1
|
Tabibzadeh N, Satlin LM, Jain S, Morizane R. Navigating the kidney organoid: insights into assessment and enhancement of nephron function. Am J Physiol Renal Physiol 2023; 325:F695-F706. [PMID: 37767571 PMCID: PMC10878724 DOI: 10.1152/ajprenal.00166.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
3
|
Ban KY, Nam GY, Kim D, Oh YS, Jun HS. Prevention of LPS-Induced Acute Kidney Injury in Mice by Bavachin and Its Potential Mechanisms. Antioxidants (Basel) 2022; 11:2096. [PMID: 36358467 PMCID: PMC9686515 DOI: 10.3390/antiox11112096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis with a rapid onset and high mortality rate. Bavachin, an active component of Psoralea corylifolia L., reportedly has antioxidant, anti-apoptotic, and anti-inflammatory effects; however, its beneficial effects on AKI remain undetermined. We investigated the protective effect of bavachin on lipopolysaccharide (LPS)-induced AKI in mice and elucidated the underlying mechanism in human renal tubular epithelial HK-2 cells. Increased serum creatinine and blood urea nitrogen levels were observed in LPS-injected mice; however, bavachin pretreatment significantly inhibited this increase. Bavachin improved the kidney injury score and decreased the expression level of tubular injury markers, such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), in both LPS-injected mice and LPS-treated HK-2 cells. LPS-induced oxidative stress via phosphorylated protein kinase C (PKC) β and upregulation of the NADPH oxidase (NOX) 4 pathway was also significantly decreased by treatment with bavachin. Moreover, bavachin treatment inhibited the phosphorylation of MAPKs (P38, ERK, and JNK) and nuclear factor (NF)-κB, as well as the increase in inflammatory cytokine levels in LPS-injected mice. Krüppel-like factor 5 (KLF5) expression was upregulated in the LPS-treated HK-2 cells and kidneys of LPS-injected mice. However, RNAi-mediated silencing of KLF5 inhibited the phosphorylation of NF-kB, consequently reversing LPS-induced KIM-1 and NGAL expression in HK-2 cells. Therefore, bavachin may ameliorate LPS-induced AKI by inhibiting oxidative stress and inflammation via the downregulation of the PKCβ/MAPK/KLF5 axis.
Collapse
Affiliation(s)
- Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Ga-Young Nam
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
| |
Collapse
|
4
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
5
|
Vormann MK, Tool LM, Ohbuchi M, Gijzen L, van Vught R, Hankemeier T, Kiyonaga F, Kawabe T, Goto T, Fujimori A, Vulto P, Lanz HL, Tetsuka K. Modelling and Prevention of Acute Kidney Injury through Ischemia and Reperfusion in a Combined Human Renal Proximal Tubule/Blood Vessel-on-a-Chip. KIDNEY360 2021; 3:217-231. [PMID: 35373131 PMCID: PMC8967632 DOI: 10.34067/kid.0003622021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Background Renal ischemia/reperfusion injury (rIRI) is one of the major causes of AKI. Although animal models are suitable for investigating systemic symptoms of AKI, they are limited in translatability. Human in vitro models are crucial in giving mechanistic insights into rIRI; however, they miss out on crucial aspects such as reperfusion injury and the multitissue aspect of AKI. Methods We advanced the current renal proximal tubule-on-a-chip model to a coculture model with a perfused endothelial vessel separated by an extracellular matrix. The coculture was characterized for its three-dimensional structure, protein expression, and response to nephrotoxins. Then, rIRI was captured through control of oxygen levels, nutrient availability, and perfusion flow settings. Injury was quantified through morphologic assessment, caspase-3/7 activation, and cell viability. Results The combination of low oxygen, reduced glucose, and interrupted flow was potent to disturb the proximal tubules. This effect was strongly amplified upon reperfusion. Endothelial vessels were less sensitive to the ischemia-reperfusion parameters. Adenosine treatment showed a protective effect on the disruption of the epithelium and on the caspase-3/7 activation. Conclusions A human in vitro rIRI model was developed using a coculture of a proximal tubule and blood vessel on-a-chip, which was used to characterize the renoprotective effect of adenosine. The robustness of the model and assays in combination with the throughput of the platform make it ideal to advance pathophysiological research and enable the development of novel therapeutic modalities.
