1
|
Skoczynski K, Kraus A, Daniel C, Büttner-Herold M, Amann K, Schiffer M, Hermann K, Herrnberger-Eimer L, Tamm ER, Buchholz B. The extracellular matrix protein fibronectin promotes metanephric kidney development. Pflugers Arch 2024; 476:963-974. [PMID: 38563997 PMCID: PMC11139724 DOI: 10.1007/s00424-024-02954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Complex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases. Since only little is known about their physiological role in kidney development, we aimed for analyzing the expression and role of fibronectin. In mouse, fibronectin was expressed during all stages of kidney development with significant changes over time. At embryonic day (E) 12.5 and E13.5, fibronectin lined the UB epithelium, which became less pronounced at E16.5 and then switched to a glomerular expression in the postnatal and adult kidneys. Similar results were obtained in human kidneys. Deletion of fibronectin at E13.5 in cultured metanephric mouse kidneys resulted in reduced kidney sizes and impaired glomerulogenesis following reduced cell proliferation and branching of the UB epithelium. Fibronectin colocalized with alpha 8 integrin and fibronectin loss caused a reduction in alpha 8 integrin expression, release of glial-derived neurotrophic factor and expression of Wnt11, both of which are promoters of UB branching. In conclusion, the ECM protein fibronectin acts as a regulator of kidney development and is a determinant of the final nephron number.
Collapse
Affiliation(s)
- Kathrin Skoczynski
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Hermann
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Aguayo-Guerrero JA, León-Cabrera S, Escobedo G. Molecular mechanisms involved in fetal programming and disease origin in adulthood. J Pediatr Endocrinol Metab 2023; 0:jpem-2022-0491. [PMID: 37235772 DOI: 10.1515/jpem-2022-0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Fetal programming occurs during the gestational age when exposure to environmental stimuli can cause long-term changes in the fetus, predisposing it to develop chronic non-communicable diseases (CNCD) in adulthood. Herein, we summarized the role of low-calorie or high-fat diets during pregnancy as fetal programming agents that induce intrauterine growth restriction (IUGR), amplified de novo lipogenesis, and increased amino acid transport to the placenta, which favor the CNCD onset in the offspring. We also outlined how maternal obesity and gestational diabetes act as fetal programming stimuli by reducing iron absorption and oxygen transport to the fetus, stimulating inflammatory pathways that boost neurological disorders and CNCD in the progeny. Moreover, we reviewed the mechanisms through which fetal hypoxia elevates the offspring's risk of developing hypertension and chronic kidney disease in adult life by unbalancing the renin-angiotensin system and promoting kidney cell apoptosis. Finally, we examined how inadequate vitamin B12 and folic acid consumption during pregnancy programs the fetus to greater adiposity, insulin resistance, and glucose intolerance in adulthood. A better understanding of the fetal programming mechanisms may help us reduce the onset of insulin resistance, glucose intolerance, dyslipidemia, obesity, hypertension, diabetes mellitus, and other CNCD in the offspring during adulthood.
Collapse
Affiliation(s)
- José Alfredo Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Sonia León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
3
|
Grampp S, Kraus A, Skoczynski K, Schiffer M, Krüger R, Naas S, Schödel J, Buchholz B. Hypoxia induces polycystin-1 expression in the renal epithelium. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220992. [PMID: 37206967 PMCID: PMC10189600 DOI: 10.1098/rsos.220992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
Mutations in polycystin-1 which is encoded by the PKD1 gene are the main causes for the development of autosomal dominant polycystic kidney disease. However, only little is known about the physiological function of polycystin-1 and even less about the regulation of its expression. Here, we show that expression of PKD1 is induced by hypoxia and compounds that stabilize the hypoxia-inducible transcription factor (HIF) 1α in primary human tubular epithelial cells. Knockdown of HIF subunits confirms HIF-1α-dependent regulation of polycystin-1 expression. Furthermore, HIF ChIP-seq reveals that HIF interacts with a regulatory DNA element within the PKD1 gene in renal tubule-derived cells. HIF-dependent expression of polycystin-1 can also be demonstrated in vivo in kidneys of mice treated with substances that stabilize HIF. Polycystin-1 and HIF-1α have been shown to promote epithelial branching during kidney development. In line with these findings, we show that expression of polycystin-1 within mouse embryonic ureteric bud branches is regulated by HIF. Our finding links expression of one of the main regulators of accurate renal development with the hypoxia signalling pathway and provides additional insight into the pathophysiology of polycystic kidney disease.
