1
|
Debong MW, Homm I, Gigl M, Lang R, Hofmann T, Buettner A, Dawid C, Loos HM. Curry-Odorants and Their Metabolites Transfer into Human Milk and Urine. Mol Nutr Food Res 2024:e2300831. [PMID: 38602198 DOI: 10.1002/mnfr.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Indexed: 04/12/2024]
Abstract
SCOPE The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated. METHODS AND RESULTS Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.5, 6, and 8 h after the intervention. The concentrations of nine target odorants in these samples are determined. A significant transition is observed for linalool into milk, as well as for linalool, cuminaldehyde, cinnamaldehyde, and eugenol into urine. Maximum concentrations are reached within 1 h after the intervention in the case of milk and within 2-3 h in the case of urine. In addition, the impact of glucuronidase treatment on odorant concentrations is evaluated in a sample subset of twelve mothers. Linalool, eugenol, and vanillin concentrations increased 3-77-fold in milk samples after treatment with β-glucuronidase. CONCLUSION The transfer profiles of odorants into milk and urine differ qualitatively, quantitatively, and in temporal aspects. More substances are transferred into urine and the transfer needs a longer period compared with milk. Phase II metabolites are transferred into urine and milk.
Collapse
Affiliation(s)
- Marcel W Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
| | - Ines Homm
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
| | - Michael Gigl
- Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | - Roman Lang
- Leibniz-Institute for Food Systems Biology at Technical University Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Thomas Hofmann
- Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Corinna Dawid
- Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | - Helene M Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| |
Collapse
|
2
|
Grădinaru TC, Gilca M, Vlad A, Dragoș D. Relevance of Phytochemical Taste for Anti-Cancer Activity: A Statistical Inquiry. Int J Mol Sci 2023; 24:16227. [PMID: 38003415 PMCID: PMC10671173 DOI: 10.3390/ijms242216227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting inflammation and the pathways linking inflammation with cancer is an innovative therapeutic strategy. Tastants are potential candidates for this approach, since taste receptors display various biological functions, including anti-inflammatory activity (AIA). The present study aims to explore the power different tastes have to predict a phytochemical's anti-cancer properties. It also investigates whether anti-inflammatory phytocompounds also have anti-cancer effects, and whether there are tastes that can better predict a phytochemical's bivalent biological activity. Data from the PlantMolecularTasteDB, containing a total of 1527 phytochemicals, were used. Out of these, only 624 phytocompounds met the inclusion criterion of having 40 hits in a PubMed search, using the name of the phytochemical as the keyword. Among them, 461 phytochemicals were found to possess anti-cancer activity (ACA). The AIA and ACA of phytochemicals were strongly correlated, irrespective of taste/orosensation or chemical class. Bitter taste was positively correlated with ACA, while sweet taste was negatively correlated. Among chemical classes, only flavonoids (which are most frequently bitter) had a positive association with both AIA and ACA, a finding confirming that taste has predictive primacy over chemical class. Therefore, bitter taste receptor agonists and sweet taste receptor antagonists may have a beneficial effect in slowing down the progression of inflammation to cancer.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dorin Dragoș
- Department of Medical Semiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- 1st Internal Medicine Clinic, University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050098 Bucharest, Romania
| |
Collapse
|
3
|
Stavrou MR, So SS, Finch AM, Ballouz S, Smith NJ. Gene expression analyses of TAS1R taste receptors relevant to the treatment of cardiometabolic disease. Chem Senses 2023; 48:bjad027. [PMID: 37539767 DOI: 10.1093/chemse/bjad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 08/05/2023] Open
Abstract
The sweet taste receptor (STR) is a G protein-coupled receptor (GPCR) responsible for mediating cellular responses to sweet stimuli. Early evidence suggests that elements of the STR signaling system are present beyond the tongue in metabolically active tissues, where it may act as an extraoral glucose sensor. This study aimed to delineate expression of the STR in extraoral tissues using publicly available RNA-sequencing repositories. Gene expression data was mined for all genes implicated in the structure and function of the STR, and control genes including highly expressed metabolic genes in relevant tissues, other GPCRs and effector G proteins with physiological roles in metabolism, and other GPCRs with expression exclusively outside the metabolic tissues. Since the physiological role of the STR in extraoral tissues is likely related to glucose sensing, expression was then examined in diseases related to glucose-sensing impairment such as type 2 diabetes. An aggregate co-expression network was then generated to precisely determine co-expression patterns among the STR genes in these tissues. We found that STR gene expression was negligible in human pancreatic and adipose tissues, and low in intestinal tissue. Genes encoding the STR did not show significant co-expression or connectivity with other functional genes in these tissues. In addition, STR expression was higher in mouse pancreatic and adipose tissues, and equivalent to human in intestinal tissue. Our results suggest that STR expression in mice is not representative of expression in humans, and the receptor is unlikely to be a promising extraoral target in human cardiometabolic disease.
