1
|
Fothergill LJ, Ringuet MT, Voglsanger LM, Plange WJN, Walker LC, Rivera LR, Lawrence AJ, Gundlach AL, Diwakarla S, Furness JB, Smith CM. Localisation of the relaxin-family peptide 3 receptor to enteroendocrine cells of the intestine in RXFP3-Cre/tdTomato mice. Biochem Pharmacol 2025; 232:116714. [PMID: 39675586 DOI: 10.1016/j.bcp.2024.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice. We identified RXFP3-tdTomato expression in neurons throughout the small and large intestine, in cells in the lamina propria of the colon, and in enteroendocrine cells in the small intestine. We characterised the frequency and phenotype of the RXFP3-tdTomato + enteroendocrine cells in both the duodenum and distal ileum and discovered that the reporter was expressed in populations of cells that co-express 5-hydroxytryptamine (5-HT), cholecystokinin (CCK), secretin, peptide YY (PYY), oxyntomodulin, neurotensin, ghrelin, or glucose-dependent insulinotropic polypeptide (GIP). Faithful co-expression of Cre and RXFP3 mRNA was confirmed in RXFP3-Cre mice using multiplex, fluorescence in situ hybridisation (via RNAscope™). Our results indicate that RXFP3 is expressed by the LIN, X, K, Onecut3, and EC enteroendocrine cell types. In light of the key physiological roles of these cells, this study highlights the potential for relaxin-3 signalling via RXFP3 in enteroendocrine cells to modulate digestion, metabolism, food intake, and inflammatory processes.
Collapse
Affiliation(s)
- Linda J Fothergill
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia; Immunology Division, The Walter and Eliza Hall Institute, Victoria 3052, Australia.
| | - Mitchell T Ringuet
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Wesley J N Plange
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Leni R Rivera
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Shanti Diwakarla
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - John B Furness
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
2
|
El Baassiri MG, Raouf Z, Jang HS, Scheese D, Duess JW, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Ccr2-dependent monocytes exacerbate intestinal inflammation and modulate gut serotonergic signaling following traumatic brain injury. J Trauma Acute Care Surg 2024; 97:356-364. [PMID: 38189659 DOI: 10.1097/ta.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to acute gastrointestinal dysfunction and mucosal damage, resulting in feeding intolerance. C-C motif chemokine receptor 2 (Ccr2 + ) monocytes are crucial immune cells that regulate the gut's inflammatory response via the brain-gut axis. Using Ccr2 ko mice, we investigated the intricate interplay between these cells to better elucidate the role of systemic inflammation after TBI. METHODS A murine-controlled cortical impact model was used, and results were analyzed on postinjury days 1 and 3. The experimental groups included (1) sham C57Bl/6 wild type (WT), (2) TBI WT, (3) sham Ccr2 ko , and (4) TBI Ccr2 ko . Mice were euthanized on postinjury days 1 and 3 to harvest the ileum and study intestinal dysfunction and serotonergic signaling using a combination of quantitative real-time polymerase chain reaction, immunohistochemistry, fluorescein isothiocyanate-dextran motility assays, and flow cytometry. Student's t test and one-way analysis of variance were used for statistical analysis, with significance achieved when p < 0.05. RESULTS Traumatic brain injury resulted in severe dysfunction and dysmotility of the small intestine in WT mice as established by significant upregulation of inflammatory cytokines iNOS , Lcn2 , TNFα , and IL1β and the innate immunity receptor toll-like receptor 4 ( Tlr4 ). This was accompanied by disruption of genes related to serotonin synthesis and degradation. Notably, Ccr2 ko mice subjected to TBI showed substantial improvements in intestinal pathology. Traumatic brain injury Ccr2 ko groups demonstrated reduced expression of inflammatory mediators ( iNOS , Lcn2 , IL1β , and Tlr4 ) and improvement in serotonin synthesis genes, including tryptophan hydroxylase 1 ( Tph1 ) and dopa decarboxylase ( Ddc ). CONCLUSION Our study reveals a critical role for Ccr2 + monocytes in modulating intestinal homeostasis after TBI. Ccr2 + monocytes aggravate intestinal inflammation and alter gut-derived serotonergic signaling. Therefore, targeting Ccr2 + monocyte-dependent responses could provide a better understanding of TBI-induced gut inflammation. Further studies are required to elucidate the impact of these changes on brain neuroinflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- From the Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Gračan R, Blažević SA, Brižić M, Hranilovic D. Beyond the Brain: Perinatal Exposure of Rats to Serotonin Enhancers Induces Long-Term Changes in the Jejunum and Liver. Biomedicines 2024; 12:357. [PMID: 38397959 PMCID: PMC10887406 DOI: 10.3390/biomedicines12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5HT) homeostasis is essential for many physiological processes in the central nervous system and peripheral tissues. Hyperserotonemia, a measurable sign of 5HT homeostasis disruption, can be caused by 5HT-directed treatment of psychiatric and gastrointestinal diseases. Its impact on the long-term balance and function of 5HT in the peripheral compartment remains unresolved and requires further research due to possible effects on human health. We explored the effects of perinatal 5HT imbalance on the peripheral organs responsible for serotonin metabolism-the jejunum, a synthesis site, and the liver, a catabolism site-in adult rats. Hyperserotonemia was induced by subchronic treatment with serotonin precursor 5-hydroxytryptophan (5HTP) or serotonin degradation inhibitor tranylcypromine (TCP). The jejunum and liver were collected on postnatal day 70 and analyzed histomorphometrically. Relative mRNA levels of 5HT-regulating proteins were determined using qRT-PCR. Compared to controls, 5HTP- and TCP-treated rats had a reduced number of 5HT-producing cells and expression of the 5HT-synthesising enzyme in the jejunum, and an increased expression of 5HT-transporter accompanied by karyomegaly in hepatocytes, with these differences being more pronounced in the TCP-treated animals. Here, we report that perinatal 5HT disbalance induced long-term cellular and molecular changes in organs regulating 5HT-metabolism, which may have a negative impact on 5HT availability and function in the periphery. Our rat model demonstrates a link between the developmental abnormalities of serotonin homeostasis and 5HT-related changes in adult life and may be suitable for exploring the neurobiological substrates of vulnerability to behavioral and metabolic disorders, as well as for modeling the adverse effects of the prenatal exposure to 5HT enhancers in the human population.
Collapse
Affiliation(s)
- Romana Gračan
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sofia Ana Blažević
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| | - Matea Brižić
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| | - Dubravka Hranilovic
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| |
Collapse
|
5
|
Gálvez I, Fioravanti A, Ortega E. Spa therapy and peripheral serotonin and dopamine function: a systematic review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:153-161. [PMID: 37950094 PMCID: PMC10752831 DOI: 10.1007/s00484-023-02579-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Spa therapy consists of multiple techniques based on the healing effects of water, including hydrotherapy, balneotherapy, and mud therapy, often combined with therapeutic exercises, massage, or physical therapy. Balneotherapy is a clinically effective complementary approach in the treatment of low-grade inflammation- and stress-related pathologies, especially rheumatic conditions due to its anti-inflammatory properties. The main objective of this investigation was to conduct a systematic review analyzing the available evidence on the effect of spa therapy on serotonin and dopamine function. The databases PubMed, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials (CENTRAL) were used from June to July 2023. Exclusion criteria were (1) articles not written in English, (2) full text not available, (3) article not related to the objective of the review. JADAD scale was used for methodological quality evaluation. Four studies were included in the systematic review. Two studies were related to serotonin in healthy individuals, one to serotonin in fibromyalgia, and one to dopamine in healthy individuals. One of the studies evaluated hydrotherapy, another one balneotherapy and mud-bath therapy, and the other two assessed balneotherapy interventions. Studies were very heterogeneous, and their methodological quality was low, making it difficult to draw clear conclusions regarding the effect of spa therapy on peripheral serotonin and dopamine function. The findings of this review highlight the lack of studies evaluating these neurotransmitters and hormones in the context of spa therapy. Further research is needed to evaluate the potential effects of these therapies on serotonin or dopamine function.
