1
|
Musyoka K, Chan CW, Gutiérrez Rico EM, Omondi P, Kijogi C, Okai T, Kongere J, Ngara M, Kagaya W, Kanoi BN, Hiratsuka M, Kido Y, Gitaka J, Kaneko A. Genetic variation present in the CYP3A4 gene in Ni-Vanuatu and Kenyan populations in malaria endemicity. Drug Metab Pharmacokinet 2024; 57:101029. [PMID: 39079373 DOI: 10.1016/j.dmpk.2024.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) enzyme is involved in the metabolism of about 30 % of clinically used drugs, including the antimalarials artemether and lumefantrine. CYP3A4 polymorphisms yield enzymatic variants that contribute to inter-individual variation in drug metabolism. Here, we examined CYP3A4 polymorphisms in populations from malaria-endemic islands in Lake Victoria, Kenya, and Vanuatu, to expand on the limited data sets. We used archived dried blood spots collected from 142 Kenyan and 263 ni-Vanuatu adults during cross-sectional malaria surveys in 2013 and 2005-13, respectively, to detect CYP3A4 variation by polymerase chain reaction (PCR) and sequencing. In Kenya, we identified 14 CYP3A4 single nucleotide polymorphisms (SNPs), including the 4713G (CYP3A4∗1B; allele frequency 83.9 %) and 19382A (CYP3A4∗15; 0.7 %) variants that were previously linked to altered metabolism of antimalarials. In Vanuatu, we detected 15 SNPs, including the 4713A (CYP3A4∗1A; 88.6 %) and 25183C (CYP3A4∗18; 0.6 %) variants. Additionally, we detected a rare and novel SNP C4614T (0.8 %) in the 5' untranslated region. A higher proportion of CYP3A4 genetic variance was found among ni-Vanuatu populations (16 %) than among Lake Victoria Kenyan populations (8 %). Our work augments the scarce data sets and contributes to improved precision medicine approaches, particularly to anti-malarial chemotherapy, in East African and Pacific Islander populations.
Collapse
Affiliation(s)
- Kelvin Musyoka
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Chim W Chan
- Department of Parasitology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Protus Omondi
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Caroline Kijogi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takatsugu Okai
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - James Kongere
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mtakai Ngara
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wataru Kagaya
- Department of Eco-epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Bernard N Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya; Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasutoshi Kido
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya; Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Parasitology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Lee SW, Chen PT, Liu CW, Li YH, Wu LSH. Polymorphism of CYP3A4*18 is associated with anti-tuberculosis drug-induced hepatotoxicity. Pharmacogenomics 2024; 25:241-247. [PMID: 38884784 PMCID: PMC11388135 DOI: 10.1080/14622416.2024.2346069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: The association between cytochrome P450 (CYP) gene polymorphisms and anti-tuberculosis drug-induced hepatotoxicity (ATDH) was investigated in patients with or without pre-existing liver diseases (PLD). Materials & methods: We followed 164 tuberculosis subjects, 58 with PLD and 106 without PLD. Polymorphisms in CYP2D6, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 were analyzed using the TaqMan® SNP genotyping assay.Results: The CYP3A4*18 heterozygous genotype was associated with ATDH (OR: 3.24, 95% CI: 1.06-9.86) regardless of PLD presence. Among subjects without PLD, CYP3A4*18 heterozygotes had significantly higher ATDH risk (OR: 9.10, 95% CI: 1.56-53.16). Conversely, in the PLD group, CYP3A4*18 heterozygotes had lower ATDH risk (OR: 0.21, 95% CI: 0.05-0.98).Conclusion: CYP3A4*18 genotype is linked to ATDH in tuberculosis patients, with differential effects based on PLD presence.
Collapse
Affiliation(s)
- Shih-Wei Lee
- Department of Chest Medicine, Taoyuan General Hospital, Department of Health & WelfareTaoyuan, 33004, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan
| | - Pei-Tzu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404328, Taiwan
| | - Chi-Wei Liu
- Translational Medicine Center, Taoyuan General Hospital, Department of Health & Welfare, Taoyuan, 33004, Taiwan
| | - Yuan-Hsu Li
- Department of Laboratory Medicine, Taoyuan General Hospital, Department of Health & Welfare, Taoyuan, 33004,Taiwan
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404328, Taiwan
| |
Collapse
|
3
|
de Freitas Campos EI, Gomes KB, Ribeiro DD, Puurunen MK, Oliveira Magalhães Mourão AD, Ferreira IG, da Costa Rocha MO, de Souza RP, Parreiras Martins MA. Influence of polymorphisms in CYP2C9, VKORC1, MDR1 and APOE genes on the warfarin maintenance dose in Brazilian patients. Pharmacogenomics 2023; 24:701-712. [PMID: 37702085 DOI: 10.2217/pgs-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Background: Polymorphisms in the CYP2C9, VKORC1, MDR1 and APOE genes may impact warfarin dose. Aim: To investigate the influence of sociodemographic, clinical factors and polymorphisms *1, *2 and *3 for CYP2C9, -1639G>A for VKORC1, 3435C>T for MDR1, and ϵ2, ϵ3 and ϵ4 for APOE genes on the mean weekly warfarin maintenance dose in adults. Methods: This cross-sectional study recruited a calculated sample of 315 patients in three anticoagulation clinics in Brazil. A model containing the variables significantly associated with warfarin dose was estimated. Results: The mean age of patients was 64.1 ± 13.1 years, with 173 (54.9%) women. Age, use of amiodarone, genotype VKORC1 GA, genotype VKORC1 AA, genotypes CYP2C9*1/*2 or *1/*3 and genotypes CYP2C9*2/*2 or *2/*3 or *3/*3 were associated with a reduced warfarin dose. Conclusion: This study pointed out factors that could impact the management of oral anticoagulation.
