1
|
Wu Y, Song L, Kong J, Wen Q, Jiao J, Wang X, Li G, Xu X, Zhan L. Scribble promotes fibrosis-dependent mechanisms of hepatocarcinogenesis by p53/PUMA-mediated glycolysis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166823. [PMID: 37632981 DOI: 10.1016/j.bbadis.2023.166823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUNDS AND AIMS Liver cancer is the sixth most common type of cancer and the fifth leading cause of cancer mortality worldwide. Scribble has been shown to function as a neoplastic tumor suppressor gene in most tumors. Our previous studies reported that down-regulation or mislocalization of Scribble was sufficient to initiate mammary tumorigenesis and NSCLC. Recently, it was reported that Scribble was highly expressed in hepatocellular carcinoma (HCC). We aim to study how it was up-regulated and the contradictory role of Scribble in HCC. METHODS AND RESULTS Using a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis system, we showed that Scribble was over-expressed and which may protect the mice against hepatic fibrosis. Unexpectedly, we found out the potential for Scribble to act as a tumor driver at the advanced stage of N-nitrosodiethylamine (DEN) plus CCl4 induced HCC mice model in vivo. In addition, we observed even higher expression of Scribble in HCC tumors harboring elevated levels of wild-type p53. Most importantly, nuclear translocated Scribble could interact with p53, which lead to enhanced stability and transcriptional activity of p53. Mechanistically, our data suggested that Scribble might drive HCC progression by promoting metabolic regulation of p53 through p53-upregulated modulator of apoptosis (PUMA)-mediated Warburg effect. CONCLUSIONS Our data identified the molecular basis of hepatic fibrosis-specific gene expression of polarity gene, such as Scribble. Interestingly, with the progression from fibrosis to cirrhosis to HCC, its nuclear translocation promoted a wild-type p53-mediated cancer metabolic switch and tumor progression in HCC. Taken together, we demonstrated that Scribble was up-regulated and served a protective role in liver fibrosis, while also apparently acting as a tumor driver in fibrosis-dependent hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yanjun Wu
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai 200031, China
| | - Lele Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai 200031, China
| | - Jingwen Kong
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai 200031, China
| | - Qian Wen
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai 200031, China
| | - Jiazheng Jiao
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai 200031, China
| | - Xinyu Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai 200031, China
| | - Gang Li
- Department of Hepatopancreatobiliary Surgery, First Affiliated Hospital, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Lixing Zhan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai 200031, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
2
|
Hussein UK, Ahmed AG, Choi WK, Kim KM, Park SH, Park HS, Noh SJ, Lee H, Chung MJ, Moon WS, Kang MJ, Cho DH, Jang KY. SCRIB Is Involved in the Progression of Ovarian Carcinomas in Association with the Factors Linked to Epithelial-to-Mesenchymal Transition and Predicts Shorter Survival of Diagnosed Patients. Biomolecules 2021; 11:405. [PMID: 33803371 PMCID: PMC8000214 DOI: 10.3390/biom11030405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
SCRIB is a polarity protein important in maintaining cell junctions. However, recent reports have raised the possibility that SCRIB might have a role in human cancers. Thus, this study evaluated the roles of SCRIB in ovarian cancers. In 102 human ovarian carcinomas, nuclear expression of SCRIB predicted shorter survival of ovarian carcinoma patients, especially in the patients who received post-operative chemotherapy. In SKOV3 and SNU119 ovarian cancer cells, overexpression of SCRIB stimulated the proliferation and invasion of cells. Knockout of SCRIB inhibited in vivo tumor growth of SKOV3 cells and overexpression of SCRIB promoted tumor growth. Overexpression of SCRIB stimulated epithelial-to-mesenchymal transition by increasing the expression of N-cadherin, snail, TGF-β1, and smad2/3, and decreasing the expression of E-cadherin; the converse was observed with inhibition of SCRIB. In conclusion, this study presents the nuclear expression of SCRIB as a prognostic marker of ovarian carcinomas and suggests that SCRIB is involved in the progression of ovarian carcinomas by stimulating proliferation and epithelial-to-mesenchymal transition-related invasiveness.
Collapse
Affiliation(s)
- Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Won Ku Choi
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju 54896, Korea
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea;
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Sang Jae Noh
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea; (S.J.N.); (H.L.)
| | - Ho Lee
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea; (S.J.N.); (H.L.)
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Woo Sung Moon
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Myoung Jae Kang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Dong Hyu Cho
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju 54896, Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| |
Collapse
|
3
|
Hussein UK, Ha SH, Ahmed AG, Kim KM, Park SH, Kim CY, Kwon KS, Zhang Z, Lee SA, Park HS, Park BH, Lee H, Chung MJ, Moon WS, Kang MJ, Jang KY. FAM83H and SCRIB stabilize β-catenin and stimulate progression of gastric carcinoma. Aging (Albany NY) 2020; 12:11812-11834. [PMID: 32564009 PMCID: PMC7343515 DOI: 10.18632/aging.103351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
FAM83H primarily is known for its function in tooth development. Recently, a role for FAM83H in tumorigenesis, conjunction with MYC and β-catenin, has been suggested. Analysis of public data indicates that FAM83H expression is closely associated with SCRIB expression in human gastric cancers. Therefore, this study investigated the roles of FAM83H and SCRIB in 200 human gastric cancers and gastric cancer cells. In human gastric carcinomas, both the individual and combined expression patterns of the nuclear FAM83H and SCRIB were independent indicators of shorter survival of gastric carcinoma patients. In MKN-45 and NCI-N87 gastric cancer cells, the expression of FAM83H and SCRIB were associated with proliferation and invasiveness of cells. FAM83H-mediated in vivo tumor growth was attenuated with knock-down of SCRIB. Moreover, immunoprecipitation indicates that FAM83H, SCRIB, and β-catenin, form a complex, and knock-down of either FAM83H or SCRIB accelerated proteasomal degradation of β-catenin. In conclusion, this study has found that the individual and combined expression patterns of nuclear FAM83H and SCRIB are prognostic indicators of gastric carcinomas and further suggests that FAM83H and SCRIB are involved in the progression of gastric carcinomas by stabilizing β-catenin.
Collapse
Affiliation(s)
- Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sang Hoon Ha
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Faculty of Postgraduate Studies and Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Chan Young Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.,Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Zhongkai Zhang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-A Lee
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Lee
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Myoung Jae Kang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|