Collapse
Affiliation(s)
| | | | - Masato Ohbuchi
- Analysis and Pharmacokinetics Research Labs, Astellas Pharma, Inc., Ibaraki, Japan
| | | | | | | | - Fumiko Kiyonaga
- Innovation and Incubation Research Labs, Astellas Pharma, Inc., Ibaraki, Japan
| | | | - Takayuki Goto
- Modality Research Labs, Astellas Pharma, Inc., Ibaraki, Japan
| | - Akira Fujimori
- Research Portfolio Planning, Astellas Pharma, Inc., Ibaraki, Japan
| | | | | | - Kazuhiro Tetsuka
- Analysis and Pharmacokinetics Research Labs, Astellas Pharma, Inc., Ibaraki, Japan
| |
Collapse
|
6
|
Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep 2021; 11:14053. [PMID: 34234242 PMCID: PMC8263711 DOI: 10.1038/s41598-021-93570-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The kidney proximal tubule is the primary site for solute reabsorption, secretion and where kidney diseases can originate, including drug-induced toxicity. Two-dimensional cell culture systems of the human proximal tubule cells (hPTCs) are often used to study these processes. However, these systems fail to model the interplay between filtrate flow, fluid shear stress (FSS), and functionality essential for understanding renal diseases and drug toxicity. The impact of FSS exposure on gene expression and effects of FSS at differing rates on gene expression in hPTCs has not been thoroughly investigated. Here, we performed RNA-sequencing of human RPTEC/TERT1 cells in a microfluidic chip-based 3D model to determine transcriptomic changes. We measured transcriptional changes following treatment of cells in this device at three different fluidic shear stress. We observed that FSS changes the expression of PTC-specific genes and impacted genes previously associated with renal diseases in genome-wide association studies (GWAS). At a physiological FSS level, we observed cell morphology, enhanced polarization, presence of cilia, and transport functions using albumin reabsorption via endocytosis and efflux transport. Here, we present a dynamic view of hPTCs response to FSS with increasing fluidic shear stress conditions and provide insight into hPTCs cellular function under biologically relevant conditions.
Collapse
|
7
|
Marcoux A, Tremblay LE, Slimani S, Fiola M, Mac‐Way F, Garneau AP, Isenring P. Molecular characteristics and physiological roles of Na + -K + -Cl - cotransporter 2. J Cell Physiol 2021; 236:1712-1729. [PMID: 32776569 PMCID: PMC7818487 DOI: 10.1002/jcp.29997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
Na+ -K+ -Cl- cotransporter 2 (NKCC2; SLC12A1) is an integral membrane protein that comes as three splice variants and mediates the cotranslocation of Na+ , K+ , and Cl- ions through the apical membrane of the thick ascending loop of Henle (TALH). In doing so, and through the involvement of other ion transport systems, it allows this nephron segment to reclaim a large fraction of the ultrafiltered Na+ , Cl- , Ca2+ , Mg2+ , and HCO3- loads. The functional relevance of NKCC2 in human is illustrated by the many abnormalities that result from the inactivation of this transport system through the use of loop diuretics or in the setting of inherited disorders. The following presentation aims at discussing the physiological roles and molecular characteristics of Na+ -K+ -Cl- cotransport in the TALH and those of the individual NKCC2 splice variants more specifically. Many of the historical and recent data that have emerged from the experiments conducted will be outlined and their larger meaning will also be placed into perspective with the aid of various hypotheses.
Collapse
Affiliation(s)
- Andree‐Anne Marcoux
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Laurence E. Tremblay
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Samira Slimani
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Marie‐Jeanne Fiola
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Fabrice Mac‐Way
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Alexandre P. Garneau
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQuebecCanada
| | - Paul Isenring
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| |
Collapse
|
8
|
Boukhalfa A, Nascimbeni AC, Ramel D, Dupont N, Hirsch E, Gayral S, Laffargue M, Codogno P, Morel E. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun 2020; 11:294. [PMID: 31941925 PMCID: PMC6962367 DOI: 10.1038/s41467-019-14086-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/09/2019] [Indexed: 12/01/2022] Open
Abstract
Cells subjected to stress situations mobilize specific membranes and proteins to initiate autophagy. Phosphatidylinositol-3-phosphate (PI3P), a crucial lipid in membrane dynamics, is known to be essential in this context. In addition to nutriments deprivation, autophagy is also triggered by fluid-flow induced shear stress in epithelial cells, and this specific autophagic response depends on primary cilium (PC) signaling and leads to cell size regulation. Here we report that PI3KC2α, required for ciliogenesis and PC functions, promotes the synthesis of a local pool of PI3P upon shear stress. We show that PI3KC2α depletion in cells subjected to shear stress abolishes ciliogenesis as well as the autophagy and related cell size regulation. We finally show that PI3KC2α and VPS34, the two main enzymes responsible for PI3P synthesis, have different roles during autophagy, depending on the type of cellular stress: while VPS34 is clearly required for starvation-induced autophagy, PI3KC2α participates only in shear stress-dependent autophagy. The primary cilium is required for the autophagic response to shear stress. Here, the authors show that PI3KC2α has a role in ciliogenesis and promotes local PI3P production upon shear stress to induce autophagy that is distinct from VPS34-driven starvation-induced autophagy.