Collapse
Affiliation(s)
- Emílio Itamar de Freitas Campos
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brasil
| | - Karina Braga Gomes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brasil
| | - Daniel Dias Ribeiro
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 110, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brasil
| | | | - Aline de Oliveira Magalhães Mourão
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brasil
| | - Isadora Gonçalves Ferreira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brasil
| | - Manoel Otávio da Costa Rocha
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brasil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 110, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brasil
| | - Renan Pedra de Souza
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brasil
| | - Maria Auxiliadora Parreiras Martins
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brasil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brasil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 110, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brasil
| |
Collapse
|
4
|
Zhao Z, Zhao F, Wang X, Liu D, Liu J, Zhang Y, Hu X, Zhao M, Tian C, Dong S, Jin P. Genetic Factors Influencing Warfarin Dose in Han Chinese Population: A Systematic Review and Meta-Analysis of Cohort Studies. Clin Pharmacokinet 2023; 62:819-833. [PMID: 37273173 DOI: 10.1007/s40262-023-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the association of single nucleotide polymorphisms (SNPs) of various genes known to influence mean daily warfarin dose (MDWD) in the Han Chinese population. METHODS The study is a systematic review and meta-analysis. Selected studies retrieved by searching Pubmed, Embase (Ovid), Medline, CNKI, Wanfang data, and SinoMed (from their inception to 31 August 2022) for the cohort studies assessing genetic variations that may possibly influence MDWD in Chinese patients were included. RESULT A total of 46 studies including a total of 10,102 Han Chinese adult patients were finally included in the meta-analysis. The impact of 20 single nucleotide polymorphisms (SNPs) in 8 genes on MDWD was analyzed. The significant impact of some of these SNPs on MDWD requirements was demonstrated. Patients with CYP4F2 rs2108622 TT, EPHX1 rs2260863 GC, or NQO1 rs1800566 TT genotype required more than 10% higher MDWD. Furthermore, patients with ABCB1 rs2032582 GT or GG, or CALU rs2290228 TT genotype required more than 10% lower MDWD. Subgroup analysis showed that patients with EPHX1 rs2260863 GC genotype required 7% lower MDWD after heart valve replacement (HVR). CONCLUSION This is the first systematic review and meta-analysis assessing the association between single nucleotide polymorphisms (SNPs) of various genes known to influence MDWD besides CYP2C9 and VKORC1 in the Han Chinese population. CYP4F2 (rs2108622), GGCX (rs12714145), EPHX1 (rs2292566 and rs2260863), ABCB1 (rs2032582), NQO1 (rs1800566), and CALU (rs2290228) SNPs might be moderate factors affecting MDWD requirements. REGISTERED INFORMATION PROSPERO International Prospective Register of Systematic Reviews (CRD42022355130).
Collapse
Affiliation(s)
- Zinan Zhao
- Department of Pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), No. 1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Fei Zhao
- Department of Pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), No. 1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Xiang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Deping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Junpeng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yatong Zhang
- Department of Pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), No. 1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Xin Hu
- Department of Pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), No. 1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Ming Zhao
- Department of Pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), No. 1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Chao Tian
- Department of Pharmacy, Beijing Children's Hospital, Capital Medicine University, National Center for Children's Health, Beijing, 100045, China
| | - Shujie Dong
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), No. 1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
5
|
Deng J, Wang Y, An X. Comparison of Maintenance Dose Predictions by Warfarin Dosing Algorithms Based on Chinese and Western Patients. J Clin Pharmacol 2022; 63:569-582. [PMID: 36546564 DOI: 10.1002/jcph.2197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Warfarin has a long record of safe and effective clinical use, and it remains one of the most commonly prescribed drugs for the prevention and treatment of thromboembolic conditions even in the era of direct oral anticoagulants. To address its large interindividual variability and narrow therapeutic window, the Clinical Pharmacogenetics Implementation Consortium has recommended using pharmacogenetic dosing algorithms, such as the ones developed by the International Warfarin Pharmacogenetics Consortium (IWPC) and by Gage et al, to dose warfarin when genotype information is available. In China, dosing algorithms based on local patient populations have been developed and evaluated for predictive accuracy of warfarin maintenance doses. In this study, percentage deviations of doses predicted by 15 Chinese dosing algorithms from that by IWPC and Gage algorithms were systematically evaluated to understand the differences between Chinese and Western algorithms. In general, dose predictions by Chinese dosing algorithms tended to be lower than those predicted by IWPC or Gage algorithms for the most prevalent VKORC1 and CYP2C9 genotypes in the Chinese population. The extent of negative prediction deviation appeared to be largest in the younger age group with smaller body weight. Our findings are consistent with previous reports that Asians have a higher sensitivity to warfarin and require lower doses than Western populations.
