1
|
Weng MH, Chou HC, Wu GJ, Chang YC, Liaw JJ. The Mediating Effect of Sleep Quality on the Relationship Between Depression and Sense of Control in Women in the Third Trimester of Pregnancy: A Cross-Sectional Survey Study. J Nurs Res 2025; 33:e380. [PMID: 40019297 DOI: 10.1097/jnr.0000000000000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Depression, poor sleep quality, and perceived lack of control all commonly impact women in the third trimester of pregnancy. Depression can influence sleep quality, whereas sense of control during pregnancy is correlated with both sleep quality and depression. However, the mediating effect of sleep quality on the relationship between depression and sense of control has not been examined in women in their third trimester. PURPOSE This study was designed to explore depression, sleep quality, and sense of control in pregnant women during the third trimester and determine the degree to which sleep quality mediates the relationship between depression and sense of control. METHODS An exploratory correlational cross-sectional design was used to recruit 263 pregnant women with a gestational age of 35-36 weeks. Data were collected using questionnaires. Depression, sleep quality, and sense of control were respectively assessed using the Edinburgh Postnatal Depression Scale, Pittsburgh Sleep Quality Index, and Labor Agentry Scale. Data on the main outcomes were analyzed using the PROCESS macro for SPSS. RESULTS Depression in pregnant women was found to correlate positively with poor sleep quality and negatively with sense of control (all p s < .001). Thus, higher levels of depression and poorer sleep quality were associated with lower sense of control. The results confirmed the relationship between depression and sense of control to be mediated by sleep quality ( p < .001). CONCLUSIONS Pregnant women with lower levels of depression may experience better sleep quality and sense of control. Sleep quality mediates the relationship between depression and sense of control in women in the third trimester. Thus, prenatal counseling and psychological support should be provided to pregnant women to reduce depression while improving sleep quality and sense of control.
Collapse
Affiliation(s)
- Min-Hsueh Weng
- Post-Baccalaureate Program in Nursing, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hung-Chieh Chou
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gwo-Jang Wu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, New Taipei City, Taiwan
| | - Jen-Jiuan Liaw
- School of Nursing, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Kershner JR. Early life stress, literacy and dyslexia: an evolutionary perspective. Brain Struct Funct 2024; 229:809-822. [PMID: 38436668 PMCID: PMC11003919 DOI: 10.1007/s00429-024-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Stress and learning co-evolved in parallel, with their interdependence critical to the survival of the species. Even today, the regulation of moderate levels of stress by the central autonomic network (CAN), especially during pre- and post-natal periods, facilitates biological adaptability and is an essential precursor for the cognitive requisites of learning to read. Reading is a remarkable evolutionary achievement of the human brain, mysteriously unusual, because it is not pre-wired with a genetic address to facilitate its acquisition. There is no gene for reading. The review suggests that reading co-opts a brain circuit centered in the left hemisphere ventral occipital cortex that evolved as a domain-general visual processor. Its adoption by reading depends on the CAN's coordination of the learning and emotional requirements of learning to read at the metabolic, cellular, synaptic, and network levels. By stabilizing a child's self-control and modulating the attention network's inhibitory controls over the reading circuit, the CAN plays a key role in school readiness and learning to read. In addition, the review revealed two beneficial CAN evolutionary adjustments to early-life stress "overloads" that come with incidental costs of school under-performance and dyslexia. A short-term adaptation involving methylation of the FKBP5 and NR3C1 genes is a liability for academic achievement in primary school. The adaptation leading to dyslexia induces alterations in BDNF trafficking, promoting long-term adaptive fitness by protecting against excessive glucocorticoid toxicity but risks reading difficulties by disruptive signaling from the CAN to the attention networks and the reading circuit.