Collapse
Affiliation(s)
- Steffen Grampp
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Kraus
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Skoczynski
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - René Krüger
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Naas
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Uniklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Michael N, Sadananthan SA, Yuan WL, Ong YY, Loy SL, Huang JY, Tint MT, Padmapriya N, Choo J, Ling LH, Kramer MS, Godfrey KM, Gluckman PD, Tan KH, Eriksson JG, Chong YS, Lee YS, Karnani N, Yap F, Shek LPC, Fortier MV, Moritz KM, Chan SY, Velan SS, Wlodek ME. Associations of maternal and foetoplacental factors with prehypertension/hypertension in early childhood. J Hypertens 2022; 40:2171-2179. [PMID: 36205012 DOI: 10.1097/hjh.0000000000003241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate whether characterization of maternal and foetoplacental factors beyond birthweight can enable early identification of children at risk of developing prehypertension/hypertension. METHODS We recruited 693 mother-offspring dyads from the GUSTO prospective mother-offspring cohort. Prehypertension/hypertension at age 6 years was identified using the simplified paediatric threshold of 110/70 mmHg. We evaluated the associations of pregnancy complications (gestational diabetes, excessive/inadequate gestational weight gain, hypertensive disorders of pregnancy), foetal growth deceleration (decline in foetal abdominal circumference at least 0.67 standard deviations between second and third trimesters), high foetoplacental vascular resistance (third trimester umbilical artery systolic-to-diastolic ratio ≥90th centile), preterm birth, small-for-gestational age and neonatal kidney volumes with risk of prehypertension/hypertension at age 6 years, after adjusting for sex, ethnicity, maternal education and prepregnancy BMI. RESULTS Pregnancy complications, small-for-gestational age, preterm birth, and low neonatal kidney volume were not associated with an increased risk of prehypertension/hypertension at age 6 years. In contrast, foetal growth deceleration was associated with a 72% higher risk [risk ratio (RR) = 1.72, 95% confidence interval (CI) 1.18-2.52]. High foetoplacental vascular resistance was associated with a 58% higher risk (RR = 1.58, 95% CI 0.96-2.62). Having both these characteristics, relative to having neither, was associated with over two-fold higher risk (RR = 2.55, 95% CI 1.26-5.16). Over 85% of the foetuses with either of these characteristics were born appropriate or large for gestational age. CONCLUSION Foetal growth deceleration and high foetoplacental vascular resistance may be helpful in prioritizing high-risk children for regular blood pressure monitoring and preventive interventions, across the birthweight spectrum.