Collapse
Affiliation(s)
- Jiexin Deng
- School of Nursing and Health, Henan University, Kaifeng, China
| | - Yi Wang
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiaokang An
- Department of Thoracic Surgery, First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
6
|
Safety and efficacy of using portable coagulation monitor for INR examination after left-sided mechanical prosthetic valve replacement. J Cardiothorac Surg 2022; 17:297. [PMID: 36471365 PMCID: PMC9724327 DOI: 10.1186/s13019-022-02046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Time in therapeutic range (TTR) is an index to assess the effectiveness of anticoagulation and is important to predict the risk of bleeding and thrombosis in patients taking warfarin. In recent years, the portable coagulation monitor, a point-of-care testing device for patients to perform self-management international normalized ratio (INR) examination, has provided an opportunity to improve the quality of oral warfarin treatment. In this study, we applied TTR to evaluate the safety and efficacy of the portable coagulation monitor for patients with oral anticoagulant warfarin after left-sided mechanical prosthetic valve (MPV) replacement. METHODS It is a single-centre cohort study. From September 2019 to June 2021, a total of 243 patients who returned to our institution for outpatient clinic revisit at 3 months after left-sided MPV replacement, met the inclusion criteria and agreed to be followed up were included. Self-management group used portable coagulation monitor for INR examination, and patients in the conventional group had their INR monitored in routine outpatient visits. Clinical data of the patients would be recorded for the next 12 months, and results were compared between the two groups to assess the effect of the coagulation monitor on TTR and complications related to bleeding and thrombosis in patients with left-sided MPV replacement. RESULTS A total of 212 individuals provided complete and validated INR data spanning of 1 year. Those who applied the portable coagulation monitor had higher TTR values and larger number of tests for INR. No significant differences were seen between the two groups in postoperative bleeding and thromboembolic complications, but portable coagulation monitor showed a trend toward fewer bleeding events. CONCLUSION Portable devices for coagulation monitoring are safe and can achieve a higher TTR. Patients who use the portable coagulation monitor for home INR self-management can achieve a safe and effective warfarin therapy.
Collapse
|
7
|
Li J, Chen T, Jie F, Xiang H, Huang L, Jiang H, Lu F, Zhu S, Wu L, Tang Y. Impact of VKORC1, CYP2C9, CYP1A2, UGT1A1, and GGCX polymorphisms on warfarin maintenance dose: Exploring a new algorithm in South Chinese patients accept mechanical heart valve replacement. Medicine (Baltimore) 2022; 101:e29626. [PMID: 35866816 PMCID: PMC9302374 DOI: 10.1097/md.0000000000029626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Warfarin is the most recommended oral anticoagulant after artificial mechanical valve replacement therapy. However, the narrow therapeutic window and varying safety and efficacy in individuals make dose determination difficult. It may cause adverse events such as hemorrhage or thromboembolism. Therefore, advanced algorithms are urgently required for the use of warfarin. OBJECTIVE To establish a warfarin dose model for patients after prosthetic mechanical valve replacement in southern China in combination with clinical and genetic variables, and to improve the accuracy and ideal prediction percentage of the model. METHODS Clinical data of 476 patients were tracked and recorded in detail. The gene polymorphisms of VKORC1 (rs9923231, rs9934438, rs7196161, and rs7294), CYP2C9 (rs1057910), CYP1A2 (rs2069514), GGCX (rs699664), and UGT1A1 (rs887829) were determined using Sanger sequencing. Multiple linear regressions were used to analyze the gene polymorphisms and the contribution of clinical data variables; the variables that caused multicollinearity were screened stepwise and excluded to establish an algorithm model for predicting the daily maintenance dose of warfarin. The ideal predicted percentage was used to test clinical effectiveness. RESULTS A total of 395 patients were included. Univariate linear regression analysis suggested that CYP1A2 (rs2069514) and UGT1A1 (rs887829) were not associated with the daily maintenance dose of warfarin. The new algorithm model established based on multiple linear regression was as follows: Y = 1.081 - 0.011 (age) + 1.532 (body surface area)-0.807 (rs9923231 AA) + 1.788 (rs9923231 GG) + 0.530 (rs1057910 AA)-1.061 (rs1057910 AG)-0.321 (rs699664 AA). The model accounted for 61.7% of individualized medication differences, with an ideal prediction percentage of 69%. CONCLUSION GGCX (rs699664) may be a potential predictor of warfarin dose, and our newly established model is expected to guide the individualized use of warfarin in clinical practice in southern China.
