1
|
Schulz MC, Kopf M, Gekle M. Crosstalk with renal proximal tubule cells drives acidosis-induced inflammatory response and dedifferentiation of fibroblasts via p38-singaling. Cell Commun Signal 2024; 22:148. [PMID: 38395872 PMCID: PMC10893741 DOI: 10.1186/s12964-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Tubulointerstitial kidney disease associated microenvironmental dysregulation, like acidification, inflammation and fibrosis, affects tubule cells and fibroblasts. Micromilieu homeostasis influences intracellular signaling and intercellular crosstalk. Cell-cell communication in turn modulates the interstitial microenvironment. We assessed the impact of acidosis on inflammatory and fibrotic responses in proximal tubule cells and fibroblasts as a function of cellular crosstalk. Furthermore, cellular signaling pathways involved were identified. METHODS HK-2 (human proximal tubule) and CCD-1092Sk (human fibroblasts), in mono and coculture, were exposed to acidic or control media for 3 or 48 h. Protein expression of inflammation markers (TNF, TGF-ß and COX-2), dedifferentiation markers (N-cadherin, vinculin, ß-catenin and vimentin), fibrosis markers (collagen III and fibronectin) and phospho- as well as total MAPK levels were determined by western blot. Secreted collagen III and fibronectin were measured by ELISA. The impact of MAPK activation was assessed by pharmacological intervention. In addition, necrosis, apoptosis and epithelial permeability were determined. RESULTS Independent of culture conditions, acidosis caused a decrease of COX-2, vimentin and fibronectin expression in proximal tubule cells. Only in monoculture, ß-Catenin expression decreased and collagen III expression increased in tubule cells during acidosis. By contrast, in coculture collagen III protein expression of tubule cells was reduced. In fibroblasts acidosis led to an increase of TNF, COX-2, vimentin, vinculin, N-cadherin protein expression and a decrease of TGF-ß expression exclusively in coculture. In monoculture, expression of COX-2 and fibronectin was reduced. Collagen III expression of fibroblasts was reduced by acidosis independent of culture conditions. In coculture, acidosis enhanced phosphorylation of ERK1/2, JNK1/2 and p38 transiently in proximal tubule cells. In fibroblasts, acidosis enhanced phosphorylation of p38 in a sustained and very strong manner. ERK1/2 and JNK1/2 were not affected in fibroblasts. Inhibition of JNK1/2 and p38 under coculture conditions reduced acidosis-induced changes in fibroblasts significantly. CONCLUSIONS Our data show that the crosstalk between proximal tubule cells and fibroblasts is crucial for acidosis-induced dedifferentiation of fibroblasts into an inflammatory phenotype. This dedifferentiation is at least in part mediated by p38 and JNK1/2. Thus, cell-cell communication is essential for the pathophysiological impact of tubulointerstitial acidosis.
Collapse
Affiliation(s)
- Marie-Christin Schulz
- Julius Bernstein Institute of Physiology, Magdeburger Straße 6, 06112, Halle (Saale), Germany.
| | - Michael Kopf
- Julius Bernstein Institute of Physiology, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| |
Collapse
|
2
|
Xu X, Qu S, Zhang C, Zhang M, Qin W, Ren G, Bao H, Li L, Zen K, Liu Z. CD8 T Cell-Derived Exosomal miR-186-5p Elicits Renal Inflammation via Activating Tubular TLR7/8 Signal Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301492. [PMID: 37395441 PMCID: PMC10477851 DOI: 10.1002/advs.202301492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/27/2023] [Indexed: 07/04/2023]
Abstract
T cells play an important role in the development of focal segmental glomerulosclerosis (FSGS). The mechanism underlying such T cell-based kidney disease, however, remains elusive. Here the authors report that activated CD8 T cells elicit renal inflammation and tissue injury via releasing miR-186-5p-enriched exosomes. Continuing the cohort study identifying the correlation of plasma level of miR-186-5p with proteinuria in FSGS patients, it is demonstrated that circulating miR-186-5p is mainly derived from activated CD8 T cell exosomes. Renal miR-186-5p, which is markedly increased in FSGS patients and mice with adriamycin-induced renal injury, is mainly delivered by CD8 T cell exosomes. Depleting miR-186-5p strongly attenuates adriamycin-induced mouse renal injury. Supporting the function of exosomal miR-186-5p as a key circulating pathogenic factor, intravenous injection of miR-186-5p or miR-186-5p-containing T cell exosomes results in mouse renal inflammation and tissue injury. Tracing the injected T cell exosomes shows their preferential distribution in mouse renal tubules, not glomerulus. Mechanistically, miR-186-5p directly activates renal tubular TLR7/8 signal and initiates tubular cell apoptosis. Mutating the TLR7-binding sequence on miR-186-5p or deleting mouse TLR7 largely abolishes renal tubular injuries induced by miR-186-5p or adriamycin. These findings reveal a causative role of exosomal miR-186-5p in T cell-mediated renal dysfunction.
