1
|
Henschel L, de Lima M, Fagundes F, Horlem T, Zazula M, Naliwaiko K, Fernandes L. Clenbuterol and metformin ameliorate cachexia parameters, but only clenbuterol reduces tumor growth via lipid peroxidation in Walker 256 tumor-bearing rats. Braz J Med Biol Res 2025; 58:e14060. [PMID: 39907424 PMCID: PMC11793141 DOI: 10.1590/1414-431x2024e14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025] Open
Abstract
Cancer is the second leading cause of death worldwide. Cancer cachexia is a multifactorial catabolic syndrome responsible for almost one third of cancer-related deaths. Drug repurposing has been used in oncological research and drugs like clenbuterol and metformin seem to be reasonable candidates in the context of cancer cachexia, because the former is a β2-agonist that stimulates muscle gain and the latter has anti-inflammatory properties. The aim of this study was to assess the effects of a short-term treatment with metformin and clenbuterol, isolated or combined, on tumor growth and cancer cachexia parameters in Walker 256 tumor-bearing rats, a model of cancer cachexia. To this end, Wistar rats were separated into 8 groups and 4 of them were injected with Walker 256 tumor cells (W groups). Control (C) and W groups received the following treatments: metformin (M), clenbuterol (Cb), or metformin combined with clenbuterol (MCb). Body and tumor weight, metabolic parameters, and oxidative damage in the tumor were assessed. Compared to the C group, the W group showed body weight loss, hypoglycemia, hyperlactatemia, and hypertriacylglycerolemia. None of the treatments could reverse body weight loss, although they reversed the alterations of the assessed plasma metabolic parameters. Surprisingly, only clenbuterol alone reduced tumor weight. Hydrogen peroxide production and lipid peroxidation in tumor tissue was increased in this group. In conclusion, metformin and clenbuterol ameliorated metabolic cachexia parameters in Walker tumor-bearing rats, but only clenbuterol reduced the tumor weight, probably, through a lipid peroxidation-dependent cell death.
Collapse
Affiliation(s)
- L.D.V. Henschel
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - M.E.R. de Lima
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - F.C. Fagundes
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - T. Horlem
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - M.F. Zazula
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - K. Naliwaiko
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - L.C. Fernandes
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
2
|
Yoshida Y, Shimizu K, Nakamura H, Fujii Y, Fritsch T, Abdelhameed A, Calabrese V, Osakabe N. An immunohistochemical evaluation of fast twitch muscle formation induced by repeated administration of flavan 3-ols in mice. FASEB J 2024; 38:e70193. [PMID: 39714246 DOI: 10.1096/fj.202401865r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Flavan-3-ols (FL) are poorly bioavailable astringent polyphenols that induce hyperactivation of the sympathetic nervous system. The aim of this study was to investigate the effects of repeated oral administration of FL on mice hindlimb skeletal muscle using immunohistochemical techniques. C57BL/6J male mice were orally administered 50 mg/kg of FL for a period of 2 weeks, and bromideoxyuridine (BrdU) was administered intraperitoneally 3 days prior to the dissection. The soleus and extensor digitorum longus (EDL) were excised and prepared for frozen sections. Myosin heavy chain (MHC) antibodies were used to classify muscle types, in addition, muscle cross-sectional areas (CSA) were measured. We observed a shift in the peak of CSA in the soleus muscle and to a larger extent in the EDL. In addition, a distinct shift toward fast muscle was detected, documented by a reduction in type I and an increase in type IIb in the soleus muscle, whereas in the EDL, we observed a decline in type IIa and an expansion in type IIb. Incorporation of BrdU into cells was significantly increased in all skeletal muscles, with a significant increase in cells co-expressing pair box 7 (Pax7), a marker of differentiation, as observed in the EDL. Given the evidence that β2-adrenergic receptors in skeletal muscles regulate differentiation and size, we measured plasma catecholamine (CA) concentrations following a single differentiation of FL. A single oral dose of FL was observed to significantly increase plasma CA. These findings indicate that catecholamines secreted into the bloodstream from the adrenal gland following oral administration of FL may influence skeletal muscle size and type via β2-receptors.
