in critical care nutrition. Crit Care 2020; 24:499. [PMID: 32787899 PMCID: PMC7425162 DOI: 10.1186/s13054-020-03208-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of nutrition support is to provide the substrates required to match the bioenergetic needs of the patient and promote the net synthesis of macromolecules required for the preservation of lean mass, organ function, and immunity. Contemporary observational studies have exposed the pervasive undernutrition of critically ill patients and its association with adverse clinical outcomes. The intuitive hypothesis is that optimization of nutrition delivery should improve ICU clinical outcomes. It is therefore surprising that multiple large randomized controlled trials have failed to demonstrate the clinical benefit of restoring or maximizing nutrient intake. This may be in part due to the absence of biological markers that identify patients who are most likely to benefit from nutrition interventions and that monitor the effects of nutrition support. Here, we discuss the need for practical risk stratification tools in critical care nutrition, a proposed rationale for targeted biomarker development, and potential approaches that can be adopted for biomarker identification and validation in the field.
Collapse
Affiliation(s)
- Christian Stoppe
- 3CARE—Cardiovascular Critical Care & Anesthesia Evaluation and Research, Aachen, Germany
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Sebastian Wendt
- 3CARE—Cardiovascular Critical Care & Anesthesia Evaluation and Research, Aachen, Germany
| | - Nilesh M. Mehta
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Charlene Compher
- Department of Biobehavioral Health Science, University of Pennsylvania and Clinical Nutrition Support Service, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Jean-Charles Preiser
- Erasme University Hospital, Université Libre de Bruxelles, 808 route de Lennik, B-1070 Brussels, Belgium
| | - Daren K. Heyland
- Department of Critical Care Medicine, Queen’s University, Angada 4, Kingston, ON K7L 2V7 Canada
- Clinical Evaluation Research Unit, Kingston General Hospital, Angada 4, Kingston, ON K7L 2V7 Canada
| | - Arnold S. Kristof
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Faculty of Medicine, Departments of Medicine and Critical Care, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., EM3.2219, Montreal, QC H4A 3J1 Canada
| |
Collapse
|
18
|
Granados JZ, Ten Have GAM, Letsinger AC, Thaden JJ, Engelen MPKJ, Lightfoot JT, Deutz NEP. Activated whole-body arginine pathway in high-active mice. PLoS One 2020; 15:e0235095. [PMID: 32589680 PMCID: PMC7319332 DOI: 10.1371/journal.pone.0235095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Our previous studies suggest that physical activity (PA) levels are potentially regulated by endogenous metabolic mechanisms such as the vasodilatory roles of nitric oxide (NO) production via the precursor arginine (ARG) and ARG-related pathways. We assessed ARG metabolism and its precursors [citrulline (CIT), glutamine (GLN), glutamate (GLU), ornithine (ORN), and phenylalanine (PHE)] by measuring plasma concentration, whole-body production (WBP), de novo ARG and NO production, and clearance rates in previously classified low-active (LA) or high-active (HA) mice. We assessed LA (n = 23) and HA (n = 20) male mice by administering a stable isotope tracer pulse via jugular catheterization. We measured plasma enrichments via liquid chromatography tandem mass spectrometry (LC-MS/MS) and body compostion by echo-MRI. WBP, clearance rates, and de novo ARG and NO were calculated. Compared to LA mice, HA mice had lower plasma concentrations of GLU (71.1%; 36.8 ± 2.9 vs. 17.5 ± 1.7μM; p<0.0001), CIT (21%; 57.3 ± 2.3 vs. 46.4 ± 1.5μM; p = 0.0003), and ORN (40.1%; 55.4 ± 7.3 vs. 36.9 ± 2.6μM; p = 0.0241), but no differences for GLN, PHE, and ARG. However, HA mice had higher estimated NO production ratio (0.64 ± 0.08; p = 0.0197), higher WBP for CIT (21.8%, 8.6 ± 0.2 vs. 10.7 ± 0.3 nmol/g-lbm/min; p<0.0001), ARG (21.4%, 35.0 ± 0.6 vs. 43.4 ± 0.7 nmol/g-lbm/min; p<0.0001), PHE (7.6%, 23.8 ± 0.5 vs. 25.6 ± 0.5 nmol/g-lbm/min; p<0.0100), and lower GLU (78.5%; 9.4 ± 1.1 vs. 4.1 ± 1.6 nmol/g lbm/min; p = 0.0161). We observed no significant differences in WBP for GLN, ORN, PHE, or de novo ARG. We concluded that HA mice have an activated whole-body ARG pathway, which may be associated with regulating PA levels via increased NO production.
Collapse
Affiliation(s)
- Jorge Z. Granados
- Department of Health and Kinesiology, Biology of Physical Activity Laboratory, Texas A&M University, College Station, TX, United States of America
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| | - Gabriella A. M. Ten Have
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| | - Ayland C. Letsinger
- Department of Health and Kinesiology, Biology of Physical Activity Laboratory, Texas A&M University, College Station, TX, United States of America
| | - John J. Thaden
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| | - Marielle P. K. J. Engelen
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| | - J. Timothy Lightfoot
- Department of Health and Kinesiology, Biology of Physical Activity Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Nicolaas E. P. Deutz
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
19
|
Klein DJ, Anthony TG, McKeever KH. Metabolomics in equine sport and exercise. J Anim Physiol Anim Nutr (Berl) 2020; 105:140-148. [PMID: 32511844 DOI: 10.1111/jpn.13384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/15/2020] [Indexed: 01/27/2023]
Abstract
metabolomics is the high-throughput, multiparametric identification and classification of hundreds of low molecular weight metabolites in a biological sample. Ultimately, metabolites are the downstream readouts of cellular signalling, transcriptomic and proteomic changes that can provide a comprehensive view of tissue and organismal phenotype. The popularity of metabolomics in human sport and exercise has been gaining over the past decade and has provided important insights into the energetic demands and mechanistic underpinnings of exercise and training. To the contrary, metabolomics in the field of equine exercise physiology is lagging despite the horse's superior aerobic and muscular capabilities, as well as its prominence in competitive sport. As such, this narrative review aims to describe metabolomics, its routine implementation, the various analytical methods applied and the state of its use in the equine athlete. Sufficient attention will be paid to methodological considerations, as well as gaps in the equine literature, particularly with regard to the skeletal muscle metabolome. Finally, there will be a brief discussion of the future directions and barriers to metabolomics use in the athletic horse. A thorough understanding of the metabolomics changes that occur in the equine athlete with exercise will undoubtedly help to improve horse management and health across the lifespan.
Collapse
Affiliation(s)
- Dylan J Klein
- Department of Health and Exercise Science, Rowan University, Glassboro, New Jersey, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Kenneth H McKeever
- Rutgers Equine Science Center, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|