1
|
Tsubosaka A, Komura D, Kakiuchi M, Katoh H, Onoyama T, Yamamoto A, Abe H, Seto Y, Ushiku T, Ishikawa S. Stomach encyclopedia: Combined single-cell and spatial transcriptomics reveal cell diversity and homeostatic regulation of human stomach. Cell Rep 2023; 42:113236. [PMID: 37819756 DOI: 10.1016/j.celrep.2023.113236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023] Open
Abstract
The stomach is an important digestive organ with various biological functions. However, because of the complexity of its cellular and glandular composition, its precise cellular biology has yet to be elucidated. In this study, we conducted single-cell RNA sequencing (scRNA-seq) and subcellular-level spatial transcriptomics analysis of the human stomach and constructed the largest dataset to date: a stomach encyclopedia. This dataset consists of approximately 380,000 cells from scRNA-seq and the spatial transcriptome, enabling integrated analyses of transcriptional and spatial information of gastric and metaplastic cells. This analysis identified LEFTY1 as an uncharacterized stem cell marker, which was confirmed through lineage tracing analysis. A wide variety of cell-cell interactions between epithelial and stromal cells, including PDGFRA+BMP4+WNT5A+ fibroblasts, was highlighted in the developmental switch of intestinal metaplasia. Our extensive dataset will function as a fundamental resource in investigations of the stomach, including studies of development, aging, and carcinogenesis.
Collapse
Affiliation(s)
- Ayumu Tsubosaka
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Miwako Kakiuchi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Takumi Onoyama
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan; Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8504, Tottori, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Hiroyuki Abe
- Dpartment of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-kyu 1130033, Tokyo, Japan
| | - Tetsuo Ushiku
- Dpartment of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan; Division of Pathology, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, 6-5-1, Kashiwanoha, Kashiwa 277-8577, Chiba, Japan.
| |
Collapse
|
2
|
Li Z, Shang C. Where have the organizers gone? – The growth control system as a foundation of physiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:42-47. [DOI: 10.1016/j.pbiomolbio.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/04/2016] [Indexed: 01/24/2023]
|
3
|
Abstract
Gastric diseases cause considerable worldwide burden. However, the stomach is still poorly understood in terms of the molecular-cellular processes that govern its development and homeostasis. In particular, the complex relationship between the differentiated cell types located within the stomach and the stem and progenitor cells that give rise to them is significantly understudied relative to other organs. In this review, we will highlight the current state of the literature relating to specification of gastric cell lineages from embryogenesis to adulthood. Special emphasis is placed on substantial gaps in knowledge about stomach specification that we think should be tackled to advance the field. For example, it has long been assumed that adult gastric units have a granule-free stem cell that gives rise to all differentiated lineages. Here we will point out that there are also other models that fit all extant data, such as long-lived lineage-committed progenitors that might serve as a source of new cells during homeostasis.
Collapse
Affiliation(s)
- Spencer G. Willet
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence Address correspondence to: Jason C. Mills, MD, PhD, Washington University School of Medicine, Box 8124, 660 South Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 362-7487.Washington University School of MedicineBox 8124, 660 South Euclid AvenueSt. LouisMissouri 63110
| |
Collapse
|
4
|
Ghorpade DS, Sinha AY, Holla S, Singh V, Balaji KN. NOD2-nitric oxide-responsive microRNA-146a activates Sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J Biol Chem 2013; 288:33037-48. [PMID: 24092752 PMCID: PMC3829153 DOI: 10.1074/jbc.m113.492496] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/02/2013] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disorder of the intestine. The interactions between enteric bacteria and genetic susceptibilities are major contributors of IBD etiology. Although genetic variants with loss or gain of NOD2 functions have been linked to IBD susceptibility, the mechanisms coordinating NOD2 downstream signaling, especially in macrophages, during IBD pathogenesis are not precisely identified. Here, studies utilizing the murine dextran sodium sulfate model of colitis revealed the crucial roles for inducible nitric-oxide synthase (iNOS) in regulating pathophysiology of IBDs. Importantly, stimulation of NOD2 failed to activate Sonic hedgehog (SHH) signaling in iNOS null macrophages, implicating NO mediated cross-talk between NOD2 and SHH signaling. NOD2 signaling up-regulated the expression of a NO-responsive microRNA, miR-146a, that targeted NUMB gene and alleviated the suppression of SHH signaling. In vivo and ex vivo studies confirmed the important roles for miR-146a in amplifying inflammatory responses. Collectively, we have identified new roles for miR-146a that established novel cross-talk between NOD2-SHH signaling during gut inflammation. Potential implications of these observations in therapeutics could increase the possibility of defining and developing better regimes to treat IBD pathophysiology.