Collapse
Affiliation(s)
- Mariah R Stavrou
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sean Souchiart So
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Angela M Finch
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sara Ballouz
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Computer Science and Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Behrens M, Lang T. Extra-Oral Taste Receptors-Function, Disease, and Perspectives. Front Nutr 2022; 9:881177. [PMID: 35445064 PMCID: PMC9014832 DOI: 10.3389/fnut.2022.881177] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Taste perception is crucial for the critical evaluation of food constituents in human and other vertebrates. The five basic taste qualities salty, sour, sweet, umami (in humans mainly the taste of L-glutamic acid) and bitter provide important information on the energy content, the concentration of electrolytes and the presence of potentially harmful components in food items. Detection of the various taste stimuli is facilitated by specialized receptor proteins that are expressed in taste buds distributed on the tongue and the oral cavity. Whereas, salty and sour receptors represent ion channels, the receptors for sweet, umami and bitter belong to the G protein-coupled receptor superfamily. In particular, the G protein-coupled taste receptors have been located in a growing number of tissues outside the oral cavity, where they mediate important processes. This article will provide a brief introduction into the human taste perception, the corresponding receptive molecules and their signal transduction. Then, we will focus on taste receptors in the gastrointestinal tract, which participate in a variety of processes including the regulation of metabolic functions, hunger/satiety regulation as well as in digestion and pathogen defense reactions. These important non-gustatory functions suggest that complex selective forces have contributed to shape taste receptors during evolution.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Tatjana Lang
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
5
|
Bayer S, Mayer AI, Borgonovo G, Morini G, Di Pizio A, Bassoli A. Chemoinformatics View on Bitter Taste Receptor Agonists in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13916-13924. [PMID: 34762411 PMCID: PMC8630789 DOI: 10.1021/acs.jafc.1c05057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Food compounds with a bitter taste have a role in human health, both for their capability to influence food choice and preferences and for their possible systemic effect due to the modulation of extra-oral bitter taste receptors (TAS2Rs). Investigating the interaction of bitter food compounds with TAS2Rs is a key step to unravel their complex effects on health and to pave the way to rationally design new additives for food formulation or drugs. Here, we propose a collection of food bitter compounds, for which in vitro activity data against TAS2Rs are available. The patterns of TAS2R subtype-specific agonists were analyzed using scaffold decomposition and chemical space analysis, providing a detailed characterization of the associations between food bitter tastants and TAS2Rs.
Collapse
Affiliation(s)
- Sebastian Bayer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- Faculty
of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ariane Isabell Mayer
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gigliola Borgonovo
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gabriella Morini
- University
of Gastronomic Sciences, piazza Vittorio Emanuele 9, 12042 Pollenzo, (Bra, CN), Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- . Phone: +49(0)8161716516
| | - Angela Bassoli
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
- . Phone: +39(0)250316815
| |
Collapse
|
6
|
Zehentner S, Reiner AT, Grimm C, Somoza V. The Role of Bitter Taste Receptors in Cancer: A Systematic Review. Cancers (Basel) 2021; 13:5891. [PMID: 34885005 PMCID: PMC8656863 DOI: 10.3390/cancers13235891] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Since it is known that bitter taste receptors (TAS2Rs) are expressed and functionally active in various extra-oral cells, their genetic variability and functional response initiated by their activation have become of broader interest, including in the context of cancer. METHODS A systematic research was performed in PubMed and Google Scholar to identify relevant publications concerning the role of TAS2Rs in cancer. RESULTS While the findings on variations of TAS2R genotypes and phenotypes and their association to the risk of developing cancer are still inconclusive, gene expression analyses revealed that TAS2Rs are expressed and some of them are predominately downregulated in cancerous compared to non-cancerous cell lines and tissue samples. Additionally, receptor-specific, agonist-mediated activation induced various anti-cancer effects, such as decreased cell proliferation, migration, and invasion, as well as increased apoptosis. Furthermore, the overexpression of TAS2Rs resulted in a decreased tumour incidence in an in vivo study and TAS2R activation could even enhance the therapeutic effect of chemotherapeutics in vitro. Finally, higher expression levels of TAS2Rs in primary cancerous cells and tissues were associated with an improved prognosis in humans. CONCLUSION Since current evidence demonstrates a functional role of TAS2Rs in carcinogenesis, further studies should exploit their potential as (co-)targets of chemotherapeutics.