Collapse
Affiliation(s)
- Yamato Yoshida
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Kenta Shimizu
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Hitomi Nakamura
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yasuyuki Fujii
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | | | - Ali Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Naomi Osakabe
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
3
|
de Lima Junior EA, Teixeira AADS, Silveira LS, Jové Q, Ladrón NÁ, Pereira MG, López-Soriano FJ, Argilés JM, Brum PC, Busquets S, Neto JCR. Formoterol reduces muscle wasting in mice undergoing doxorubicin chemotherapy. Front Oncol 2024; 13:1237709. [PMID: 38234397 PMCID: PMC10791811 DOI: 10.3389/fonc.2023.1237709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Background Even though doxorubicin (DOX) chemotherapy promotes intense muscle wasting, this drug is still widely used in clinical practice due to its remarkable efficiency in managing cancer. On the other hand, intense muscle loss during the oncological treatment is considered a bad prognosis for the disease's evolution and the patient's quality of life. In this sense, strategies that can counteract the muscle wasting induced by DOX are essential. In this study, we evaluated the effectiveness of formoterol (FOR), a β2-adrenoceptor agonist, in managing muscle wasting caused by DOX. Methods and results To evaluate the effect of FOR on DOX-induced muscle wasting, mice were treated with DOX (2.5 mg/kg b.w., i.p. administration, twice a week), associated or not to FOR treatment (1 mg/kg b.w., s.c. administration, daily). Control mice received vehicle solution. A combination of FOR treatment with DOX protected against the loss of body weight (p<0.05), muscle mass (p<0.001), and grip force (p<0.001) promoted by chemotherapy. FOR also attenuated muscle wasting (p<0.01) in tumor-bearing mice on chemotherapy. The potential mechanism by which FOR prevented further DOX-induced muscle wasting occurred by regulating Akt/FoxO3a signaling and gene expression of atrogenes in skeletal muscle. Conclusions Collectively, our results suggest that FOR can be used as a pharmacological strategy for managing muscle wasting induced by DOX. This study provides new insights into the potential therapeutic use of FOR to improve the overall wellbeing of cancer patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Edson Alves de Lima Junior
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | | | - Loreana Sanches Silveira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Queralt Jové
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Natalia Álvarez Ladrón
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Marcelo G. Pereira
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences University of Leeds, Leeds, United Kingdom
| | - Francisco Javier López-Soriano
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - José Cesar Rosa Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Rolland Y, Dray C, Vellas B, Barreto PDS. Current and investigational medications for the treatment of sarcopenia. Metabolism 2023; 149:155597. [PMID: 37348598 DOI: 10.1016/j.metabol.2023.155597] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Sarcopenia, defined as the loss of muscle mass and function, is a widely prevalent and severe condition in older adults. Since 2016, it is recognized as a disease. Strength exercise training and nutritional support are the frontline treatment of sarcopenia, with no drug currently approved for this indication. However, new therapeutic options are emerging. In this review, we evidenced that only very few trials have focused on sarcopenia/sarcopenic patients. Most drug trials were performed in different clinical older populations (e.g., men with hypogonadism, post-menopausal women at risk for osteoporosis), and their efficacy were tested separately on the components of sarcopenia (muscle mass, muscle strength and physical performances). Results from trials testing the effects of Testosterone, Selective Androgen Receptor Modulators (SARMs), Estrogen, Dehydroepiandrosterone (DHEA), Insulin-like Growth Factor-1 (IGF-1), Growth Hormone (GH), GH Secretagogue (GHS), drug targeting Myostatin and Activin receptor pathway, Vitamin D, Angiotensin Converting Enzyme inhibitors (ACEi) and Angiotensin Receptor Blockers (ARBs), or β-blockers, were compiled. Although some drugs have been effective in improving muscle mass and/or strength, this was not translated into clinically relevant improvements on physical performance. Finally, some promising molecules investigated in on-going clinical trials and in pre-clinical phase were summarized, including apelin and irisin.
Collapse
Affiliation(s)
- Yves Rolland
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France.