Collapse
Affiliation(s)
- Devram Sampat Ghorpade
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Akhuri Yash Sinha
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Sahana Holla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Singh
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
5
|
Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastrointestinal cancers. VITAMINS AND HORMONES 2012; 88:461-72. [PMID: 22391316 DOI: 10.1016/b978-0-12-394622-5.00020-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (Hh) pathway is a major regulator for cell differentiation, tissue polarity, and cell proliferation in embryonic development and homeostasis in adult tissue. Studies from many laboratories reveal activation of this pathway in a variety of human cancer, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast, and prostate cancers. It is thus believed that targeted inhibition of Hh signaling may be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. In this review, we summarize major advances in the past 2 years in our understanding of Hh signaling activation in human gastrointestinal cancer and their potential in clinical treatment with Hh pathway inhibitors.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Research Center of the Affiliated Hospital, Inner Mongolia Medical College, Hohhot, Inner Mongolia, China
| | | | | |
Collapse
|
6
|
El-Zaatari M, Zavros Y, Tessier A, Waghray M, Lentz S, Gumucio D, Todisco A, Merchant JL. Intracellular calcium release and protein kinase C activation stimulate sonic hedgehog gene expression during gastric acid secretion. Gastroenterology 2010; 139:2061-2071.e2. [PMID: 20816837 PMCID: PMC2997213 DOI: 10.1053/j.gastro.2010.08.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 08/21/2010] [Accepted: 08/26/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hypochlorhydria during Helicobacter pylori infection inhibits gastric Sonic Hedgehog (Shh) expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through intracellular calcium (Ca2(+)(i))-dependent protein kinase C (PKC) or cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation. METHODS We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1, a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) + 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), PKC-overexpressing adenoviruses, and PKC inhibitors were used to modulate Ca(2+)(i)-release, PKC activity, and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H(+)/K(+)-β-cholera-toxin-overexpressing mice. RESULTS Mice that expressed secreted hedgehog-interacting protein-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression also was repressed in the hyperchlorhydric H(+)/K(+)-β-cholera-toxin model with increased cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca(2+)(i) release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin-, and carbachol-mediated release of Ca(2+)(i) induced Shh expression. Ca(2+)-chelation with BAPTA + EGTA reduced Shh expression. Overexpression of PKC-α, -β, and -δ (but not PKC-ϵ) induced an Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. CONCLUSIONS Secretagogues that stimulate gastric acid secretion induce Shh gene expression through increased Ca(2+)(i)-release and PKC activation. Shh might be the ligand transducing changes in gastric acidity to the regulation of G-cell secretion of gastrin.