Collapse
Affiliation(s)
- John R Kershner
- Department of Applied Psychology and Human Resources, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
3
|
Fulton JM, Flanagan SC, Sittlington JJ, Cobice D, Dobbin S, McCullough SJ, Orr G, Richardson P, Saunders KJ. A Cross-Sectional Study of Myopia and Morning Melatonin Status in Northern Irish Adolescent Children. J Ophthalmol 2023; 2023:7961623. [PMID: 37946723 PMCID: PMC10632006 DOI: 10.1155/2023/7961623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Purpose Previous studies have demonstrated an association between melatonin status and both refractive error and axial length in young adult myopes. This study aimed to determine if this relationship extends to a younger adolescent cohort. Methods Healthy children aged 12-15 years provided morning saliva samples before attending Ulster University (55°N) for cycloplegic autorefraction and axial length measures. Participants completed questionnaires describing recent sleep habits and physical activity. Salivary melatonin was quantified using high-performance liquid chromatography-tandem mass spectrometry. Data collection for all participants occurred over a 1-week period (April 2021). Results Seventy participants aged 14.3 (95% CI: 14.2-14.5) years were categorised by spherical equivalent refraction [SER] (range: -5.38DS to +1.88DS) into two groups; myopic SER ≤ -0.50DS (n = 22) or nonmyopic -0.50DS < SER ≤ +2.00DS (n = 48). Median morning salivary melatonin levels were 4.52 pg/ml (95% CI: 2.60-6.02) and 4.89 pg/ml (95% CI: 3.18-5.66) for myopic and nonmyopic subjects, respectively, and did not differ significantly between refractive groups (P = 0.91). Melatonin levels were not significantly correlated with SER, axial length, sleep, or activity scores (Spearman's rank, all P > 0.39). Higher levels of physical activity were associated with higher sleep quality (Spearman's rank, ρ = -0.28, P = 0.02). Conclusion The present study found no significant relationship between morning salivary melatonin levels and refractive error or axial length in young adolescents. This contrasts with outcomes from a previous study of adults with comparable methodology, season of data collection, and geographical location. Prospective studies are needed to understand the discrepancies between adult and childhood findings and evaluate whether melatonin levels in childhood are indicative of an increased risk for future onset of myopia and/or faster axial growth trajectories and myopia progression in established myopes. Future work should opt for a comprehensive dim-light melatonin onset protocol to determine circadian phase.
Collapse
Affiliation(s)
- Jane M. Fulton
- Centre for Optometry and Vision Science, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Sarah C. Flanagan
- Centre for Optometry and Vision Science, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Julie J. Sittlington
- Nutrition Innovation Centre for Food and Health (NICHE), Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Diego Cobice
- Mass Spectrometry Centre, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Sara Dobbin
- Mass Spectrometry Centre, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Sara J. McCullough
- Centre for Optometry and Vision Science, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Gareth Orr
- Mass Spectrometry Centre, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Patrick Richardson
- Centre for Optometry and Vision Science, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| | - Kathryn J. Saunders
- Centre for Optometry and Vision Science, Biomedical Science Research Institute, Ulster University, Coleraine, UK
| |
Collapse
|
4
|
Han R, Han G, Yan Y, Han L, Li L, Zhang H. Protective effects and mechanisms of the Erzhi formula on glucocorticoid induced primary cortical neuron injury. Front Pharmacol 2023; 14:1038492. [PMID: 36923359 PMCID: PMC10008893 DOI: 10.3389/fphar.2023.1038492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
High concentrations of glucocorticoids (GC) can cross the blood-brain barrier into the brain parenchyma, triggering a stress state that can lead to a range of physiological changes. This study investigated whether Erzhi formula has neuroprotective effects against glucocorticoid damage by establishing a dexamethasone-induced primary cortical neuron injury model in vitro. The results showed that Erzhi formula could reduce dexamethasone-induced apoptosis in primary cultured cortical neurons and improve synaptic damage. Further, network pharmacological analysis revealed that Erzhi formula may exert antidepressant effects by multi-component, multi-target, and multi-pathway characteristics, in which Salidroside, Biochanin-A and other ingredients are key components, HSD11B1, NR3C1, and other proteins are key targets, and steroid metabolism may be a key process in its action. Moreover, our study found that the neuroprotective effect of Erzhi formula might be related to the 11β-HSD1-GC/glucocorticoid receptor (GR) signaling pathway. The Erzhi formula could significantly inhibit the activity of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in vitro using homogeneous time-resolved fluorescence. In addition to providing evidence for the pharmacological effects of the Erzhi formula, the present study lays down the foundation for subsequent experiments.