| | - Cedric Dray
- Université de Toulouse III Université Paul Sabatier, Toulouse, France; Restore, a geroscience and rejuvenation research center, UMR 1301-Inserm, 5070-CNRS EFS, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
5
|
Xu W, Zheng Y, Jiang Y, Zhang Z, Ma S, Cao Y. Shear wave imaging the active constitutive parameters of living muscles. Acta Biomater 2023; 166:400-408. [PMID: 37230437 DOI: 10.1016/j.actbio.2023.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Shear wave elastography (SWE) of human skeletal muscles allows for measurement of muscle elastic properties in vivo and has important applications in sports medicine and for the diagnosis and treatment of muscle-related diseases. Existing methods of SWE for skeletal muscles rely on the passive constitutive theory and have so far been unable to provide constitutive parameters describing muscle active behavior. In the present paper, we overcome this limitation by proposing a SWE method for quantitative inference of active constitutive parameters of skeletal muscles in vivo. To this end, we investigate the wave motion in a skeletal muscle described by a constitutive model in which muscle active behavior has been defined by an active parameter. An analytical solution relating shear wave velocities to both passive and active material parameters of muscles is derived, based upon which an inverse approach has been developed to evaluate these parameters. To demonstrate the usefulness of the reported method, in vivo experiments were carried out on 10 volunteers to obtain constitutive parameters, particularly those describing active deformation behaviors of living muscles. The results reveal that the active material parameter of skeletal muscles varies with warm-up, fatigue and rest. STATEMENT OF SIGNIFICANCE: Existing shear wave elastography methods are limited to imaging the passive parameters of muscles. This limitation is addressed in the present paper by developing a method to image the active constitutive parameter of living muscles using shear waves. We derived an analytical solution demonstrating the relationship between constitutive parameters of living muscles and shear waves. Relying on the analytical solution, we proposed an inverse method to infer active parameter of skeletal muscles. We performed in vivo experiments to demonstrate the usefulness of the theory and method; the quantitative variation of the active parameter with muscle states such as warm-up, fatigue and rest has been reported for the first time.
Collapse
Affiliation(s)
- Weiqiang Xu
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, PR China
| | - Yang Zheng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, PR China
| | - Yuxuan Jiang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, PR China
| | - Zhaoyi Zhang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, PR China
| | - Shiyu Ma
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, PR China
| | - Yanping Cao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
6
|
van Bakel SIJ, Gosker HR, Langen RC, Schols AMWJ. Towards Personalized Management of Sarcopenia in COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:25-40. [PMID: 33442246 PMCID: PMC7800429 DOI: 10.2147/copd.s280540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
The awareness of the presence and consequences of sarcopenia has significantly increased over the past decade. Sarcopenia is defined as gradual loss of muscle mass and strength and ultimately loss of physical performance associated with aging and chronic disease. The prevalence of sarcopenia is higher in chronic obstructive pulmonary disease (COPD) compared to age-matched controls. Current literature suggests that next to physical inactivity, COPD-specific alterations in physiological processes contribute to accelerated development of sarcopenia. Sarcopenia in COPD can be assessed according to current guidelines, but during physical performance testing, ventilatory limitation should be considered. Treatment of muscle impairment can halt or even reverse sarcopenia, despite respiratory impairment. Exercise training and protein supplementation are currently at the basis of sarcopenia treatment. Furthermore, effective current and new interventions targeting the pulmonary system (eg, smoking cessation, bronchodilators and lung volume reduction surgery) may also facilitate muscle maintenance. Better understanding of disease-specific pathophysiological mechanisms involved in the accelerated development of sarcopenia in COPD will provide new leads to refine nutritional, exercise and physical activity interventions and develop pharmacological co-interventions.
Collapse
Affiliation(s)
- Sophie I J van Bakel
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Harry R Gosker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Ramon C Langen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Annemie M W J Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| |
Collapse
|
7
|
Lin SY, Wang YY, Chuang YH, Chen CJ. Skeletal muscle proteolysis is associated with sympathetic activation and TNF-α-ubiquitin-proteasome pathway in liver cirrhotic rats. J Gastroenterol Hepatol 2016; 31:890-896. [PMID: 26395120 DOI: 10.1111/jgh.