Collapse
Affiliation(s)
- Mohamad El-Zaatari
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH
| | - Art Tessier
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Meghna Waghray
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Steve Lentz
- Michigan Diabetes Research and Training Center, University of Michigan, Ann Arbor, MI
| | - Deborah Gumucio
- Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Andrea Todisco
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI,Correspondence: Juanita L. Merchant, M.D., Ph.D., 109 Zina Pitcher Place, BSRB, Rm. 2051, Ann Arbor, MI 48109-2200, Phone: (734) 647-2944, Fax: (734) 736-4686,
| |
Collapse
|
7
|
Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, Witek RP, Agboola KM, Jung Y, Michelotti GA, Diehl AM. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem 2010; 285:36551-60. [PMID: 20843817 DOI: 10.1074/jbc.m110.168542] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (Q-HSCs), which exhibit epithelial and adipocytic features, into myofibroblastic-HSC (MF-HSCs) is a key event in liver fibrosis. Culture models demonstrated that Hedgehog (Hh) pathway activation is required for transition of epithelioid/adipocytic Q-HSCs into MF-HSCs. Hh signaling inhibits adiposity and promotes epithelial-to-mesenchymal transitions (EMTs). Leptin (anti-adipogenic, pro-EMT factor) promotes HSC trans-differentiation and liver fibrosis, suggesting that the pathways may interact to modulate cell fate. This study aimed to determine whether leptin activates Hh signaling and whether this is required for the fibrogenic effects of leptin. Cultures of primary HSCs from lean and fa/fa rats with an inherited ObRb defect were examined. Inhibitors of PI3K/Akt, JAK/STAT, and Hh signaling were used to delineate how ObRb activation influenced Hh signaling and HSC trans-differentiation. Fibrogenesis was compared in wild type and db/db mice (impaired ObRb function) to assess the profibrotic role of leptin. The results demonstrate that leptin-ObR interactions activate Hh signaling with the latter necessary to promote trans-differentiation. Leptin-related increases in Hh signaling required ObR induction of PI3K/Akt, which was sufficient for leptin to repress the epithelioid/adipocytic program. Leptin-mediated induction of JAK/STAT was required for mesenchymal gene expression. Leptin-ObRb interactions were not necessary for HSC trans-differentiation to occur in vitro or in vivo but are important because liver fibrogenesis was attenuated in db/db mice. These findings reveal that leptin activates Hh signaling to alter gene expression programs that control cell fate and have important implications for liver fibrosis and other leptin-regulated processes involving EMTs, including development, obesity, and cancer metastasis.
Collapse
Affiliation(s)
- Steve S Choi
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Merchant JL, Saqui-Salces M, El-Zaatari M. Hedgehog signaling in gastric physiology and cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:133-56. [PMID: 21075343 DOI: 10.1016/b978-0-12-381280-3.00006-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Hedgehog family of ligands was originally identified in mutagenesis screens of Drosophila embryos. Hedgehog signaling in multiple tissues is important during embryonic development. A common theme regarding Hedgehog expression in adult tissues is that tissue injury reactivates the developmental pattern of expression. In most instances, this appears to be important to initiate tissue repair. In the gastrointestinal (GI) tract, where epithelial cells are constantly replenished from progenitor populations, Hedgehog signaling also appears to be essential for regeneration. By contrast, reactivated Hedgehog signaling in adult tissues does not automatically predispose the tissue to transformation, but instead requires sustained tissue injury in the form of chronic inflammation. In this chapter, we review what is known about Hedgehog ligands and signaling during development of relevant organs, and discuss how the patterns of Hedgehog regulation are recapitulated in the GI tract during embryogenesis, adult homeostasis, and neoplastic transformation.
Collapse
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
9
|
Tokhunts R, Singh S, Chu T, D'Angelo G, Baubet V, Goetz JA, Huang Z, Yuan Z, Ascano M, Zavros Y, Thérond PP, Kunes S, Dahmane N, Robbins DJ. The full-length unprocessed hedgehog protein is an active signaling molecule. J Biol Chem 2009; 285:2562-8. [PMID: 19920144 DOI: 10.1074/jbc.m109.078626] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The hedgehog (HH) family of ligands plays an important instructional role in metazoan development. HH proteins are initially produced as approximately 45-kDa full-length proteins, which undergo an intramolecular cleavage to generate an amino-terminal product that subsequently becomes cholesterol-modified (HH-Np). It is well accepted that this cholesterol-modified amino-terminal cleavage product is responsible for all HH-dependent signaling events. Contrary to this model we show here that full-length forms of HH proteins are able to traffic to the plasma membrane and participate directly in cell-cell signaling, both in vitro and in vivo. We were also able to rescue a Drosophila eye-specific hh loss of function phenotype by expressing a full-length form of hh that cannot be processed into HH-Np. These results suggest that in some physiological contexts full-length HH proteins may participate directly in HH signaling and that this novel activity of full-length HH may be evolutionarily conserved.
Collapse
Affiliation(s)
- Robert Tokhunts
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|