Collapse
Affiliation(s)
- Jin Li
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Chen
- School of Science, Nanchang University, Nanchang, China
| | - Fangfang Jie
- School of Science, Nanchang University, Nanchang, China
| | - Haiyan Xiang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Huang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongfa Jiang
- Department of Cardiothoracic Surgery, Jiangxi Chest Hospital, Nanchang, China
| | - Fei Lu
- Comprehensive Intervention Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuqiang Zhu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
- * Correspondence: Lidong Wu, Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China (e-mail: ); Yanhua Tang, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China (e-mail: )
| | - Yanhua Tang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- * Correspondence: Lidong Wu, Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China (e-mail: ); Yanhua Tang, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China (e-mail: )
| |
Collapse
|
8
|
Abd Alridha A, Al-Gburi K, Abbood S. Warfarin therapy and pharmacogenetics: A narrative review of regional and Iraqi studies. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_70_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Ndadza A, Muyambo S, Mntla P, Wonkam A, Chimusa E, Kengne AP, Ntsekhe M, Dandara C. Profiling of warfarin pharmacokinetics-associated genetic variants: Black Africans portray unique genetic markers important for an African specific warfarin pharmacogenetics-dosing algorithm. J Thromb Haemost 2021; 19:2957-2973. [PMID: 34382722 PMCID: PMC9543705 DOI: 10.1111/jth.15494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Warfarin dose variability observed in patients is attributed to variation in genes involved in the warfarin metabolic pathway. Genetic variation in CYP2C9 and VKORC1 has been the traditional focus in evaluating warfarin dose variability, with little focus on other genes. OBJECTIVE We set out to evaluate 27 single nucleotide polymorphisms (SNPs) in the CYP2C cluster loci and 8 genes (VKORC1, ABCB1, CYP2C9, CYP2C19, CYP2C8, CYP1A2, CYP3A4, and CYP3A5) involved in pharmacokinetics of warfarin. PATIENTS/METHODS 503 participants were recruited among black Africans and Mixed Ancestry population groups, from South Africa and Zimbabwe, and a blood sample taken for DNA. Clinical parameters were obtained from patient medical records, and these were correlated with genetic variation. RESULTS Among black Africans, the SNPs CYP2C rs12777823G>A, CYP2C9 c.449G>A (*8), CYP2C9 c.1003C>T (*11) and CYP2C8 c.805A>T (*2) were significantly associated with warfarin maintenance dose. Conversely, CYP2C9 c.430C>T (*2), CYP2C8 c.792C>G (*4) and VKORC1 g.-1639G>A were significantly associated with maintenance dose among the Mixed Ancestry. The presence of CYP2C8*2 and CYP3A5*6 alleles was associated with increased mean warfarin maintenance dose, whereas CYP2C9*8 allele was associated with reduced warfarin maintenance dose. CONCLUSION African populations present with a diversity of variants that are important in predicting pharmacogenetics-based warfarin dosing in addition to those reported in CYP2C9 and VKORC1. It is therefore important, to include African populations in pharmacogenomics studies to be able to identify all possible biomarkers that are potential predictors for drug response.
Collapse
Affiliation(s)
- Arinao Ndadza
- Pharmacogenomics and Drug Metabolism Research GroupDivision of Human GeneticsDepartment of Pathology & Institute of Infectious Disease and Molecular Medicine (IDM)Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Sarudzai Muyambo
- Department of Clinical PharmacologyCollege of Health ScienceUniversity of ZimbabweHarareZimbabwe
- Department of Biological SciencesFaculty of Science and EngineeringBindura University of Science and EducationBinduraZimbabwe
| | - Pindile Mntla
- Department of CardiologySefako Makgatho Health Sciences University and Dr. George Mukhari HospitalPretoriaSouth Africa
| | - Ambroise Wonkam
- Pharmacogenomics and Drug Metabolism Research GroupDivision of Human GeneticsDepartment of Pathology & Institute of Infectious Disease and Molecular Medicine (IDM)Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Emile Chimusa
- Pharmacogenomics and Drug Metabolism Research GroupDivision of Human GeneticsDepartment of Pathology & Institute of Infectious Disease and Molecular Medicine (IDM)Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Andre P. Kengne
- Non‐Communicable Diseases Research UnitSouth African Medical Research Council and University of Cape TownCape TownSouth Africa
| | - Mpiko Ntsekhe
- Division of CardiologyDepartment of MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Research GroupDivision of Human GeneticsDepartment of Pathology & Institute of Infectious Disease and Molecular Medicine (IDM)Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
10
|
Xia X, Huang N, Li B, Li Y, Zou L, Yuan D, Huang B, Bei Y, Liu Y, Fu J, Wu T, Chen W, Jiang S, Lv M, Zhang J. To establish a model for the prediction of initial standard and maintenance doses of warfarin for the Han Chinese population based on gene polymorphism: a multicenter study. Eur J Clin Pharmacol 2021; 78:43-51. [PMID: 34453556 DOI: 10.1007/s00228-021-03146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The purpose of this paper is to study the correlation between demographic and clinical factors and warfarin dose of patients in Chinese Han population taking warfarin and study gene polymorphisms impact of related gene loci (CYP2C9*3, VKORC1-1639G > A) on warfarin doses, to establish a model to predict initial standard dose and maintenance dose based on CYP2C9*3, VKORC1-1639G > A genotype. METHODS The study collects the data of patients in our hospital and other subcenters which incorporates 2160 patients to establish the initial dose model and 1698 patients for the stable dose model, and sequences 26 multigene sites in 451 patients. Based on the patient's dosage, clinical data, and demographic characteristics, the genetic and non-genetic effects on the initial dose and stable dose of warfarin are calculated by using statistical methods, and the prediction model of initial standard dose and maintenance dose can be established via multiple linear regression. RESULTS The initial dose of warfarin (mg/day) was calculated as (1.346 + 0.350 × (VKORC1-1639G > A) - 0.273 × (CYP2C9*3) + 0.245 × (body surface area) - 0.003 × (age) - 0.036 × (amine-iodine) + 0.021 × (sex))2. This model incorporated seven factors and explained 55.3% of the individualization differences of the warfarin drug dose. The maintenance dose of warfarin (mg/day) was calculated as (1.336 + 0.299 × (VKORC1-1639G > A) + 0.480 × (body surface area) - 0.214 × (CYP2C9*3) - 0.074 × (amine-iodine) - 0.003 × (age) - 0.077 × (statins) - 0.002 × (height))2. This model incorporated six factors and explained 42.4% of the individualization differences in the warfarin drug dose. CONCLUSION The genetic and non-genetic factors affecting warfarin dose in Chinese Han population were studied systematically in this study. The pharmacogenomic dose prediction model constructed in this study can predict anticoagulant efficacy of warfarin and has potential application value in clinical practice.