Collapse
Affiliation(s)
- Sofie Zehentner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
| | - Agnes T. Reiner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
| | - Christoph Grimm
- Comprehensive Cancer Center Vienna, Gynecologic Cancer Unit, Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Chair of Nutritional Systems Biology, School of Life Science, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
7
|
Tiroch J, Sterneder S, Di Pizio A, Lieder B, Hoelz K, Holik AK, Pignitter M, Behrens M, Somoza M, Ley JP, Somoza V. Bitter Sensing TAS2R50 Mediates the trans-Resveratrol-Induced Anti-inflammatory Effect on Interleukin 6 Release in HGF-1 Cells in Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13339-13349. [PMID: 33461297 DOI: 10.1021/acs.jafc.0c07058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent data have shown anti-inflammatory effects for trans-resveratrol (RSV) and rosmarinic acid (RA) in various immune-competent cell models through reduction of lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release. Because both compounds have been reported to taste bitter, we hypothesized an involvement of human bitter taste sensing receptors (TAS2Rs) on IL-6 release in LPS-treated human gingival fibroblasts (HGF-1). First, the bitter taste intensity of RSV and RA was compared in a sensory trial with 10 untrained panelists, of whom 90% rated a 50 ppm of RSV in water solution more bitter than 50 ppm of RA. A mean 19 ± 6% reduction of the RSV-induced bitter taste intensity was achieved by co-administration of 50 ppm of the bitter-masking, TAS2R43 antagonist homoeriodictyol (HED). Mechanistic experiments in a stably CRISPR-Cas9-edited TAS2R43ko gastric cell model revealed involvement of TAS2R43 in the HED-evoked effect on RSV-induced proton secretion, whereas the cellular response to RSV did not depend upon TAS2R43. Next, the IL-6 modulatory effect of 100 μM RSV was studied in LPS-treated immune-competent HGF-1 cells. After 6 h of treatment, RSV reduced the LPS-induced IL-6 gene expression and protein release by -46.2 ± 12.7 and -73.9 ± 2.99%, respectively. This RSV-evoked effect was abolished by co-administration of HED. Because real-time quantitative polymerase chain reaction analyses revealed a regulation of TAS2R50 in RSV with or without HED-treated HGF-1 cells, an siRNA knockdown approach of TAS2R50 was applied to verify TAS2R50 involvement in the RSV-induced reduction of the LPS-evoked IL-6 release in HGT-1 cells.
Collapse
Affiliation(s)
- Johanna Tiroch
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sonja Sterneder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonella Di Pizio
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kathrin Hoelz
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Holik
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Maik Behrens
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Mark Somoza
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | | | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Chair for Nutritional Systems Biology, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Structure-Function Analyses of Human Bitter Taste Receptors-Where Do We Stand? Molecules 2020; 25:molecules25194423. [PMID: 32993119 PMCID: PMC7582848 DOI: 10.3390/molecules25194423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The finding that bitter taste receptors are expressed in numerous tissues outside the oral cavity and fulfill important roles in metabolic regulation, innate immunity and respiratory control, have made these receptors important targets for drug discovery. Efficient drug discovery depends heavily on detailed knowledge on structure-function-relationships of the target receptors. Unfortunately, experimental structures of bitter taste receptors are still lacking, and hence, the field relies mostly on structures obtained by molecular modeling combined with functional experiments and point mutageneses. The present article summarizes the current knowledge on the structure–function relationships of human bitter taste receptors. Although these receptors are difficult to express in heterologous systems and their homology with other G protein-coupled receptors is very low, detailed information are available at least for some of these receptors.
Collapse
|