Collapse
Affiliation(s)
- Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Wen Lun Yuan
- Université de Paris, CRESS, Inserm, INRAE, Paris, France
| | | | - See Ling Loy
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
- Duke-National University of Singapore Medical School
| | - Jonathan Y Huang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Mya-Thway Tint
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Natarajan Padmapriya
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine
- Saw Swee Hock School of Public Health
| | | | - Lieng Hsi Ling
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre
| | - Michael S Kramer
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine
| | - Keith M Godfrey
- Medical Research Council Lifecourse Epidemiology Unit and National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital, Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine
- Duke-National University of Singapore Medical School
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine
- Department of General Practice and Primary Healthcare, University of Helsinki and Helsinki University Hospital
- Folkhälsan Research Center, Helsinki, Finland
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Paediatrics
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Fabian Yap
- Department of Pediatric Endocrinology
- Duke-National University of Singapore Medical School
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lynette Pei-Chi Shek
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Diagnostic and Interventional Imaging
| | | | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Mary E Wlodek
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine
- University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Schumacher A, Roumans N, Rademakers T, Joris V, Eischen-Loges MJ, van Griensven M, LaPointe VL. Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia. Front Bioeng Biotechnol 2022; 10:860138. [PMID: 35782512 PMCID: PMC9240933 DOI: 10.3389/fbioe.2022.860138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Stem cell–derived kidney organoids have been shown to self-organize from induced pluripotent stem cells into most important renal structures. However, the structures remain immature in culture and contain endothelial networks with low connectivity and limited organoid invasion. Furthermore, the nephrons lose their phenotype after approximately 25 days. To become applicable for future transplantation, further maturation in vitro is essential. Since kidneys in vivo develop in hypoxia, we studied the modulation of oxygen availability in culture. We hypothesized that introducing long-term culture at physiological hypoxia, rather than the normally applied non-physiological, hyperoxic 21% O2, could initiate angiogenesis, lead to enhanced growth factor expression and improve the endothelial patterning. We therefore cultured the kidney organoids at 7% O2 instead of 21% O2 for up to 25 days and evaluated nephrogenesis, growth factor expression such as VEGF-A and vascularization. Whole mount imaging revealed a homogenous morphology of the endothelial network with enhanced sprouting and interconnectivity when the kidney organoids were cultured in hypoxia. Three-dimensional vessel quantification confirmed that the hypoxic culture led to an increased average vessel length, likely due to the observed upregulation of VEGFA-189 and VEGFA-121, and downregulation of the antiangiogenic protein VEGF-A165b measured in hypoxia. This research indicates the importance of optimization of oxygen availability in organoid systems and the potential of hypoxic culture conditions in improving the vascularization of organoids.
Collapse
Affiliation(s)
- Anika Schumacher
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Nadia Roumans
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Timo Rademakers
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Virginie Joris
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Maria José Eischen-Loges
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Vanessa L.S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- *Correspondence: Vanessa L.S. LaPointe,
| |
Collapse
|
6
|
Perico L, Morigi M, Pezzotta A, Corna D, Brizi V, Conti S, Zanchi C, Sangalli F, Trionfini P, Buttò S, Xinaris C, Tomasoni S, Zoja C, Remuzzi G, Benigni A, Imberti B. Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Sci Rep 2021; 11:23580. [PMID: 34880332 PMCID: PMC8655075 DOI: 10.1038/s41598-021-03039-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD+-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism. Here, we discovered a novel role for the NAD+-dependent deacylase SIRT3 in kidney development. In the embryonic kidney, SIRT3 was highly expressed only as a short isoform, with nuclear and extra-nuclear localisation. The nuclear SIRT3 did not act as deacetylase but exerted de-2-hydroxyisobutyrylase activity on lysine residues of histone proteins. Extra-nuclear SIRT3 regulated lysine 2-hydroxyisobutyrylation (Khib) levels of phosphofructokinase (PFK) and Sirt3 deficiency increased PFK Khib levels, inducing a glycolysis boost. This altered Khib landscape in Sirt3−/− metanephroi was associated with decreased nephron progenitors, impaired nephrogenesis and a reduced number of nephrons. These data describe an unprecedented role of SIRT3 in controlling early renal development through the regulation of epigenetics and metabolic processes.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Anna Pezzotta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Valerio Brizi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Cristina Zanchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Fabio Sangalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Piera Trionfini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Sara Buttò
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
| |
Collapse
|
7
|
Parisi N, Tassi A, Capodicasa V, Xholli A, Cagnacci A. Relation of Birthweight and Ovarian and Uterine Size Prior to Menarche. Reprod Sci 2020; 28:1347-1352. [PMID: 33058070 PMCID: PMC8076108 DOI: 10.1007/s43032-020-00351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
During pregnancy, supply of nutrients and exposure of the mother to environmental factors can influence fetus phenotype, possibly modifying growth of fetal tissues and organs. Few studies inconsistently reported that fetuses exposed to an insufficient energy supply, as those born small for gestational age, may have a reduced volume of uterus and ovaries. A retrospective analysis was performed on ultrasound data performed between 2012 and 2018 in 69 young premenarchal girls, 5 to 9 years of age, attending our endocrine-gynecologic clinic for a suspect of early puberty. Length of pregnancy and birthweight was also retrieved. When corrected for age, and presence of ovarian follicles, ovarian volume was positively (R2 = 0.210; p = 0.001) related to percentiles of birthweight (beta coefficient 0.012; 95% CI, 0.002-0.021). Similarly, uterine volume was positively (R2 = 0.237; p = 0.005) related to percentiles of birthweight (beta coefficient 0.067; 95% CI, 0.021-0.114). Ovarian (p = 0.034) and uterine (p = 0.014) volume was higher in the upper 3rd distribution of birthweight percentiles. In conclusion, development of ovarian and uterine volume increases progressively with the increase of birthweight percentiles. The data indicate an association between birthweight and the volume of uterus and ovary at 5-9 years of age.