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/28/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM This study examined the effects of adrenergic blockade on muscle wasting and expression of the ubiquitin-proteasome system, tumor necrosis factor-α (TNF-α) and its signaling pathways in skeletal muscles of cirrhotic rats. METHODS Cirrhosis was induced by bile duct ligation in adult male Sprague-Dawley rats for 5 weeks. Oral administration of propranolol (75 mg/kg per day) and intraperitoneal administration of TNF-α receptor antagonist (100 µg/kg per day) were delivered for the last 7 and 14 days experimental periods, respectively. RESULTS Bile duct ligation caused a reduction of myosin heavy chain protein and muscle wasting. The release of free tyrosine and 3-methylhistidine, MAFbx and MuRF-1 ubiquitin ligase expression, myosin heavy chain protein ubiquitination, and 20S proteasome activity were higher in skeletal muscles of cirrhotic rats than in sham controls. In addition, circulating norepinephrine, protein levels of muscle TNF-α, TNF-α receptor-1, and TNF receptor-associated factor-2, phosphorylation of IKK-α/β, IκB-α, and p65, and NF-κB activity were also increased. Administration of propranolol and TNF-α receptor antagonist led to reduction of post-receptor actions of TNF-α and ubiquitin-proteasome activity in cirrhotic rats. CONCLUSIONS Our findings suggest a potential role of the sympathetic system, in association with pro-inflammatory responses, in the pathogenesis of muscle wasting in liver cirrhosis.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Division of Endocrinology and Metabolism
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | - Chun-Jung Chen
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital
| |
Collapse
|
8
|
Shibasaki K, Ogawa S, Yamada S, Iijima K, Eto M, Kozaki K, Toba K, Ouchi Y, Akishita M. Favorable effect of sympathetic nervous activity on rehabilitation outcomes in frail elderly. J Am Med Dir Assoc 2015; 16:799.e7-799.e12. [PMID: 26170032 DOI: 10.1016/j.jamda.2015.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Previous studies have suggested the relationship between physical function, mortality, and autonomic nervous activity in frail elderly and that maintaining sympathetic nervous activity might lead to improved physical function and mortality in the elderly population. The aim of this study was to investigate the utility of sympathetic nervous activity measured by heart rate variability in frail elderly patients undergoing inpatient rehabilitation, further focusing the nervous activity on the effect of rehabilitation therapy. DESIGN Prospective cohort study. PARTICIPANTS Sixty-one subjects aged 75 years or older were recruited after treatment of acute phase illness. MEASUREMENTS Before undergoing rehabilitation, data of 24-hour Holter monitoring and a blood venous sample were obtained. From RR intervals in the electrocardiogram, heart rate and SDs of all NN intervals in all 5-minute segments of the entire recording, power spectral density, low frequency (LF), high frequency (HF), and low frequency/high frequency (LF/HF) were calculated. Functional Independence Measure (FIM) and Barthel index were used to measure physical function. RESULTS FIM score and Barthel index were 46.8 ± 25.4 and 32.8 ± 31.7, respectively. Serum total protein, albumin, hemoglobin, and total cholesterol were all significantly related to FIM score and Barthel index before rehabilitation. Heart rate variability indices did not show a significant relationship with physical function, whereas the high LH/HF group showed significant improvement in physical function compared with the low LH/HF group. Moreover, LF/HF frequency was a predictive factor for improvement of physical function after 2 months of rehabilitation. CONCLUSION A favorable effect of preserved LF/HF on rehabilitation outcome was observed in elderly undergoing rehabilitation. Preservation of sympathetic nervous activity may lead to improved physical function in the elderly.
Collapse
Affiliation(s)
- Koji Shibasaki
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Shizuru Yamada
- Komagane-kogen Ladies Clinic, Komagane City, Nagano, Japan
| | - Katsuya Iijima
- Institute of Gerontology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masato Eto
- General Educational Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Koichi Kozaki
- Department of Geriatric Medicine, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Kenji Toba
- National Center for Geriatrics and Gerontology, Obu City, Aichi, Japan
| | - Yasuyoshi Ouchi
- Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Lee P, Birzniece V, Umpleby AM, Poljak A, Ho KKY. Formoterol, a highly β2-selective agonist, induces gender-dimorphic whole body leucine metabolism in humans. Metabolism 2015; 64:506-12. [PMID: 25650070 DOI: 10.1016/j.metabol.2014.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Formoterol is a β(2)-selective agonist that enhances protein anabolism in rodents. Whether formoterol imparts anabolic benefits in humans is unknown. The objective of the study was to investigate the effects of formoterol on whole body protein rates of turnover, oxidative loss and synthesis. DESIGN Open label intervention study. PATIENTS Fifteen healthy adults (8 men). MEASUREMENTS Volunteers were treated with oral formoterol 160 μg/day for one week. Changes in leucine turnover (LRa; index of protein breakdown), oxidation (Lox; irreversible protein loss) and incorporation into protein (LIP; index of protein synthesis) were assessed using the whole body 1-[(13)C]leucine turnover technique before/after treatment. RESULTS LRa, Lox and LIP correlated significantly with lean body mass (LBM). LRa, adjusted for LBM was significantly higher (P<0.05, 160±6 vs 109±3 μmol/min) in men but not fractional Lox and LIP (expressed as a proportion of LRa). Formoterol reduced LRa (-9±4%) in men but stimulated LRa (9±3%) in women. Formoterol significantly reduced (P<0.05) fractional Lox, an effect greater in women (-4±1 vs -1±1 %). It stimulated fractional LIP in women (∆4±1%, P<0.05) but not in men (∆1±1%). Formoterol induced an absolute anabolic effect that was greater in women (30 vs 8%). Heart rate, systolic and diastolic blood pressures were unaffected. CONCLUSION In a therapeutic dose, formoterol stimulates protein anabolism in humans. It induced gender-dimorphic effects on protein turnover and on the partitioning of amino acids from oxidative loss toward protein synthesis, effects that are greater in women than in men. Formoterol holds promise as a treatment for sarcopenia.