Collapse
Affiliation(s)
- Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guoying Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Mohd Fuad SH, Juliana N, Mohd Azmi NAS, Mohd Fahmi Teng NI, Azmani S, Abu IF, Das S. Circadian Disruption and Occupational Toxicants Exposure Affecting the Immunity of Shift Workers During SARS CoV-2 Pandemic. Front Public Health 2022; 10:829013. [PMID: 35392476 PMCID: PMC8980348 DOI: 10.3389/fpubh.2022.829013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In several regions of the world, the recent Coronavirus Disease-2019 (COVID-19) pandemic outbreak increased morbidity and mortality. The pandemic situation disrupted many workers' previously established lifestyles. The main aim of the present review was to describe the circadian disruption and occupational toxicant exposure affecting the immunity of shift workers during the SARS CoV-2 pandemic. We retrieved pertinent published literature from the Google Scholar, PubMed, and Scopus databases. In the present review, we discuss the circadian rhythm involving the hypothalamic-pituitary-adrenal (HPA) axis at the molecular level, its disruption, occupational toxicant exposure causing immunomodulatory effects, and the role of immunity during the SARS CoV-2 pandemic. The severity of the progression of the viral infection depends on multiple factors affecting immunity. Hence, shift workers may need to be aware of those factors such as circadian rhythm disruption as well as occupational toxicant exposure. The timing of shift workers' energy intake is also important concerning the shift of the workers. The information in the present review may be important for all workers who are at risk during the pandemic. In the absence of any published literature related to association of circadian rhythm disruption with occupational toxicant exposure, the present review may have greater importance.
Collapse
Affiliation(s)
- Siti Hanisah Mohd Fuad
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | | | | | - Sahar Azmani
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine and Health Sciences, Muscat, Oman
| |
Collapse
|
6
|
Turovskaya N. Features of Cognitive and Emotional Sphere of a Teenager with Epiphysis Pathology and Concomitant Speech Disorder: An Analysis of a Single Case. КЛИНИЧЕСКАЯ И СПЕЦИАЛЬНАЯ ПСИХОЛОГИЯ 2022. [DOI: 10.17759/cpse.2022110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
<p style="text-align: justify;">The study of the features of cognitive impairments in various cerebral organic pathologies allows us to understand the role of individual structures of the brain in the implementation of mental activity and determine the appropriate ways of providing psychological assistance to patients. In a situation of rare pathology, the analysis of individual clinical cases is useful. The aim of this research was to study the state of cognitive functions in a 13-year-old male teenager with a cystic restructuring of the pineal gland and concomitant undifferentiated impairment of expressive speech. Changes in the epiphysis were detected in the patient in less than a month before this psychological study. During the examination, methods of pathopsychological and neuropsychological diagnostics, and projective graphic tests were used. In the course of neuropsychological research on a teenager, a violation of the ability to compose a syllabic kinetic scheme of utterance and, in general, a lack of dynamic and kinesthetic praxis, as well as interhemispheric interaction and auditory-speech memory were revealed. The main ways of providing psychological assistance to the patient were identified: neuropsychological correction aimed at restoring impaired speech function based on preserved higher mental functions, and restoration of the communicative function of speech. The obtained results of psychological research require further understanding and verification, primarily in order to understand the pathogenesis of cognitive disorders in the situation of cystic pineal gland rearrangement.</p>
Collapse
|
7
|
Wang YQ, Jiang YJ, Zou MS, Liu J, Zhao HQ, Wang YH. Antidepressant actions of melatonin and melatonin receptor agonist: Focus on pathophysiology and treatment. Behav Brain Res 2021; 420:113724. [PMID: 34929236 DOI: 10.1016/j.bbr.2021.113724] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Depression has become one of the most commonly prevalent neuropsychiatric disorders, and the main characteristics of depression are sleep disorders and melatonin secretion disorders caused by circadian rhythm disorders. Abnormal endogenous melatonin alterations can contribute to the occurrence and development of depression. However, molecular mechanisms underlying this abnormality remain ambiguous. The present review summarizes the mechanisms underlying the antidepressant effects of melatonin, which is related to its functions in the regulation of the hypothalamic-pituitary-adrenal axis, inhibition of neuroinflammation, inhibition of oxidative stress, alleviation of autophagy, and upregulation of neurotrophic, promotion of neuroplasticity and upregulation of the levels of neurotransmitters, etc. Also, melatonin receptor agonists, such as agomelatine, ramelteon, piromelatine, tasimelteon, and GW117, have received considerable critical attention and are highly implicated in treating depression and comorbid disorders. This review focuses on melatonin and various melatonin receptor agonists in the pathophysiology and treatment of depression, aiming to provide further insight into the pathogenesis of depression and explore potential targets for novel agent development.