Collapse
Affiliation(s)
- Nadia Parisi
- Institute of Obstetrics and Gynecology, Azienda Sanitaria Universitaria Friuli Centrale "Santa Maria Della Misericordia", University Hospital of Udine, Udine, Italy
| | - Alice Tassi
- Institute of Obstetrics and Gynecology, Azienda Sanitaria Universitaria Friuli Centrale "Santa Maria Della Misericordia", University Hospital of Udine, Udine, Italy
| | - Valentina Capodicasa
- Institute of Obstetrics and Gynecology, Azienda Sanitaria Universitaria Friuli Centrale "Santa Maria Della Misericordia", University Hospital of Udine, Udine, Italy
| | - Anjeza Xholli
- Department of Obstetrics and Gynecology, San Martino Hospital, Genoa, Italy
| | - Angelo Cagnacci
- Department of Obstetrics and Gynecology, San Martino Hospital, Genoa, Italy. .,Università degli Studi di Genova, Genoa, Italy.
| |
Collapse
|
8
|
Minuth WW. Shaping of the nephron - a complex, vulnerable, and poorly explored backdrop for noxae impairing nephrogenesis in the fetal human kidney. Mol Cell Pediatr 2020; 7:2. [PMID: 31965387 PMCID: PMC6974545 DOI: 10.1186/s40348-020-0094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background The impairment of nephrogenesis is caused by noxae, all of which are significantly different in molecular composition. These can cause an early termination of nephron development in preterm and low birth weight babies resulting in oligonephropathy. For the fetal human kidney, there was no negative effect reported on the early stages of nephron anlage such as the niche, pretubular aggregate, renal vesicle, or comma-shaped body. In contrast, pathological alterations were identified on subsequently developing S-shaped bodies and glomeruli. While the atypical glomeruli were closely analyzed, the S-shaped bodies and the pre-stages received little attention even though passing the process of nephron shaping. Since micrographs and an explanation about this substantial developmental period were missing, the shaping of the nephron in the fetal human kidney during the phase of late gestation was recorded from a microanatomical point of view. Results The nephron shaping starts with the primitive renal vesicle, which is still part of the pretubular aggregate at this point. Then, during extension of the renal vesicle, a complex separation is observed. The medial part of its distal pole is fixed on the collecting duct ampulla, while the lateral part remains connected with the pretubular aggregate via a progenitor cell strand. A final separation occurs, when the extended renal vesicle develops into the comma-shaped body. Henceforth, internal epithelial folding generates the tubule and glomerulus anlagen. Arising clefts at the medial and lateral aspect indicate an asymmetrical expansion of the S-shaped body. This leads to development of the glomerulus at the proximal pole, whereas in the center and at the distal pole, it results in elongation of the tubule segments. Conclusions The present investigation deals with the shaping of the nephron in the fetal human kidney. In this important developmental phase, the positioning, orientation, and folding of the nephron occur. The demonstration of previously unknown morphological details supports the search for traces left by the impairment of nephrogenesis, enables to refine the assessment in molecular pathology, and provides input for the design of therapeutic concepts prolonging nephrogenesis.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, D-93053, Regensburg, Germany.
