1
|
Koyama T, Saeed U, Rewitz K, Halberg KV. The Integrative Physiology of Hormone Signaling: Insights from Insect Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39887191 DOI: 10.1152/physiol.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Hormones orchestrate virtually all physiological processes in animals and enable them to adjust internal responses to meet diverse physiological demands. Studies in both vertebrates and insects have uncovered many novel hormones and dissected the physiological mechanisms they regulate, demonstrating a remarkable conservation in endocrine signaling across the tree of life. In this review, we focus on recent advances in insect research, which have provided a more integrative view of the conserved interorgan communication networks that control physiology. These new insights have been driven by experimental advantages inherent to insects, which over the past decades have aligned with new technologies and sophisticated genetic tools, to transform insect genetic models into a powerful testbed for posing new questions and exploring longstanding issues in endocrine research. Here, we illustrate how insect studies have addressed classic questions in three main areas, hormonal control of growth and development, neuroendocrine regulation of ion and water balance, and hormonal regulation of behavior and metabolism, and how these discoveries have illuminated our fundamental understanding of endocrine signaling in animals. The application of integrative physiology in insect systems to questions in endocrinology and physiology is expanding and is poised to be a crucible of discovery, revealing fundamental mechanisms of hormonal regulation that underlie animal adaptations to their environments.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Usama Saeed
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Singh P, Mohanty B. Neurotensin receptor agonist PD149163 modulates LPS-induced enterocyte apoptosis by downregulating TNFR pathway and executioner caspase 3 in endotoxemic mice: insights from in vivo and in silico study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03794-9. [PMID: 39812770 DOI: 10.1007/s00210-025-03794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
This study was designed to evaluate the dose-dependent efficacy of neurotensin receptor-1 (NTSR1) agonist PD149163 in the amelioration of the lipopolysaccharide (LPS)-induced apoptosis in the gastrointestinal tract (GIT) of mice. PD149163 is an analogue of NTS, a GIT tri-decapeptide with anti-inflammatory and anti-oxidative effects. Swiss-albino mice (female/8 weeks/25 ± 2.5 g) were divided into six groups: control; LPS, LPS + PD149163L, and LPS + PD149163H groups were treated with LPS (0.2 μmol/L/kgBW; 5 days), followed by exposure of PD149163 to LPS + PD149163L (10.6 μmol/L/kgBW), and LPS + PD149163H (21.2 μmol/L/kgBW) for 28 days. OnlyPD149163L (10.6 μmol/L/kgBW) and onlyPD149163H (21.2 μmol/L/kgBW) groups were maintained for 28 days. Both the LPS and PD149163 were given intraperitoneally. PD149163 treatment for 4 weeks alleviated the LPS-induced enterocyte apoptosis in a dose-dependent manner. LPS-induced excessive levels of caspase-3, tumour necrosis factor-α, and leptin (biomarkers of LPS-induced apoptosis) in plasma were decreased by PD149163H treatment. Moreover, LPS-induced gut oxidative stress was ameliorated by PD149163H supplementation, as evidenced by the decreased content of malondialdehyde, lipid-hydroperoxide and increased level of superoxide-dismutase, catalase. Furthermore, PD149163H mediated elevation of the plasma anti-apoptotic protein (B-cell leukaemia/lymphoma-2) along with the NTS level contributed to the modulation of LPS-induced enterocyte apoptosis, reflected in histopathology. In vivo results were substantiated with in silico molecular docking analysis that predicted the binding of PD149163-TLR4 complex, suggesting that PD149163 can act as a TLR4 modulator and inhibit the activation of TLR4. The role of PD149163 in ameliorating GIT apoptosis by its anti-apoptotic and antioxidative effects is suggested. Further research may provide significant insights into the therapeutic intervention of PD149163 in apoptosis-related diseases of GIT.
Collapse
Affiliation(s)
- Priya Singh
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
3
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Yan Y, Zhu S, Jia M, Chen X, Qi W, Gu F, Valencak TG, Liu JX, Sun HZ. Advances in single-cell transcriptomics in animal research. J Anim Sci Biotechnol 2024; 15:102. [PMID: 39090689 PMCID: PMC11295521 DOI: 10.1186/s40104-024-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding biological mechanisms is fundamental for improving animal production and health to meet the growing demand for high-quality protein. As an emerging biotechnology, single-cell transcriptomics has been gradually applied in diverse aspects of animal research, offering an effective method to study the gene expression of high-throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identified cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions in animals using single-cell transcriptomics. In this paper, we introduce the development of single-cell technology and review the processes, advancements, and applications of single-cell transcriptomics in animal research. We summarize recent efforts using single-cell transcriptomics to obtain a more profound understanding of animal nutrition and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the practical experience accumulated based on a large number of cases is highlighted to provide a reference for determining key factors (e.g., sample size, cell clustering, and cell type annotation) in single-cell transcriptomics analysis. We also discuss the limitations and outlook of single-cell transcriptomics in the current stage. This paper describes the comprehensive progress of single-cell transcriptomics in animal research, offering novel insights and sustainable advancements in agricultural productivity and animal health.