Collapse
Affiliation(s)
- Ye-Qing Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Ya-Jie Jiang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Man-Shu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Yu-Hong Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
8
|
Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han TL, Chen Q, Duan G, Ju D, Chen K, Deng F, He W. Circadian Clock-Controlled Checkpoints in the Pathogenesis of Complex Disease. Front Genet 2021; 12:721231. [PMID: 34557221 PMCID: PMC8452875 DOI: 10.3389/fgene.2021.721231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The circadian clock coordinates physiology, metabolism, and behavior with the 24-h cycles of environmental light. Fundamental mechanisms of how the circadian clock regulates organ physiology and metabolism have been elucidated at a rapid speed in the past two decades. Here we review circadian networks in more than six organ systems associated with complex disease, which cluster around metabolic disorders, and seek to propose critical regulatory molecules controlled by the circadian clock (named clock-controlled checkpoints) in the pathogenesis of complex disease. These include clock-controlled checkpoints such as circadian nuclear receptors in liver and muscle tissues, chemokines and adhesion molecules in the vasculature. Although the progress is encouraging, many gaps in the mechanisms remain unaddressed. Future studies should focus on devising time-dependent strategies for drug delivery and engagement in well-characterized organs such as the liver, and elucidating fundamental circadian biology in so far less characterized organ systems, including the heart, blood, peripheral neurons, and reproductive systems.
Collapse
Affiliation(s)
- Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haoran Xin
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yinglin Yuan
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongli Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyuan Tian
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Zhang
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Fang Deng
- Key Laboratory of Extreme Environmental Medicine, Department of Pathophysiology, College of High Altitude Military Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
9
|
Wang D, Yu H, Li Y, Xu Z, Shi S, Dou D, Sun L, Zheng Z, Shi X, Deng X, Zhong X. iTRAQ-based quantitative proteomics analysis of the hepatoprotective effect of melatonin on ANIT-induced cholestasis in rats. Exp Ther Med 2021; 22:1014. [PMID: 34373700 PMCID: PMC8343461 DOI: 10.3892/etm.2021.10446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/28/2021] [Indexed: 11/15/2022] Open
Abstract
The therapeutic effects of melatonin on cholestatic liver injury have received widespread attention recently. The aim of the present study was to investigate the mechanisms of the anti-cholestatic effects of melatonin against α-naphthyl isothiocyanate (ANIT)-induced liver injury in rats and to screen for potential biomarkers of cholestasis through isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Rats orally received melatonin (100 mg/kg body weight) or an equivalent volume of 0.25% carboxymethyl cellulose sodium salt 12 h after intraperitoneal injection of ANIT (75 mg/kg) and were subsequently sacrificed at 36 h after injection. Liver biochemical indices were determined and liver tissue samples were stained using hematoxylin-eosin staining, followed by iTRAQ quantitative proteomics to identify potential underlying therapeutic mechanisms and biomarkers. The results suggested that the expression levels of alanine transaminase, aspartate aminotransferase, total bilirubin and direct bilirubin were reduced in the rats treated with melatonin. Histopathological observation indicated that melatonin was effective in the treatment of ANIT-induced cholestasis. iTRAQ proteomics results suggested that melatonin-mediated reduction in ANIT-induced cholestasis may be associated with enhanced antioxidant function and relieving abnormal fatty acid metabolism. According to pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes, the major metabolic pathways for the metabolism of melatonin are fatty acid degradation, the peroxisome proliferator-activated receptor signaling pathway, fatty acid metabolism, chemical carcinogenesis, carbon metabolism, pyruvate metabolism, fatty acid biosynthesis and retinol metabolism, as well as drug metabolism via cytochrome P450. Malate dehydrogenase 1 and glutathione S-transferase Yb-3 may serve as potential targets in the treatment of ANIT-induced cholestasis with melatonin.
Collapse
Affiliation(s)
- Dingnan Wang
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Han Yu
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Formulas of Chinese Medicine, Basic Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yunzhou Li
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zongying Xu
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shaohua Shi
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Dou Dou
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Lili Sun
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhili Zheng
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xinghua Shi
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xiulan Deng
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xianggen Zhong
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
10
|
Developmental Dyslexia: Environment Matters. Brain Sci 2021; 11:brainsci11060782. [PMID: 34199166 PMCID: PMC8231524 DOI: 10.3390/brainsci11060782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Developmental dyslexia (DD) is a multifactorial, specific learning disorder. Susceptibility genes have been identified, but there is growing evidence that environmental factors, and especially stress, may act as triggering factors that determine an individual's risk of developing DD. In DD, as in most complex phenotypes, the presence of a genetic mutation fails to explain the broad phenotypic spectrum observed. Early life stress has been repeatedly associated with the risk of multifactorial disorders, due to its effects on chromatin regulation, gene expression, HPA axis function and its long-term effects on the systemic stress response. Based on recent evidence, we discuss the potential role of stress on DD occurrence, its putative epigenetic effects on the HPA axis of affected individuals, as well as the necessity of early and appropriate intervention, based on the individual stress-associated (endo)phenotype.