Collapse
Affiliation(s)
- Paul Lee
- Pituitary Research Unit, Garvan Institute of Medical Research, Sydney, Australia; Department of Endocrinology, St Vincent's Hospital, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Vita Birzniece
- Pituitary Research Unit, Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - A Margot Umpleby
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences, University of Surrey, United Kingdom
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Ken K Y Ho
- Pituitary Research Unit, Garvan Institute of Medical Research, Sydney, Australia; Department of Endocrinology, St Vincent's Hospital, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
10
|
Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res 2014; 358:651-65. [PMID: 25173883 DOI: 10.1007/s00441-014-1984-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.
Collapse
Affiliation(s)
- Abbas Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, Cruces-Sande M, Martín M, Ruiz-Gómez A, Ruiz-Gómez M, Lorenzo M, Fernández-Veledo S, Mayor F, Murga C, Nieto-Vázquez I. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 2014; 6:299-311. [PMID: 24927997 DOI: 10.1093/jmcb/mju025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is an important serine/threonine-kinase regulating different membrane receptors and intracellular proteins. Attenuation of Drosophila Gprk2 in embryos or adult flies induced a defective differentiation of somatic muscles, loss of fibers, and a flightless phenotype. In vertebrates, GRK2 hemizygous mice contained less but more hypertrophied skeletal muscle fibers than wild-type littermates. In C2C12 myoblasts, overexpression of a GRK2 kinase-deficient mutant (K220R) caused precocious differentiation of cells into immature myotubes, which were wider in size and contained more fused nuclei, while GRK2 overexpression blunted differentiation. Moreover, p38MAPK and Akt pathways were activated at an earlier stage and to a greater extent in K220R-expressing cells or upon kinase downregulation, while the activation of both kinases was impaired in GRK2-overexpressing cells. The impaired differentiation and fewer fusion events promoted by enhanced GRK2 levels were recapitulated by a p38MAPK mutant, which was able to mimic the inhibitory phosphorylation of p38MAPK by GRK2, whereas the blunted differentiation observed in GRK2-expressing clones was rescued in the presence of a constitutively active upstream stimulator of the p38MAPK pathway. These results suggest that balanced GRK2 function is necessary for a timely and complete myogenic process.
Collapse
Affiliation(s)
- Lucia Garcia-Guerra
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain CIBER de enfermedades neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Rocío Vila-Bedmar
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | | | - Marta Cruces-Sande
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Margarita Lorenzo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Hospital Universitari de Tarragona Joan XXIII. IISPV. Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Federico Mayor
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Cristina Murga
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Iria Nieto-Vázquez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| |
Collapse
|
12
|
Shibasaki K, Ogawa S, Yamada S, Iijima K, Eto M, Kozaki K, Toba K, Akishita M, Ouchi Y. Association of decreased sympathetic nervous activity with mortality of older adults in long-term care. Geriatr Gerontol Int 2013; 14:159-66. [PMID: 23879364 DOI: 10.1111/ggi.12074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2013] [Indexed: 02/04/2023]
Abstract
AIM To investigate the relationship between physical function, mortality and autonomic nervous activity measured by heart rate variability of elderly in long-term care. METHODS Cross-sectional and longitudinal studies were carried out at hospitals and health service facilities for the elderly in Nagano prefecture, Japan, from July 2007 to March 2011. A total of 105 long-term care older adults and 17 control older adults with independent physical function were included. The Functional Independence Measure (FIM) and Barthel Index were determined as indices of physical function. Twenty-four-hour Holter monitoring was carried out. From RR intervals in electrocardiograms, heart rate and standard deviations of all NN intervals in all 5-min segments of the entire recording, power spectral density, low frequency, high frequency and low frequency/high frequency (LF/HF) were calculated. RESULTS FIM score and Barthel Index were 46 ± 26 and 30 ± 31, respectively, in long-term care elderly. FIM and Barthel index were significantly correlated with heart rate and the standard deviations of all NN intervals after adjustment for age, sex, cardiovascular risk factors and FIM. Furthermore, LF/HF was significantly decreased in long-term care elderly compared with control elderly after adjustment for covariates. In addition, decrease in LF/HF was an independent risk factor for mortality. CONCLUSION Low LF/HF activity was observed in long-term care elderly and was related to an increase of overall mortality.