| |
Collapse
|
9
|
Buchholz B, Eckardt KU. Role of oxygen and the HIF-pathway in polycystic kidney disease. Cell Signal 2020; 69:109524. [PMID: 31904413 DOI: 10.1016/j.cellsig.2020.109524] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/16/2022]
Abstract
Kidney cyst growth in ADPKD is associated with regional hypoxia, presumably due to a mismatch between enlarged cysts and the peritubular capillary blood supply and compression of peritubular capillaries in cyst walls. Regional hypoxia leads to activation of hypoxia-inducible transcription factors, with the two main HIF isoforms, HIF-1 and HIF-2 expressed in cyst epithelia and pericystic interstitial cells, respectively. While HIF-2 activation is linked to EPO production, mitigating the anemia that normally accompanies chronic kidney disease, HIF-1 promotes cyst growth. HIF-dependent cyst growth is primarily due to an increase in chloride-dependent fluid secretion into the cyst lumen. However, given the broad spectrum of HIF-target genes, additional HIF-mediated pathways may also contribute to cyst progression. Furthermore, hypoxia can influence cyst growth through the generation of reactive oxygen species. Since cyst expansion aggravates regional hypoxia, a feedforward loop is established that accelerates cyst expansion and disease progression. Inhibiting the HIF pathway and/or HIF target genes that are of particular relevance for HIF-dependent cyst fluid secretion may therefore represent novel therapeutic approaches to retard the progression of APDKD.
Collapse
Affiliation(s)
- Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Minuth W. In Search of Imprints Left by the Impairment of Nephrogenesis. Cells Tissues Organs 2019; 207:69-82. [DOI: 10.1159/000504085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Clinical aspects dealing with the impairment of nephrogenesis in preterm and low birth weight babies were intensely researched. In this context it was shown that quite different noxae can harm nephron formation, and that the morphological damage in the fetal kidney is rather complex. Some pathological findings show that the impairment leads to changes in developing glomeruli that are restricted to the maturation zone of the outer cortex in the fetal human kidney. Other data show also imprints on the stages of nephron anlage including the niche, the pretubular aggregate, the renal vesicle, and comma- and S-shaped bodies located in the overlying nephrogenic zone of the rodent and human kidneys. During our investigations it was noticed that the stages of nephron anlage in the fetal human kidney during the phase of late gestation have not been described in detail. To contribute, these stages were recorded along with corresponding images. The initial nephron formation in the rodent kidney served as a reference. Finally, the known imprints left by the impairment in both specimens were listed and discussed. In sum, the relatively paucity of data on nephron formation in the fetal human kidney during the late phase of gestation is a call to start with intense research so that concepts for a therapeutic prolongation of nephrogenesis can be designed.
Collapse
|
11
|
Key features of the nephrogenic zone in the fetal human kidney—hardly known but relevant for the detection of first traces impairing nephrogenesis. Cell Tissue Res 2018; 375:589-603. [DOI: 10.1007/s00441-018-2937-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023]
|
12
|
Schenk LK, Buchholz B, Henke SF, Michgehl U, Daniel C, Amann K, Kunzelmann K, Pavenstädt H. Nephron-specific knockout of TMEM16A leads to reduced number of glomeruli and albuminuria. Am J Physiol Renal Physiol 2018; 315:F1777-F1786. [PMID: 30156115 DOI: 10.1152/ajprenal.00638.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TMEM16A is a transmembrane protein from a conserved family of calcium-activated proteins that is highly expressed in the kidney. TMEM16A confers calcium-activated chloride channel activity, which is of importance for various cellular functions in secretory epithelia and involved in secretion-dependent renal cyst growth. However, its specific function in renal physiology has remained elusive so far. Therefore, we generated conditional nephron-specific TMEM16A-knockout mice and found that these animals suffered from albuminuria. Kidney histology demonstrated an intact corticomedullary differentiation and absence of cysts. Electron microscopy showed a normal slit diaphragm. However, the total number of glomeruli and total nephron count was decreased in TMEM16A-knockout animals. At the same time, glomerular diameter was increased, presumably as a result of the hyperfiltration in the remaining glomeruli. TUNEL and PCNA stainings showed increased cell death and increased proliferation. Proximal tubular cilia were intact in young animals, but the number of properly ciliated cells was decreased in older, albuminuric animals. Taken together, our data suggest that TMEM16A may be involved in ureteric bud branching and proper nephron endowment. Loss of TMEM16A resulted in reduced nephron number and, subsequently, albuminuria and tubular damage.