Collapse
Affiliation(s)
- Isabel Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Antonella Fioravanti
- Organisation Mondiale du Thermalisme (OMTh) - World Hydrothermal Organization, Sede Palazzo Terme, via Vittorio Emanuele, 38056, Levico Terme, Italy
| | - Eduardo Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| |
Collapse
|
6
|
Hu X, He Z, Zhao C, He Y, Qiu M, Xiang K, Zhang N, Fu Y. Gut/rumen-mammary gland axis in mastitis: Gut/rumen microbiota-mediated "gastroenterogenic mastitis". J Adv Res 2024; 55:159-171. [PMID: 36822391 PMCID: PMC10770137 DOI: 10.1016/j.jare.2023.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Mastitis is an inflammatory response in the mammary gland that results in huge economic losses in the breeding industry. The aetiology of mastitis is complex, and the pathogenesis has not been fully elucidated. It is commonly believed that mastitis is induced by pathogen infection of the mammary gland and induces a local inflammatory response. However, in the clinic, mastitis is often comorbid or secondary to gastric disease, and local control effects targeting the mammary gland are limited. In addition, recent studies have found that the gut/rumen microbiota contributes to the development of mastitis and proposed the gut/rumen-mammary gland axis. Combined with studies indicating that gut/rumen microbiota disturbance can damage the gut mucosa barrier, gut/rumen bacteria and their metabolites can migrate to distal extraintestinal organs. It is believed that the occurrence of mastitis is related not only to the infection of the mammary gland by external pathogenic microorganisms but also to a gastroenterogennic pathogenic pathway. AIM OF REVIEW We propose the pathological concept of "gastroenterogennic mastitis" and believe that the gut/rumen-mammary gland axis-mediated pathway is the pathological mechanism of "gastroenterogennic mastitis". KEY SCIENTIFIC CONCEPTS OF REVIEW To clarify the concept of "gastroenterogennic mastitis" by summarizing reports on the effect of the gut/rumen microbiota on mastitis and the gut/rumen-mammary gland axis-mediated pathway to provide a research basis and direction for further understanding and solving the pathogenesis and difficulties encountered in the prevention of mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
7
|
Khan R, Di Gesù CM, Lee J, McCullough LD. The contribution of age-related changes in the gut-brain axis to neurological disorders. Gut Microbes 2024; 16:2302801. [PMID: 38237031 PMCID: PMC10798364 DOI: 10.1080/19490976.2024.2302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Trillions of microbes live symbiotically in the host, specifically in mucosal tissues such as the gut. Recent advances in metagenomics and metabolomics have revealed that the gut microbiota plays a critical role in the regulation of host immunity and metabolism, communicating through bidirectional interactions in the microbiota-gut-brain axis (MGBA). The gut microbiota regulates both gut and systemic immunity and contributes to the neurodevelopment and behaviors of the host. With aging, the composition of the microbiota changes, and emerging studies have linked these shifts in microbial populations to age-related neurological diseases (NDs). Preclinical studies have demonstrated that gut microbiota-targeted therapies can improve behavioral outcomes in the host by modulating microbial, metabolomic, and immunological profiles. In this review, we discuss the pathways of brain-to-gut or gut-to-brain signaling and summarize the role of gut microbiota and microbial metabolites across the lifespan and in disease. We highlight recent studies investigating 1) microbial changes with aging; 2) how aging of the maternal microbiome can affect offspring health; and 3) the contribution of the microbiome to both chronic age-related diseases (e.g., Parkinson's disease, Alzheimer's disease and cerebral amyloidosis), and acute brain injury, including ischemic stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Romeesa Khan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Claudia M. Di Gesù
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
8
|
Gálvez I, Hinchado MD, Otero E, Navarro MC, Ortega-Collazos E, Martín-Cordero L, Torres-Piles ST, Ortega E. Circulating serotonin and dopamine concentrations in osteoarthritis patients: a pilot study on the effect of pelotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:69-77. [PMID: 37962646 PMCID: PMC10752847 DOI: 10.1007/s00484-023-02571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Balneotherapy has demonstrated clinical efficacy in the management of pathologies involving low-grade inflammation and stress. In rheumatic conditions such as osteoarthritis (OA), this therapy presents anti-inflammatory properties and potential to improve psychological well-being. Although the neurohormones serotonin and dopamine are known to be involved in these processes, surprisingly they have not been studied in this context. The objective was to evaluate the effect of a cycle of balneotherapy with peloids (pelotherapy) on circulating serotonin and dopamine concentrations in a group of aged individuals with OA, after comparing their basal state to that of an age-matched control group. In our pilot study, a pelotherapy program (10 days) was carried out in a group of 16 elderly patients with OA, evaluating its effects on circulating serotonin and dopamine concentrations (measured by ELISA). Individuals with OA showed higher levels of serotonin and lower dopamine levels, in line with the inflammatory roles of these mediators. After pelotherapy, serotonin concentrations significantly decreased, potentially contributing to the previously reported anti-inflammatory effects of balneotherapy.