Collapse
|
11
|
Burenkova OV, Naumova OY, Grigorenko EL. Stress in the onset and aggravation of learning disabilities. DEVELOPMENTAL REVIEW 2021; 61. [PMID: 34219858 DOI: 10.1016/j.dr.2021.100968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite substantial grounds for such research, the role of chronic exposure to stressors in the onset and aggravation of learning disabilities (LDs) is largely unexplored. In this review, we first consider the hormonal, (epi)genetic, and neurobiological mechanisms that might underlie the impact of adverse childhood experiences, a form of chronic stressors, on the onset of LDs. We then found that stress factors combined with feelings of inferiority, low self-esteem, and peer victimization could potentially further aggravate academic failures in children with LDs. Since effective evidence-based interventions for reducing chronic stress in children with LDs could improve their academic performance, consideration of the role of exposure to stressors in children with LDs has both theoretical and practical importance, especially when delivered in combination with academic interventions.
Collapse
Affiliation(s)
- Olga V Burenkova
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation
| | - Oksana Yu Naumova
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation.,Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow, Russian Federation
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation.,Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
12
|
Kershner JR. An Evolutionary Perspective of Dyslexia, Stress, and Brain Network Homeostasis. Front Hum Neurosci 2021; 14:575546. [PMID: 33551772 PMCID: PMC7859477 DOI: 10.3389/fnhum.2020.575546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Evolution fuels interindividual variability in neuroplasticity, reflected in brain anatomy and functional connectivity of the expanding neocortical regions subserving reading ability. Such variability is orchestrated by an evolutionarily conserved, competitive balance between epigenetic, stress-induced, and cognitive-growth gene expression programs. An evolutionary developmental model of dyslexia, suggests that prenatal and childhood subclinical stress becomes a risk factor for dyslexia when physiological adaptations to stress promoting adaptive fitness, may attenuate neuroplasticity in the brain regions recruited for reading. Stress has the potential to blunt the cognitive-growth functions of the predominantly right hemisphere Ventral and Dorsal attention networks, which are primed with high entropic levels of synaptic plasticity, and are critical for acquiring beginning reading skills. The attentional networks, in collaboration with the stress-responsive Default Mode network, modulate the entrainment and processing of the low frequency auditory oscillations (1-8 Hz) and visuospatial orienting linked etiologically to dyslexia. Thus, dyslexia may result from positive, but costly adaptations to stress system dysregulation: protective measures that reset the stress/growth balance of processing to favor the Default Mode network, compromising development of the attentional networks. Such a normal-variability conceptualization of dyslexia is at odds with the frequent assumption that dyslexia results from a neurological abnormality. To put the normal-variability model in the broader perspective of the state of the field, a traditional evolutionary account of dyslexia is presented to stimulate discussion of the scientific merits of the two approaches.
Collapse
Affiliation(s)
- John R. Kershner
- Department of Applied Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020676. [PMID: 33466883 PMCID: PMC7830980 DOI: 10.3390/ijerph18020676] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
The synthesis and secretion of cortisol are controlled by the hypothalamic–pituitary–adrenal axis. Cortisol exhibits a proper 24-h circadian rhythm that affects the brain, the autonomic nervous system, the heart, and the vasculature that prepares the cardiovascular system for optimal function during these anticipated behavioral cycles. A literature search was conducted using databases such as Google Scholar, PubMed, and Scopus. Relevant search terms included “circadian rhythm and cardiovascular”, “cortisol”, “cortisol and acute coronary syndrome”, “cortisol and arrhythmias”, “cortisol and sudden cardiac death”, “cortisol and stroke”, and “cardioprotective agents”. A total of 120 articles were obtained on the basis of the above search. Lower levels of cortisol were seen at the beginning of sleep, while there was a rise towards the end of sleep, with the highest level reached at the moment the individual wakes up. In the present review, we discuss the role of 11β-hydroxysteroid dehydrogenase (11β-HSD1), which is a novel molecular target of interest for treating metabolic syndrome and type-2 diabetes mellitus. 11β-HSD1 is the major determinant of cortisol excess, and its inhibition alleviates metabolic abnormalities. The present review highlights the role of cortisol, which controls the circadian rhythm, and describes its effect on the cardiovascular system. The review provides a platform for future potential cardioprotective therapeutic agents.