Collapse
Affiliation(s)
- Xiaotong Xia
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Nianxu Huang
- Department of Pharmacy, Wuhan Asian Heart Hospital, Wuhan, Hubei, China
| | - Boxia Li
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated With Shandong First Medical University, Jinan, Shangdong, China
| | - Lang Zou
- Department of Pharmacy, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Dongdong Yuan
- Department of Pharmacy, Zhengzhou Seventh People's Hospital, Zhengzhou, Henan, China
| | - Banghua Huang
- Department of Pharmacy, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yufei Bei
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuxin Liu
- Department of Pharmacy, Huaihe Hospital of He-Nan University, Kaifeng, Henan, China
| | - Jinglan Fu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Tingting Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenjun Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Shaojun Jiang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Meina Lv
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China. .,College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Alghamdi MA, Al-Eitan L, Alkhatib R, Al-Assi A, Almasri A, Aljamal H, Aman H, Khasawneh R. Variants in CDHR3, CACNAC1, and LTA Genes Predisposing Sensitivity and Response to Warfarin in Patients with Cardiovascular Disease. Int J Gen Med 2021; 14:1093-1100. [PMID: 33790638 PMCID: PMC8006967 DOI: 10.2147/ijgm.s298597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Warfarin has been in use for more than 60 years; however, it has serious side effects including major bleeding. The high interpatient variability in the required dose impacts the sensitivity and responsiveness to warfarin in different patients. This study aims to assess the influence of CDHR3, CACNAC1, and LTA gene polymorphisms on the variability of warfarin dose requirements and susceptibility to coronary heart disease in the Jordanian population. Methods This study was conducted in the anti-coagulation clinic in Queen Alia Heart Institute in Amman, with 212 patients in total. Three SNPs were genotyped within CDHR3 (rs10270308), CACNAC1 (rs216013), and LTA (rs1041981) genes. Results Our findings revealed that patients with LTA polymorphism are more prone to warfarin sensitivity than others. Furthermore, carriers of the LTA polymorphism needed a lower initial dose of warfarin and are associated with less variation in doses required to achieve target INR. Conclusion The current study could help in understanding the role of genetic variability in warfarin dosing and matching patients to different treatment options. Clinical applications of these findings for warfarin treatment may also contribute to improving the efficacy and safety of warfarin treatment in Jordanian patients with cardiovascular disease.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Rami Alkhatib
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmad Al-Assi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayah Almasri
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Hanan Aljamal
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Hatem Aman
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Rame Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Royal Medical Services (RMS), Amman, 11118, Jordan
| |
Collapse
|
12
|
Xie C, Xue L, Zhang Y, Zhu J, Zhou L, Hang Y, Ding X, Jiang B, Miao L. Comparison of the prediction performance of different warfarin dosing algorithms based on Chinese patients. Pharmacogenomics 2020; 21:23-32. [PMID: 31849278 DOI: 10.2217/pgs-2019-0124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: To compare the prediction performance of different warfarin dosing algorithms based on Chinese patients. Materials & methods: A total of 18 algorithms were tested in 325 patients. The predictive efficacy of selected algorithms was evaluated by calculating the percentage of patients whose predicted dose fell within ±20% of their actual stable warfarin dose and the mean absolute error. Results: The percentage within ± 20% and the mean absolute error of the algorithms ranged from 11.9 to 41.2% and -0.20 (-0.29 to -0.11) mg/d to -1.63 (-1.75 to -1.50) mg/d. The algorithms established by Miao et al. and Wei et al. had optimal predictive performance. Conclusion: Algorithms based on geographical populations might be more suitable for the prediction of stable warfarin doses in local patients.
Collapse
Affiliation(s)
- Cheng Xie
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Ling Xue
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Yuzhen Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Jianguo Zhu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Ling Zhou
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Yongfu Hang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Xiaoliang Ding
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Bin Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| |
Collapse
|
13
|
Lin X, Chen H, Ni L, Yu Y, Luo Z, Liao L. Effects of EPHX1 rs2260863 polymorphisms on warfarin maintenance dose in very elderly, frail Han-Chinese population. Pharmacogenomics 2020; 21:863-870. [PMID: 32559398 DOI: 10.2217/pgs-2020-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was conducted to investigate the effects of VKORC1, CYP2C9, CYP4F2 and EPHX1 and nongenetic factors on warfarin maintenance dose in a very elderly, frail Han-Chinese population. Materials & methods: 16 variants of VKORC1, CYP2C9, CYP4F2 and EPHX1 were genotyped. Univariate analysis and multivariable regression model were performed for the associations of gene variants and warfarin maintenance dose. Results & conclusion: EPHX1 rs2260863 nonvariant CC homozygotes required significantly lower daily warfarin dose than GC heterozygotes. In the multivariable model, VKORC1 rs9923231, CYP2C9 rs1057910, EPHX1 rs2260863, CYP4F2 rs2189784 and body surface area altogether explained 26.9% of dosing variability. This study revealed the main impact of genetic factors on warfarin response in this special population.