Collapse
Affiliation(s)
- Isabel Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - María Dolores Hinchado
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| | - Eduardo Otero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - María Carmen Navarro
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | - Leticia Martín-Cordero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600, Plasencia, Spain
| | - Silvia Teresa Torres-Piles
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Terapéutica Médico-Quirúrgica, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain.
| | - Eduardo Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| |
Collapse
|
9
|
Nohesara S, Abdolmaleky HM, Zhou JR, Thiagalingam S. Microbiota-Induced Epigenetic Alterations in Depressive Disorders Are Targets for Nutritional and Probiotic Therapies. Genes (Basel) 2023; 14:2217. [PMID: 38137038 PMCID: PMC10742434 DOI: 10.3390/genes14122217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) is a complex disorder and a leading cause of disability in 280 million people worldwide. Many environmental factors, such as microbes, drugs, and diet, are involved in the pathogenesis of depressive disorders. However, the underlying mechanisms of depression are complex and include the interaction of genetics with epigenetics and the host immune system. Modifications of the gut microbiome and its metabolites influence stress-related responses and social behavior in patients with depressive disorders by modulating the maturation of immune cells and neurogenesis in the brain mediated by epigenetic modifications. Here, we discuss the potential roles of a leaky gut in the development of depressive disorders via changes in gut microbiota-derived metabolites with epigenetic effects. Next, we will deliberate how altering the gut microbiome composition contributes to the development of depressive disorders via epigenetic alterations. In particular, we focus on how microbiota-derived metabolites such as butyrate as an epigenetic modifier, probiotics, maternal diet, polyphenols, drugs (e.g., antipsychotics, antidepressants, and antibiotics), and fecal microbiota transplantation could positively alleviate depressive-like behaviors by modulating the epigenetic landscape. Finally, we will discuss challenges associated with recent therapeutic approaches for depressive disorders via microbiome-related epigenetic shifts, as well as opportunities to tackle such problems.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
10
|
Tang H, Chen X, Huang S, Yin G, Wang X, Shen G. Targeting the gut-microbiota-brain axis in irritable bowel disease to improve cognitive function - recent knowledge and emerging therapeutic opportunities. Rev Neurosci 2023; 34:763-773. [PMID: 36757367 DOI: 10.1515/revneuro-2022-0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
The brain-gut axis forms a bidirectional communication system between the gastrointestinal (GI) tract and cognitive brain areas. Disturbances to this system in disease states such as inflammatory bowel disease have consequences for neuronal activity and subsequent cognitive function. The gut-microbiota-brain axis refers to the communication between gut-resident bacteria and the brain. This circuits exists to detect gut microorganisms and relay information to specific areas of the central nervous system (CNS) that in turn, regulate gut physiology. Changes in both the stability and diversity of the gut microbiota have been implicated in several neuronal disorders, including depression, autism spectrum disorder Parkinson's disease, Alzheimer's disease and multiple sclerosis. Correcting this imbalance with medicinal herbs, the metabolic products of dysregulated bacteria and probiotics have shown hope for the treatment of these neuronal disorders. In this review, we focus on recent advances in our understanding of the intricate connections between the gut-microbiota and the brain. We discuss the contribution of gut microbiota to neuronal disorders and the tangible links between diseases of the GI tract with cognitive function and behaviour. In this regard, we focus on irritable bowel syndrome (IBS) given its strong links to brain function and anxiety disorders. This adds to the growing body of evidence supporting targeted therapeutic strategies to modulate the gut microbiota for the treatment of brain/mental-health-related disease.
Collapse
Affiliation(s)
- Heyong Tang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Xiaoqi Chen
- School of Acupuncture and Massage, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Shun Huang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Gang Yin
- Xin'an School, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Xiyang Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Guoming Shen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| |
Collapse
|
11
|
Laakso EL, Ewais T. A Holistic Perspective on How Photobiomodulation May Influence Fatigue, Pain, and Depression in Inflammatory Bowel Disease: Beyond Molecular Mechanisms. Biomedicines 2023; 11:biomedicines11051497. [PMID: 37239169 DOI: 10.3390/biomedicines11051497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Numerous mechanisms, mostly molecular, have been tested and proposed for photobiomodulation. Photobiomodulation is finding a niche in the treatment of conditions that have no gold-standard treatment or only partially effective pharmacological treatment. Many chronic conditions are characterised by symptoms for which there is no cure or control and for which pharmaceuticals may add to the disease burden through side effects. To add quality to life, alternate methods of symptom management need to be identified. OBJECTIVE To demonstrate how photobiomodulation, through its numerous mechanisms, may offer an adjunctive therapy in inflammatory bowel disease. Rather than considering only molecular mechanisms, we take an overarching biopsychosocial approach to propose how existing evidence gleaned from other studies may underpin a treatment strategy of potential benefit to people with Crohn's disease and ulcerative colitis. MAIN FINDINGS In this paper, the authors have proposed the perspective that photobiomodulation, through an integrated effect on the neuroimmune and microbiome-gut-brain axis, has the potential to be effective in managing the fatigue, pain, and depressive symptoms of people with inflammatory bowel disease.