Collapse
Affiliation(s)
- Koji Shibasaki
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jeffery CA, Shum DW, Hubbard RE. Emerging drug therapies for frailty. Maturitas 2013; 74:21-5. [DOI: 10.1016/j.maturitas.2012.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/28/2023]
|
14
|
Bergantin LB, Figueiredo LB, Godinho RO. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes. J Appl Physiol (1985) 2011; 111:1710-1718. [PMID: 21921242 DOI: 10.1152/japplphysiol.00586.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Div. of Cellular Pharmacology, Dept. of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, São Paulo, SP, Brazil
| | | | | |
Collapse
|
15
|
Gehrig SM, Lynch GS. Emerging drugs for treating skeletal muscle injury and promoting muscle repair. Expert Opin Emerg Drugs 2011; 16:163-82. [DOI: 10.1517/14728214.2010.524743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:293-304. [DOI: 10.1097/spc.0b013e328340e983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Functional characterization of heterotrimeric G-proteins in rat diaphragm muscle. Respir Physiol Neurobiol 2010; 175:212-9. [PMID: 21084061 DOI: 10.1016/j.resp.2010.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/06/2010] [Accepted: 11/09/2010] [Indexed: 01/05/2023]
Abstract
Seven-transmembrane receptors mediate diverse skeletal muscle responses for a wide variety of stimuli, via activation of heterotrimeric G-proteins. Herein we evaluate the expression and activation of rat diaphragm or cultured skeletal muscle G-proteins using [(35)S]GTPγS. Total membrane Gα subunit content was 4-7 times higher in rat primary cultured myotubes and L6 cell line than in diaphragm (32.6±1.2fmol/mg protein) and 7-27% of them were in the active conformational state. Immunoprecipitation assay showed equal expression of diaphragm Gαs, Gαq and Gαi/o. Addition of GDP allowed the measurement of G-protein activation by different GPCR, including adrenoceptor, adenosine, melatonin and muscarinic receptors. Diaphragm denervation resulted in a marked increase in both total and active state G-protein levels. Together, the results show that [(35)S]GTPγS binding assay is a sensitive and valuable method to evaluate GPCR activity in skeletal muscle cells, which is of particular interest for pharmacological analysis of drugs with potential use in the management of respiratory muscle failure.
Collapse
|
18
|
Ung RV, Rouleau P, Guertin PA. Effects of co-administration of clenbuterol and testosterone propionate on skeletal muscle in paraplegic mice. J Neurotrauma 2010; 27:1129-42. [PMID: 20482256 DOI: 10.1089/neu.2009.1211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Spinal cord injury (SCI) is generally associated with a rapid and significant decrease in muscle mass and corresponding changes in skeletal muscle properties. Although beta(2)-adrenergic and androgen receptor agonists are anabolic substances clearly shown to prevent or reverse muscle wasting in some pathological conditions, their effects in SCI patients remain largely unknown. Here we studied the effects of clenbuterol and testosterone propionate administered separately or in combination on skeletal muscle properties and adipose tissue in adult CD1 mice spinal-cord-transected (Tx) at the low-thoracic level (i.e., induced complete paraplegia). Administered shortly post-Tx, these substances were found to differentially reduce loss in body weight, muscle mass, and muscle fiber cross-sectional area (CSA) values. Although all three treatments induced significant effects, testosterone-treated animals were generally less protected against Tx-related changes. However, none of the treatments prevented fat tissue loss or muscle fiber type conversion and functional loss generally found in Tx animals. These results provide evidence suggesting that clenbuterol alone or combined with testosterone may constitute better clinically-relevant treatments than testosterone alone to decrease muscle atrophy (mass and fiber CSA) in SCI subjects.
Collapse
Affiliation(s)
- Roth-Visal Ung
- Neuroscience Unit, Laval University Medical Center (CHUL-CHUQ), Quebec City, Quebec, Canada
| | | | | |
Collapse
|