Collapse
Affiliation(s)
- Xianliang Lin
- Department of Cardiovascular Disease, 900 Hospital of The Joint Logistics Team, 156 North Road, West 2nd Ring Road, Fuzhou, Fujian, 350000, PR China
| | - Hao Chen
- Department of Cardiovascular Disease, 900 Hospital of The Joint Logistics Team, 156 North Road, West 2nd Ring Road, Fuzhou, Fujian, 350000, PR China
| | - Le Ni
- Department of Cardiovascular Disease, 900 Hospital of The Joint Logistics Team, 156 North Road, West 2nd Ring Road, Fuzhou, Fujian, 350000, PR China
| | - Yunqiang Yu
- Department of Cardiovascular Disease, 900 Hospital of The Joint Logistics Team, 156 North Road, West 2nd Ring Road, Fuzhou, Fujian, 350000, PR China
| | - Zhurong Luo
- Department of Cardiovascular Disease, 900 Hospital of The Joint Logistics Team, 156 North Road, West 2nd Ring Road, Fuzhou, Fujian, 350000, PR China
| | - Lihong Liao
- Department of Electrocardiogram Room, 900 Hospital of The Joint Logistics Team, 156 North Road, West 2nd Ring Road, Fuzhou, Fujian, 350000, PR China
| |
Collapse
|
14
|
Rojo M, Roco AM, Suarez M, Lavanderos MA, Verón G, Bertoglia MP, Arredondo A, Nieto E, Rubilar JC, Tamayo F, Cruz D, Muñoz J, Bravo G, Salas P, Mejías F, Véliz P, Godoy G, Varela NM, Llull G, Quiñones LA. Functionally Significant Coumarin-Related Variant Alleles and Time to Therapeutic Range in Chilean Cardiovascular Patients. Clin Appl Thromb Hemost 2020; 26:1076029620909154. [PMID: 32228310 PMCID: PMC7288841 DOI: 10.1177/1076029620909154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the development of new oral agents over the last decade, vitamin K antagonists (VKAs) remain the most widely used anticoagulants for treating and preventing thromboembolism worldwide. In Chile, the Ministry of Health indicates that acenocoumarol should be used in preference to any other coumarin. Complications of inappropriate dosing are among the most frequently reported adverse events associated with this medication. It is well known that polymorphisms in pharmacokinetic and pharmacodynamic proteins related to coumarins (especially warfarin) influence response to these drugs. This work analyzed the impact of CYP2C19*2 (rs4244285), CYP1A2*1F (rs762551), GGCx (rs11676382), CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), CYP4F2 (rs2108622), VKORC1 (rs9923231), VKORC1 (rs7294), CYP3A4*1B (rs2740574), and ABCB1 (rs1045642) polymorphisms on time to therapeutic range for oral anticoagulants in 304 Chilean patients. CYP2C9*3 polymorphisms were associated with time to therapeutic range for acenocoumarol in Chilean patients, and the CYP4F2 TT genotype, MDR1 A allele, CYP1A2 A allele, and CYP3A4T allele are promising variants that merit further analysis. The presence of polymorphisms explained only 4.1% of time to therapeutic range for acenocoumarol in a multivariate linear model. These results improve our understanding of the basis of ethnic variations in drug metabolism and response to oral anticoagulant therapy. We hope that these findings will contribute to developing an algorithm for VKA dose adjustment in the Chilean population in the near future, decreasing the frequency of stroke, systemic embolism, and bleeding-related adverse events.
Collapse
Affiliation(s)
- Mario Rojo
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Angela Margarita Roco
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Faculty of Life Sciences, Biochemistry Department, Andrés Bello University, Santiago, Chile.,Western Metropolitan Health Service, Santiago, Chile
| | - Marcelo Suarez
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Maria Alejandra Lavanderos
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Gabriel Verón
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | - Juan Carlos Rubilar
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisca Tamayo
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | - Fanny Mejías
- San José de Melipilla Hospital, Melipilla, Chile
| | - Paulo Véliz
- San José de Melipilla Hospital, Melipilla, Chile
| | - Gerald Godoy
- San José de Melipilla Hospital, Melipilla, Chile
| | - Nelson Miguel Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - G Llull
- San Juan de Dios Hospital, Santiago, Chile
| | - Luis Abel Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
15
|
Zhu Z, Li Y, Meng X, Han J, Li Y, Liu K, Shen J, Qin Y, Zhang H. New warfarin anticoagulation management model after heart valve surgery: rationale and design of a prospective, multicentre, randomised trial to compare an internet-based warfarin anticoagulation management model with the traditional warfarin management model. BMJ Open 2019; 9:e032949. [PMID: 31811010 PMCID: PMC6924837 DOI: 10.1136/bmjopen-2019-032949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Warfarin is an effective anticoagulant and the only oral anticoagulant available for patients with mechanical heart valves. The prothrombin time and the associated international normalised ratio (INR) are routinely tested to monitor the response to anticoagulation therapy in patients. Patients who undergo mechanical heart valve replacement need lifelong anticoagulation therapy, and their INR is regularly measured to adjust the anticoagulation strength and the dose of anticoagulation drugs. Appropriate warfarin anticoagulation management can reduce patient complications, such as bleeding and thrombosis, and improve the long-term survival rate. We propose modern internet technology as a platform to build a warfarin anticoagulation follow-up system after valve replacement surgery. This system will provide doctors and patients with more standardised and safer follow-up methods as well as a method to further reduce the risk of warfarin anticoagulation-related complications and improve its therapeutic effects. METHODS AND ANALYSIS A prospective, multicentre, randomised, controlled trial will be conducted. A total of 700 patients who require long-term warfarin anticoagulation monitoring after heart valve replacement will be enrolled and randomly divided at a 1:1 ratio into a traditional outpatient anticoagulation management group and a group undergoing a new method of management based on the internet technology with follow-up for 1 year. Differences in the percentage of time in the therapeutic range (TTR), drug dose adjustments, bleeding/thrombosis and other related complications will be observed. The primary endpoint is the difference in the TTR between the two groups. The purpose of this study is to explore a safer and more effective mode of doctor-patient interaction and communication in the internet era. As of 13 July 2019, 534 patients had been enrolled. ETHICS AND DISSEMINATION This study protocol was approved by the Ethics Committee of Beijing Anzhen Hospital, Capital Medical University. The results will be published in a peer-reviewed medical journal. TRIAL REGISTRATION NUMBER ChiCTR1800016204.