Collapse
Affiliation(s)
- E-Liisa Laakso
- Mater Research Institute-University of Queensland, South Brisbane, QLD 4101, Australia
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD 4215, Australia
| | - Tatjana Ewais
- Mater Adolescent and Young Adult Health Clinic, South Brisbane, QLD 4101, Australia
- School of Medicine, The University of Queensland, St Lucia, QLD 4068, Australia
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD 4215, Australia
| |
Collapse
|
12
|
Garnås E. Fermented Vegetables as a Potential Treatment for Irritable Bowel Syndrome. Curr Dev Nutr 2023; 7:100039. [PMID: 37181929 PMCID: PMC10111609 DOI: 10.1016/j.cdnut.2023.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Foods and supplements containing microorganisms with expected beneficial effects are increasingly investigated and utilized in the treatment of human illness, including irritable bowel syndrome (IBS). Research points to a prominent role of gut dysbiosis in the multiple aberrations in gastrointestinal function, immune balance, and mental health seen in IBS. The proposition of the current Perspective is that fermented vegetable foods, in combination with a healthy and stable diet, may be particularly useful for addressing these disturbances. This is based on the recognition that plants and their associated microorganisms have contributed to shaping human microbiota and adaptation over evolutionary time. In particular, lactic acid bacteria with immunomodulatory, antipathogenic, and digestive properties are prevalent in products such as sauerkraut and kimchi. Additionally, by adjusting the salt content and fermentation time, products with a microbial and therapeutic potential beyond that of regular ferments could potentially be produced. Although more clinical data are required to make firm assertions, the low-risk profile, combined with biological considerations and reasoning and considerable circumstantial and anecdotal evidence, indicate that fermented vegetables are worthy of consideration by health professionals and patients dealing with IBS-related issues. To maximize microbial diversity and limit the risk of adverse effects, small doses of multiple products, containing different combinations of traditionally fermented vegetables and/or fruits, is suggested for experimental research and care.
Collapse
|
13
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
14
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
15
|
Cai L, Tao Q, Li W, Zhu X, Cui C. The anti-anxiety/depression effect of a combined complex of casein hydrolysate and γ-aminobutyric acid on C57BL/6 mice. Front Nutr 2022; 9:971853. [PMID: 36245498 PMCID: PMC9554304 DOI: 10.3389/fnut.2022.971853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
In view of a series of adverse side effects of drugs for anxiety/depression on the market at present, it is imminent to extract and develop novel anti-anxiety and depression drugs from plants and proteins (like casein hydrolysate) as adjuncts or substitutes for existing anti-anxiety and depression drugs. Consequently, this study investigated the improvement of the anxiety/depression function by the compound of casein hydrolysate and γ-aminobutyric acid (GABA) (casein hydrolysate: GABA = 4:1; CCHAA) on mice induced by chronic restraint stress-corticosterone injection. Animal experiments revealed that oral gavage administration of CCHAA significantly reversed the anxiety/depression-like behaviors. Compared to the model control group, body weights were increased after treatment with CCHAA groups [1.5, 0.75 mg/(g⋅d)]. As a diagnostic index of anxiety and depression, we assessed GABA and 5-HT levels in response to CCHAA ingestion. The GABA and 5-HT levels were increasingly enhanced by the CCHAA diet. In addition, histopathological changes in the hippocampus CA3 region of the anxious/depressed mice were also alleviated after the treatment with the CCHAA. Thus, the casein hydrolysate and GABA formula diets may induce beneficial effects on the mice with anxiety/depression.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qian Tao
- Infinitus (China) Co., Ltd., Guangzhou, China
| | - Wenzhi Li
- Infinitus (China) Co., Ltd., Guangzhou, China
| | - Xiping Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
- *Correspondence: Xiping Zhu,
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Weiwei Biotechnology Co., Ltd., Guangzhou, China
- Chun Cui,
| |
Collapse
|