Collapse
Affiliation(s)
- Yunan Yan
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Jia
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Chen
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenlingli Qi
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Teresa G Valencak
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Agency for Health and Food Safety Austria, 1220, Vienna, Austria
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Tan S, Santolaya JL, Wright TF, Liu Q, Fujikawa T, Chi S, Bergstrom CP, Lopez A, Chen Q, Vale G, McDonald JG, Schmidt A, Vo N, Kim J, Baniasadi H, Li L, Zhu G, He TC, Zhan X, Obata Y, Jin A, Jia D, Elmquist JK, Sifuentes-Dominguez L, Burstein E. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism. Nat Metab 2024; 6:1076-1091. [PMID: 38777856 PMCID: PMC12001959 DOI: 10.1038/s42255-024-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jacobo L Santolaya
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Freeney Wright
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Liu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sensen Chi
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Colin P Bergstrom
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Lopez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Chen
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Schmidt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Li
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Gaohui Zhu
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ezra Burstein
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
7
|
Alsudayri A, Perelman S, Brewer M, Chura A, McDevitt M, Drerup C, Ye L. Gut microbiota regulate maturation and mitochondrial function of the nutrient-sensing enteroendocrine cell. Development 2024; 151:dev202544. [PMID: 38577841 PMCID: PMC11112165 DOI: 10.1242/dev.202544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Enteroendocrine cells (EECs) are crucial for sensing ingested nutrients and regulating feeding behavior. How gut microbiota regulate the nutrient-sensing EEC activity is unclear. Our transcriptomic analysis demonstrates that commensal microbiota colonization significantly increases the expression of many genes associated with mitochondrial function. Using new methods to image EEC cytoplasmic and mitochondrial Ca2+ activity in live zebrafish, our data revealed that it is dynamically regulated during the EEC development process. Mature EECs display an increased mitochondrial-to-cytoplasmic Ca2+ ratio. Mitochondria are evenly distributed in the cytoplasm of immature EECs. As EECs mature, their mitochondria are highly localized at the basal membrane where EEC vesicle secretion occurs. Conventionalized (CV) EECs, but not germ-free (GF) EECs, exhibit spontaneous low-amplitude Ca2+ fluctuation. The mitochondrial-to-cytoplasmic Ca2+ ratio is significantly higher in CV EECs. Nutrient stimulants, such as fatty acid, increase cytoplasmic Ca2+ in a subset of EECs and promote a sustained mitochondrial Ca2+ and ATP increase. However, the nutrient-induced EEC mitochondrial activation is nearly abolished in GF zebrafish. Together, our study reveals that commensal microbiota are crucial in supporting EEC mitochondrial function and maturation.
Collapse
Affiliation(s)
- Alfahdah Alsudayri
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shane Perelman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Melissa Brewer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Annika Chura
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Madelyn McDevitt
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Catherine Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lihua Ye
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Zilbauer M, James KR, Kaur M, Pott S, Li Z, Burger A, Thiagarajah JR, Burclaff J, Jahnsen FL, Perrone F, Ross AD, Matteoli G, Stakenborg N, Sujino T, Moor A, Bartolome-Casado R, Bækkevold ES, Zhou R, Xie B, Lau KS, Din S, Magness ST, Yao Q, Beyaz S, Arends M, Denadai-Souza A, Coburn LA, Gaublomme JT, Baldock R, Papatheodorou I, Ordovas-Montanes J, Boeckxstaens G, Hupalowska A, Teichmann SA, Regev A, Xavier RJ, Simmons A, Snyder MP, Wilson KT. A Roadmap for the Human Gut Cell Atlas. Nat Rev Gastroenterol Hepatol 2023; 20:597-614. [PMID: 37258747 PMCID: PMC10527367 DOI: 10.1038/s41575-023-00784-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 06/02/2023]
Abstract
The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.
Collapse
Affiliation(s)
- Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- University Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Cambridge, UK.