Collapse
Affiliation(s)
- Zhihui Zhu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuehuan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xu Meng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kun Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinglun Shen
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ying Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haibo Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Chinese Patients With Heart Valve Replacement Do Not Benefit From Warfarin Pharmacogenetic Testing on Anticoagulation Outcomes. Ther Drug Monit 2019; 41:748-754. [PMID: 31259883 DOI: 10.1097/ftd.0000000000000664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Genotype-guided warfarin dosing has been shown in some randomized trials to improve anticoagulation outcomes in individuals of European ancestry; yet, its utility in Chinese patients with heart valve replacement remains unresolved. METHODS A total of 2264 patients who underwent heart valve replacement at Wuhan Asia Heart Hospital were enrolled in this study. Patients were randomly divided into 2 groups, namely, a genotype-guided and a traditional clinically guided warfarin dosing group. In the genotype-guided group (n = 1134), genotyping for CYP2C9 and VKORC1 (-1639 G→A) was performed using TaqMan genotyping assay. Warfarin doses were predicted with the International Warfarin Pharmacogenetics Consortium algorithm. Patients in the control group (n = 1130) were clinically guided. The primary outcome was to compare the incidence of adverse events (major bleeding and thrombotic) during a 90-day follow-up period between 2 groups. Secondary objectives were to describe effects of the pharmacogenetic intervention on the first therapeutic-target-achieving time, the stable maintenance dose, and the hospitalization days. RESULTS A total of 2245 patients were included in the analysis. Forty-nine events occurred during follow-up. Genotype-guided dosing strategy did not result in a reduction in major bleeding (0.26% versus 0.63%; hazard ratio, 0.44; 95% confidence interval, 0.13-1.53; P = 0.20) and thrombotic events (0.89% versus 1.61%; hazard ratio, 0.56; 95% confidence interval, 0.27-1.17; P = 0.12) compared with clinical dosing group. Compared with traditional dosing, patients in the genotype-guided group reached their therapeutic international normalized ratio in a shorter time (3.8 ± 2.0 versus 4.4 ± 2.0 days, P < 0.001). There was no difference in hospitalization days (P = 0.28). CONCLUSIONS Warfarin pharmacogenetic testing according to the International Warfarin Pharmacogenetics Consortium algorithm cannot improve anticoagulation outcomes in Chinese patients with heart valve replacement.
Collapse
|
17
|
Height, VKORC1 1173, and CYP2C9 Genotypes Determine Warfarin Dose for Pediatric Patients with Kawasaki Disease in Southwest China. Pediatr Cardiol 2019; 40:29-37. [PMID: 30121860 PMCID: PMC6348293 DOI: 10.1007/s00246-018-1957-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Long-term oral warfarin is recommended in pediatric Kawasaki disease patients with large coronary artery aneurysms; however, heterogeneity is considerable. This study aimed to determine variables affecting warfarin dosage in Kawasaki disease. The enrolled individuals (194 children) were divided into four groups: (1) Cases with severe coronary artery lesions (CAL) of IV to V degrees or thrombogenesis treated with oral warfarin were assigned to Group A; (2) Group B, CAL of I degrees; (3) Group C, CAL of II and III degrees cases with small or medium-sized CAL not treated with warfarin; (4) Group D, normal children without Kawasaki disease. The relevant genotypes of CYP2C9, VKORC1 (1173, - 1639, and 3730), and CYP4F2 were assessed. There were no statistically significant differences in CYP2C9, VKORC1, and CYP4F2 mutation frequencies among the 4 groups. In the 44 Group A patients, demographic features, clinical characteristics, and genotypes were recorded, and their associations with warfarin dose variability were assessed. Multivariate linear regression analysis revealed that height, VKORC1 1173, and CYP2C9 accounted for 61.2%, 7.9%, and 4.3% of dosing variability, respectively. Conclusions: Patient height is the main factor determining warfarin dosage, while genotype effects on warfarin dosage vary among studies. New formula should be defined using data obtained from children in cases with demonstrated efficacy.