Collapse
Affiliation(s)
- Asma Boukhalfa
- Institut Necker-Enfants Malades (INEM), INSERM U1151 CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Anna Chiara Nascimbeni
- Institut Necker-Enfants Malades (INEM), INSERM U1151 CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases, INSERM UMR 1048, Paul Sabatier University, Toulouse, France
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151 CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Stephanie Gayral
- Institute of Metabolic and Cardiovascular Diseases, INSERM UMR 1048, Paul Sabatier University, Toulouse, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases, INSERM UMR 1048, Paul Sabatier University, Toulouse, France.
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151 CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris, France.
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151 CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
9
|
Polesel M, Hall AM. Axial differences in endocytosis along the kidney proximal tubule. Am J Physiol Renal Physiol 2019; 317:F1526-F1530. [DOI: 10.1152/ajprenal.00459.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proximal tubule (PT) reabsorbs filtered proteins via receptor-mediated endocytosis to prevent energetically inefficient wasting in the urine. Recent intravital imaging studies have suggested that protein reabsorption occurs in early (S1) segments, which have a very high capacity. In contrast, uptake of fluid phase substrates also occurs in distal (S2) segments. In this article, we will review these findings and their implications for understanding integrated proximal tubular function, patterns of damage caused by endocytosed toxins, and the origins of proteinuria. We will also discuss whether compensatory downstream increases in protein uptake might occur in disease states, and the environmental factors that could drive these changes.
Collapse
Affiliation(s)
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
11
|
Abstract
Phosphoinositides (PIs) play pivotal roles in the regulation of many biological processes. The quality and quantity of PIs is regulated in time and space by the activity of PI kinases and PI phosphatases. The number of PI-metabolizing enzymes exceeds the number of PIs with, in many cases, more than one enzyme controlling the same biochemical step. This would suggest that the PI system has an intrinsic ability to buffer and compensate for the absence of a specific enzymatic activity. However, there are several examples of severe inherited human diseases caused by mutations in one of the PI enzymes, although other enzymes with the same activity are fully functional. The kidney depends strictly on PIs for physiological processes, such as cell polarization, filtration, solute reabsorption, and signal transduction. Indeed, alteration of the PI system in the kidney very often results in pathological conditions, both inherited and acquired. Most of the knowledge of the roles that PIs play in the kidney comes from the study of KO animal models for genes encoding PI enzymes and from the study of human genetic diseases, such as Lowe syndrome/Dent disease 2 and Joubert syndrome, caused by mutations in the genes encoding the PI phosphatases, OCRL and INPP5E, respectively.
Collapse
Affiliation(s)
- Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy .,University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
12
|
Chapron BD, Chapron A, Phillips B, Okoli MC, Shen DD, Kelly EJ, Himmelfarb J, Thummel KE. Reevaluating the role of megalin in renal vitamin D homeostasis using a human cell-derived microphysiological system. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:504-515. [PMID: 29999169 PMCID: PMC6896899 DOI: 10.14573/altex.1803161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023]
Abstract
The role of megalin in the regulation of renal vitamin D homeostasis has previously been evaluated in megalin-knockout mice and rat proximal tubule epithelial cells. We revisited these hypotheses that were previously tested solely in rodent models, this time using a 3-dimensional proximal tubule microphysiological system incorporating primary human proximal tubule epithelial cells. Using this human cell-derived model, we confirmed that 25OHD3 is transported into the human proximal tubule epithelium via megalin-mediated endocytosis while bound to vitamin D binding protein. Building upon these findings, we then evaluated the role of megalin in modulating the cellular uptake and biological activity of 1α,25(OH)2D3. Inhibition of megalin function decreased the 1α,25(OH)2D3-mediated induction of both cytochrome P450 24A1 protein levels and 24-hydroxylation activity following perfusion with vitamin D binding protein and 1α,25(OH)2D3. The potential for reciprocal effects from 1α,25(OH)2D3 on megalin expression were also tested. Contrary to previously published observations from rat proximal tubule epithelial cells, 1α,25(OH)2D3 did not induce megalin gene expression, thus highlighting the potential for meaningful interspecies differences in the homeostatic regulation of megalin in rodents and humans. These findings challenge a recently promoted hypothesis, predicated on the rodent cell data, that attempts to connect 1α,25(OH)2D3-mediated regulation of renal megalin expression and the pathology of chronic kidney disease in humans. In addition to providing specific insights related to the importance of renal megalin in vitamin D homeostasis, these results constitute a proof-of-concept that human-derived microphysiological systems are a suitable replacement for animal models for quantitative pharmacology and physiology research.