| | - Kylie R James
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sebastian Pott
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zhixin Li
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Albert Burger
- Department of Computer Science, Heriot-watt University, Edinburgh, UK
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University', Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Francesca Perrone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Alexander D Ross
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
- University Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Tomohisa Sujino
- Center for the Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Raquel Bartolome-Casado
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Wellcome Sanger Institute, Hinxton, UK
| | - Espen S Bækkevold
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ran Zhou
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shahida Din
- Edinburgh IBD Unit, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University', Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qiuming Yao
- Department of Computer Science and Engineering, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Semir Beyaz
- Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, NY, USA
| | - Mark Arends
- Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Cancer and Genetics, University of Edinburgh, Edinburgh, UK
| | - Alexandre Denadai-Souza
- Laboratory of Mucosal Biology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Lori A Coburn
- Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | | | | | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK
| | - Aviv Regev
- Genentech, San Francisco, CA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alison Simmons
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Keith T Wilson
- Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
9
|
Song H, Wang Q, Shao Z, Wang X, Cao H, Huang K, Sun Q, Sun Z, Guan X. In vitro gastrointestinal digestion of buckwheat ( Fagopyrum esculentum Moench) protein: release and structural characteristics of novel bioactive peptides stimulating gut cholecystokinin secretion. Food Funct 2023; 14:7469-7477. [PMID: 37489980 DOI: 10.1039/d3fo01951a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Satiety hormone cholecystokinin (CCK) plays a vital role in appetite inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that stimulate CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of buckwheat (Fagopyrum esculentum Moench) protein digest (BPD) to stimulate CCK secretion in vitro and in vivo and clarify the structural characteristics of peptides stimulating CCK secretion. BPD was prepared by an in vitro gastrointestinal digestion model. The relative molecular weight of BPD was <10 000 Da, and peptides with <3000 Da accounted for 70%. BPD was rich in essential amino acids Lys, Leu, and Val but lacked sulfur amino acids Met and Cys. It had a stimulatory effect on CCK secretion in vitro and in vivo. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion, and five novel CCK-releasing peptides including QFDLDD, PAFKEEHL, SFHFPI, IPPLFP, and RVTVQPDS were successfully identified. A sequence length range of 6-8 and marked hydrophobicity (18-28) were observed among the most CCK-releasing peptides. The present study demonstrated for the first time that BPD could stimulate CCK secretion and clarify the structural characteristics of bioactive peptides having CCK secretagogue activity in BPD.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qingyu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuwei Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qiqi Sun
- Fengxian Central Hospital, Shanghai 201499, China.
| | | | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
10
|
Marek-Yagel D, Stenke E, Pode-Shakked B, Dunne C, Crushell E, Bryce-Smith A, McDermott M, O'Sullivan MJ, Veber A, Krishnamurthy M, Wells JM, Anikster Y, Bourke B. Nonsense mutation in the novel PERCC1 gene as a genetic cause of congenital diarrhea and enteropathy. Hum Genet 2023; 142:691-696. [PMID: 36076104 PMCID: PMC10182134 DOI: 10.1007/s00439-022-02486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
Abstract
Congenital diarrheas and enteropathies (CODEs) constitute a heterogeneous group of individually rare disorders manifesting with infantile-onset chronic diarrhea. Genomic deletions in chromosome 16, encompassing a sequence termed the 'intestine-critical region (ICR)', were recently identified as the cause of an autosomal recessive congenital enteropathy. The regulatory sequence within the ICR is flanked by an unannotated open reading frame termed PERCC1, which plays a role in enteroendocrine cell (EEC) function. We investigated two unrelated children with idiopathic congenital diarrhea requiring home parenteral nutrition attending the Irish Intestinal Failure Program. Currently 12 and 19-years old, these Irish male patients presented with watery diarrhea and hypernatremic dehydration in infancy. Probands were phenotyped by comprehensive clinical investigations, including endoscopic biopsies and serum gastrin level measurements. Following negative exome sequencing, PCR and Sanger sequencing of the entire coding region and intron boundaries of PERCC1 were performed for each proband and their parents. In both patients, serum gastrin levels were low and failed to increase following a meal challenge. While no deletions involving the ICR were detected, targeted sequencing of the PERCC1 gene revealed a shared homozygous c.390C > G stop gain variant. We report clinical and molecular findings in two unrelated patients harboring a shared homozygous variant in PERCC1, comprising the first description of a point mutation in this gene in association with CODE. That both parenteral nutrition dependent children with unexplained diarrhea at our institution harbored a PERCC1 mutation underscores the importance of its inclusion in exome sequencing interpretation.
Collapse
Affiliation(s)
- Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Clalit Research Institute, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Emily Stenke
- National Centre for Paediatric Gastroenterology, National Children's Research Center, Children's Health Ireland-Crumlin, Dublin, Ireland
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cara Dunne
- National Centre for Paediatric Gastroenterology, National Children's Research Center, Children's Health Ireland-Crumlin, Dublin, Ireland
- Department of Gastroenterology, St James' Hospital, Dublin, Ireland
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland-Temple Street, Dublin, Ireland
| | - Anthea Bryce-Smith
- National Centre for Paediatric Gastroenterology, National Children's Research Center, Children's Health Ireland-Crumlin, Dublin, Ireland
| | - Michael McDermott
- Department of Histopathology, Children's Health Ireland-Crumlin, Dublin, Ireland
| | - Maureen J O'Sullivan
- Department of Histopathology, Children's Health Ireland-Crumlin, Dublin, Ireland
| | - Alvit Veber
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Mansa Krishnamurthy
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Billy Bourke
- National Centre for Paediatric Gastroenterology, National Children's Research Center, Children's Health Ireland-Crumlin, Dublin, Ireland.
- School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|