Collapse
|
18
|
Wang Z, Zhang L, Huang P, Gu X, Xie X, Wang Y, Li W, Zeng Q. Weight and the vitamin K expoxide reductase 1 genotype primarily contribute to the warfarin dosing in pediatric patients with Kawasaki disease. Thromb Res 2018; 167:32-36. [PMID: 29778033 DOI: 10.1016/j.thromres.2018.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Warfarin therapy is recommended in children with giant coronary artery aneurysms (GCAAs) after Kawasaki disease (KD). Large individual variability makes it difficult to predict the warfarin dose. Polymorphisms in the vitamin K expoxide reductase 1 (VKORC1) and cytochrome P4502C9 (CYP2C9) genes have been reported to influence the warfarin dose. We investigated the effects of the VKORC1 and CYP2C9 genotypes on the warfarin dose in pediatric patients with giant CAAs after KD. We attempted to create a dosing algorithm. MATERIALS AND METHODS The clinical and genetic data of patients were documented. VKORC1 (rs 9923231) and CYP2C9 *3 (rs 1057910) were genotyped using TaqMan real-time polymerase chain reaction. A linear regression analysis was performed to evaluate the contribution of clinical and genetic factors to the warfarin maintenance dose. RESULTS Forty-seven patients were enrolled. Patients with the CT or CC genotype of VKORC1 had a relatively higher warfarin dose than did those with the TT genotype (p < 0.05). Three patients with CYP2C9*1/*3 had a lower warfarin dose than did those with the wild CYP2C9*1/*1 genotype, but the difference did not reach significance (p > 0.05). Weight and the VKORC1 genotype predominantly contributed to the warfarin dose, with 33.0% and 11.2% of variability, respectively. The observed warfarin dose was correlated with the predicted dose based on the algorithm used in our study (r = 0.45, p < 0.01). CONCLUSIONS Weight and the VKORC1 genotype primarily determined the warfarin dose in Chinese pediatric patients with KD. Further studies are warranted to verify the findings of our study.
Collapse
Affiliation(s)
- Zhouping Wang
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Li Zhang
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ping Huang
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoqiong Gu
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofei Xie
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yanfei Wang
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wei Li
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiyi Zeng
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
19
|
Jiang HH, Liu J, Wang YC, Ye HM, Li X, Zhou YX, Zhang W, Wang LS. The Impact of Gene Polymorphisms on Anticoagulation Control With Warfarin. Clin Appl Thromb Hemost 2017; 24:640-646. [PMID: 28401802 DOI: 10.1177/1076029617703483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Differences in warfarin maintenance dosages based on the presence of polymorphisms in VKORC1, CYP2C9, CYP4F2, and ORM1 can be determined through dosage adjustment according to routine guidelines. Little is known about whether routine therapy could provide consensus anticoagulation control for patients with different genotypes. This study was carried out to compare anticoagulant control in patients with different genotypes. Six hundred seventy patients using warfarin according to Chinese guidelines were enrolled. Warfarin dosages and monitored international normalized ratios (INRs) were recorded. Genotypes of VKORC1 rs9923231, CYP4F2 rs2108622, CYP2C9 rs1057910, and ORM1 rs17650 polymorphisms were determined. Warfarin dosages and INR were compared between genotypes. Patients with the AGCC*F*F*1*1 polymorphism took longer than patients with the AACC*F*F*1*1 polymorphism (20 vs 5 days, P < .001) to achieve the targeted INR range. The INR values of patients with AACC*F*F*1*3 were unstable and did not enter the stable state control phase until after 35 days. The peak INR of patients with the AACC*F*F*1*3 polymorphism was exceedingly high, with some values exceeding the control range limit of 3.0. Patients with the AACC*F*S*1*1 or AACT*F*F*1*1 polymorphisms exhibited similar INR values as the patients with the AACC*F*F*1*1 polymorphism. This study found that routine medication with warfarin provides significantly different levels of anticoagulant control between patients with wild-type genotypes and patients with heterozygous polymorphism genotypes of VKORC1 rs9923231 or CYP2C9 rs1057910. Patients with heterozygous polymorphism genotypes of VKORC1 or CYP2C9 require genotype-directed therapy with warfarin to increase efficacy and safety in anticoagulant treatment.
Collapse
Affiliation(s)
- Hai He Jiang
- 1 Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Chang Sha, Hu Na, China
| | - Jia Liu
- 2 Translational Medicine Center, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan Sheng, China
| | - Yi Chen Wang
- 3 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Chang Sha, Hu Na, China.,4 Institute of Clinical Pharmacology, Central South University, Chang Sha, Hu Na, China
| | - Hui Ming Ye
- 5 Department of Clinical Laboratory, Zhongshan Hospital, Xiamen University Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Xi Li
- 3 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Chang Sha, Hu Na, China.,4 Institute of Clinical Pharmacology, Central South University, Chang Sha, Hu Na, China
| | - Ya Xing Zhou
- 3 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Chang Sha, Hu Na, China.,4 Institute of Clinical Pharmacology, Central South University, Chang Sha, Hu Na, China
| | - Wei Zhang
- 3 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Chang Sha, Hu Na, China.,4 Institute of Clinical Pharmacology, Central South University, Chang Sha, Hu Na, China
| | - Lian Sheng Wang
- 3 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Chang Sha, Hu Na, China.,4 Institute of Clinical Pharmacology, Central South University, Chang Sha, Hu Na, China
| |
Collapse
|