Collapse
Affiliation(s)
- Brian D Chapron
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Alenka Chapron
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brian Phillips
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Miracle C Okoli
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Bhattacharyya S, Jean-Alphonse FG, Raghavan V, McGarvey JC, Rbaibi Y, Vilardaga JP, Carattino MD, Weisz OA. Cdc42 activation couples fluid shear stress to apical endocytosis in proximal tubule cells. Physiol Rep 2017; 5:5/19/e13460. [PMID: 29038362 PMCID: PMC5641940 DOI: 10.14814/phy2.13460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022] Open
Abstract
Cells lining the kidney proximal tubule (PT) respond to acute changes in glomerular filtration rate and the accompanying fluid shear stress (FSS) to regulate reabsorption of ions, glucose, and other filtered molecules and maintain glomerulotubular balance. Recently, we discovered that exposure of PT cells to FSS also stimulates an increase in apical endocytic capacity (Raghavan et al. PNAS, 111:8506–8511, 2014). We found that FSS triggered an increase in intracellular Ca2+ concentration ([Ca2+]i) that required release of extracellular ATP and the presence of primary cilia. In this study, we elucidate steps downstream of the increase in [Ca2+]i that link FSS‐induced calcium increase to increased apical endocytic capacity. Using an intramolecular FRET probe, we show that activation of Cdc42 is a necessary step in the FSS‐stimulated apical endocytosis cascade. Cdc42 activation requires the primary cilia and the FSS‐mediated increase in [Ca2+]i. Moreover, Cdc42 activity and FSS‐stimulated endocytosis are coordinately modulated by activators and inhibitors of calmodulin. Together, these data suggest a mechanism by which PT cell exposure to FSS is translated into enhanced endocytic uptake of filtered molecules.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frédéric G Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Venkatesan Raghavan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jennifer C McGarvey
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Abstract
Lowe syndrome is an X-linked disease that is characterized by congenital cataracts, central hypotonia, intellectual disability and renal Fanconi syndrome. The disease is caused by mutations in OCRL, which encodes an inositol polyphosphate 5-phosphatase (OCRL) that acts on phosphoinositides - quantitatively minor constituents of cell membranes that are nonetheless pivotal regulators of intracellular trafficking. In this Review we summarize the considerable progress made over the past decade in understanding the cellular roles of OCRL in regulating phosphoinositide balance along the endolysosomal pathway, a fundamental system for the reabsorption of proteins and solutes by proximal tubular cells. We discuss how studies of OCRL have led to important discoveries about the basic mechanisms of membrane trafficking and describe the key features and limitations of the currently available animal models of Lowe syndrome. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterized by renal Fanconi syndrome in the absence of extrarenal pathologies. Understanding how mutations in OCRL give rise to two clinical entities with differing extrarenal manifestations represents an opportunity to identify molecular pathways that could be targeted to develop treatments for these conditions.
Collapse
|
15
|
Shepard BD, Cheval L, Peterlin Z, Firestein S, Koepsell H, Doucet A, Pluznick JL. A Renal Olfactory Receptor Aids in Kidney Glucose Handling. Sci Rep 2016; 6:35215. [PMID: 27739476 PMCID: PMC5064317 DOI: 10.1038/srep35215] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway.
Collapse
Affiliation(s)
- Blythe D. Shepard
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lydie Cheval
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Zita Peterlin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University Wurzburg, Julius-von-Sachs-Platz 2, 97082 Wurzburg, Germany
| | - Alain Doucet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Raghavan V, Weisz OA. Discerning the role of mechanosensors in regulating proximal tubule function. Am J Physiol Renal Physiol 2015; 310:F1-5. [PMID: 26662200 DOI: 10.1152/ajprenal.00373.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study.
Collapse
Affiliation(s)
- Venkatesan Raghavan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|