Collapse
|
14
|
Huang S, Jiao X, Lu D, Pei X, Qi D, Li Z. Recent advances in modulators of circadian rhythms: an update and perspective. J Enzyme Inhib Med Chem 2020; 35:1267-1286. [PMID: 32506972 PMCID: PMC7717701 DOI: 10.1080/14756366.2020.1772249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm is a universal life phenomenon that plays an important role in maintaining the multiple physiological functions and regulating the adaptability to internal and external environments of flora and fauna. Circadian alignment in humans has the greatest effect on human health, and circadian misalignment is closely associated with increased risk for metabolic syndrome, cardiovascular diseases, neurological diseases, immune diseases, cancer, sleep disorders, and ophthalmic diseases. The recent description of clock proteins and related post-modification targets was involved in several diseases, and numerous lines of evidence are emerging that small molecule modulators of circadian rhythms can be used to rectify circadian disorder. Herein, we attempt to update the disclosures about the modulators targeting core clock proteins and related post-modification targets, as well as the relationship between circadian rhythm disorders and human health as well as the therapeutic role and prospect of these small molecule modulators in circadian rhythm related disease.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
15
|
Huang Y, He M, Li A, Lin Y, Zhang X, Wu K. Personality, Behavior Characteristics, and Life Quality Impact of Children with Dyslexia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041415. [PMID: 32098297 PMCID: PMC7068303 DOI: 10.3390/ijerph17041415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023]
Abstract
Dyslexia is one of the most common neurobehavioral disorders. Children with dyslexia usually suffer from negative, behavior personality problems, and impacted life quality. We aimed to identify family environment factors for dyslexia, and to evaluate the personality, behavior characteristics and life quality of children with dyslexia. A total of 60 children diagnosed with dyslexia and 180 normal children that were aged 7-12 who speak Chinese were recruited from four primary schools in Shantou City, China. Self-designed questionnaire, children's edition of the Eysenck Personality Questionnaire (EPQ), Conners' Parent Rating Scale (CPRS), and Quality of Life scale for children and adolescents (QLSCA) were employed for investigation. Multiple logistic regressions show that antenatal training (OR = 0.36), higher household income, higher parents' educational levels, and parents engaging in white-collar jobs were negatively associated with dyslexia; while, family members also suffering from dyslexia (OR = 12.17), lower frequency of communication between parents and children, and worse parent-child relationship were positively associated with dyslexia. Children with dyslexia scored higher in psychoticism and neuroticism (p = 0.040, 0.008), but lower in extroversion and dissimulation than normal children (p = 0.025, 0.007) in the EPQ test. They tended to be more introversion (68.3% vs. 43.0%), psychoticism (25.0% vs. 13.3%), and neuroticism (46.7% vs. 18.8%) than the controls. In addition, children with dyslexia had higher scores in conduct problem, learning problem, hyperactivity, and Conners' index of hyperactivity (CIH) in CPRS test; and, lower scores of psychosocial function, physical and mental health, and satisfaction of living quality in QLSCA test (all p < 0.05). Several family environment and parenting factors were associated with children's dyslexia significantly. Children with dyslexia had the personality of psychoticism, neuroticism, introversion, and more behavioral problems. Dyslexia significantly impacted the children's quality of life. Our findings provide multiple perspectives for early intervention of dyslexia in children, particularly in family factors and the parenting environment.
Collapse
Affiliation(s)
- Yanhong Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou 515065, China; (Y.H.); (Y.L.); (X.Z.)
| | - Meirong He
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China; (M.H.); (A.L.)
| | - Anna Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China; (M.H.); (A.L.)
| | - Yuhang Lin
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou 515065, China; (Y.H.); (Y.L.); (X.Z.)
| | - Xuanzhi Zhang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou 515065, China; (Y.H.); (Y.L.); (X.Z.)
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China; (M.H.); (A.L.)
- Correspondence: ; Tel.: +86-754-8890-0445
| |
Collapse
|