Collapse
Affiliation(s)
- Laura K Schenk
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Sebastian F Henke
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Ulf Michgehl
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Christoph Daniel
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Kerstin Amann
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg , Regensburg Germany
| | | |
Collapse
|
13
|
Fajersztajn L, Veras MM. Hypoxia: From Placental Development to Fetal Programming. Birth Defects Res 2018; 109:1377-1385. [PMID: 29105382 DOI: 10.1002/bdr2.1142] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lais Fajersztajn
- LIM 05 Departamento de Patologia, Hospital da Clinicas, Faculdade de Medicina Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Mariana Matera Veras
- LIM 05 Departamento de Patologia, Hospital da Clinicas, Faculdade de Medicina Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| |
Collapse
|
14
|
Gerosa C, Fanni D, Faa A, Van Eyken P, Ravarino A, Fanos V, Faa G. Low vascularization of the nephrogenic zone of the fetal kidney suggests a major role for hypoxia in human nephrogenesis. Int Urol Nephrol 2017; 49:1621-1625. [DOI: 10.1007/s11255-017-1630-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
|
15
|
Activation of Hypoxia Signaling in Stromal Progenitors Impairs Kidney Development. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1496-1511. [PMID: 28527294 DOI: 10.1016/j.ajpath.2017.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/16/2023]
Abstract
Intrauterine hypoxia is a reason for impaired kidney development. The cellular and molecular pathways along which hypoxia exerts effects on nephrogenesis are not well understood. They are likely triggered by hypoxia-inducible transcription factors (HIFs), and their effects appear to be dependent on the cell compartment contributing to kidney formation. In this study, we investigated the effects of HIF activation in the developing renal stroma, which also essentially modulates nephron development from the metanephric mesenchyme. HIF activation was achieved by conditional deletion of the von Hippel-Lindau tumor suppressor (VHL) protein in the forkhead box FOXD1 cell lineage, from which stromal progenitors arise. The resulting kidneys showed maturation defects associated with early postnatal death. In particular, nephron formation, tubular maturation, and the differentiation of smooth muscle, renin, and mesangial cells were impaired. Erythropoietin expression was strongly enhanced. Codeletion of VHL together with HIF2A but not with HIF1A led to apparently normal kidneys, and the animals reached normal age but were anemic because of low erythropoietin levels. Stromal deletion of HIF2A or HIF1A alone did not affect kidney development. These findings emphasize the relevance of sufficient intrauterine oxygenation for normal renal stroma differentiation, suggesting that chronic activity of HIF2 in stromal progenitors impairs kidney development. Finally, these data confirm the concept that normal stroma function is essential for normal tubular differentiation.
Collapse
|
16
|
Abstract
Over a decade ago, it was proposed that the regulation of tubular repair in the kidney might involve the recapitulation of developmental pathways. Although the kidney cannot generate new nephrons after birth, suggesting a low level of regenerative competence, the tubular epithelial cells of the nephrons can proliferate to repair the damage after AKI. However, the debate continues over whether this repair involves a persistent progenitor population or any mature epithelial cell remaining after injury. Recent reports have highlighted the expression of Sox9, a transcription factor critical for normal kidney development, during postnatal epithelial repair in the kidney. Indeed, the proliferative response of the epithelium involves expression of several pathways previously described as being involved in kidney development. In some instances, these pathways are also apparently involved in the maladaptive responses observed after repeated injury. Whether development and repair in the kidney are the same processes or we are misinterpreting the similar expression of genes under different circumstances remains unknown. Here, we review the evidence for this link, concluding that such parallels in expression may more correctly represent the use of the same pathways in a distinct context, likely triggered by similar stressors.
Collapse
Affiliation(s)
- Melissa Helen Little
- Murdoch Children's Research Institute, Melbourne, Australia; and .,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Pamela Kairath
- Murdoch Children's Research Institute, Melbourne, Australia; and.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|