Collapse
Affiliation(s)
- Xiaodong Xu
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Changming Zhang
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Weisong Qin
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Guisheng Ren
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Hao Bao
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Limin Li
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Zhihong Liu
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| |
Collapse
|
3
|
Banan Sadeghian R, Ueno R, Takata Y, Kawakami A, Ma C, Araoka T, Takasato M, Yokokawa R. Cells sorted off hiPSC-derived kidney organoids coupled with immortalized cells reliably model the proximal tubule. Commun Biol 2023; 6:483. [PMID: 37142732 PMCID: PMC10160057 DOI: 10.1038/s42003-023-04862-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Of late, numerous microphysiological systems have been employed to model the renal proximal tubule. Yet there is lack of research on refining the functions of the proximal tubule epithelial layer-selective filtration and reabsorption. In this report, pseudo proximal tubule cells extracted from human-induced pluripotent stem cell-derived kidney organoids are combined and cultured with immortalized proximal tubule cells. It is shown that the cocultured tissue is an impervious epithelium that offers improved levels of certain transporters, extracellular matrix proteins collagen and laminin, and superior glucose transport and P-glycoprotein activity. mRNA expression levels higher than those obtained from each cell type were detected, suggesting an anomalous synergistic crosstalk between the two. Alongside, the improvements in morphological characteristics and performance of the immortalized proximal tubule tissue layer exposed, upon maturation, to human umbilical vein endothelial cells are thoroughly quantified and compared. Glucose and albumin reabsorption, as well as xenobiotic efflux rates through P-glycoprotein were all improved. The data presented abreast highlight the advantages of the cocultured epithelial layer and the non-iPSC-based bilayer. The in vitro models presented herein can be helpful in personalized nephrotoxicity studies.
Collapse
Affiliation(s)
| | - Ryohei Ueno
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Yuji Takata
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Akihiko Kawakami
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Cheng Ma
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan.
| |
Collapse
|
4
|
Endoplasmic Reticulum Stress in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054914. [PMID: 36902344 PMCID: PMC10003093 DOI: 10.3390/ijms24054914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The endoplasmic reticulum is an organelle exerting crucial functions in protein production, metabolism homeostasis and cell signaling. Endoplasmic reticulum stress occurs when cells are damaged and the capacity of this organelle to perform its normal functions is reduced. Subsequently, specific signaling cascades, together forming the so-called unfolded protein response, are activated and deeply impact cell fate. In normal renal cells, these molecular pathways strive to either resolve cell injury or activate cell death, depending on the extent of cell damage. Therefore, the activation of the endoplasmic reticulum stress pathway was suggested as an interesting therapeutic strategy for pathologies such as cancer. However, renal cancer cells are known to hijack these stress mechanisms and exploit them to their advantage in order to promote their survival through rewiring of their metabolism, activation of oxidative stress responses, autophagy, inhibition of apoptosis and senescence. Recent data strongly suggest that a certain threshold of endoplasmic reticulum stress activation needs to be attained in cancer cells in order to shift endoplasmic reticulum stress responses from a pro-survival to a pro-apoptotic outcome. Several endoplasmic reticulum stress pharmacological modulators of interest for therapeutic purposes are already available, but only a handful were tested in the case of renal carcinoma, and their effects in an in vivo setting remain poorly known. This review discusses the relevance of endoplasmic reticulum stress activation or suppression in renal cancer cell progression and the therapeutic potential of targeting this cellular process for this cancer.
Collapse
|
5
|
Acidosis Activates the Nrf2 Pathway in Renal Proximal Tubule-Derived Cells through a Crosstalk with Renal Fibroblasts. Antioxidants (Basel) 2023; 12:antiox12020412. [PMID: 36829971 PMCID: PMC9952787 DOI: 10.3390/antiox12020412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Crosstalk of renal epithelial cells with interstitial fibroblasts plays an important role in kidney pathophysiology. A previous study showed that crosstalk between renal epithelial cells and renal fibroblasts protects against acidosis-induced damage. In order to gain further mechanistic insight into this crosstalk, we investigated the effect of acidosis on the transcriptome of renal epithelial cells (NRK-52E) and renal fibroblasts (NRK-49F) in co-culture by RNASeq, bioinformatics analysis and experimental validation. Cells were exposed to acidic media or control media for 48 h. RNA and protein from whole cell lysate were isolated. In addition, cells were fractionated into cytosol, nucleus and chromatin. RNASeq data were analyzed for differential expression and pathway enrichment (ingenuity pathway analysis, IPA, QIAGEN). Total and phosphorylated protein expression was assessed by Western blot (WB). Transcription factor activity was assessed by luciferase reporter assay. Bioinformatic analysis using differentially expressed genes according to RNASeq (7834 for NRK-52E and 3197 for NRK-49F) predicted the antioxidant and cell-protective Nrf2 pathway as acidosis-induced in NRK-52E and NRK-49F cells. Activation of Nrf2 comprises enhanced Nrf2 phosphorylation, nuclear translocation, DNA binding and initiation of a cell protective transcriptional program. Our data show that acidosis enhances chromatin-associated Nrf2 expression and the abundance of phosphorylated Nrf2 in the chromatin fraction of NRK-52E cells in co-culture but not in monoculture. Furthermore, acidosis enhances the activity of a reporter for Nrf2 (ARE-luciferase). Despite the bioinformatics prediction, NRK-49F cells did not respond with Nrf2 activation. Transketolase (TKT) is an important regulator of antioxidant and homeostatic responses in the kidney and a canonical Nrf2 target gene. We show that protein and mRNA expression of TKT is increased in NRK-52E cells under co-culture but not under monoculture conditions. In conclusion, our data show that extracellular acidosis activates the cytoprotective transcription factor Nrf2 in renal epithelial cells co-cultivated with renal fibroblasts, thereby enhancing the expression of cytoprotective TKT. This protective response is not observed in monoculture. Activation of the Nrf2 pathway represents a co-operative cellular strategy of protection against acidosis.
Collapse
|
6
|
Epithelial–Fibroblast Crosstalk Protects against Acidosis-Induced Inflammatory and Fibrotic Alterations. Biomedicines 2022; 10:biomedicines10030681. [PMID: 35327483 PMCID: PMC8945333 DOI: 10.3390/biomedicines10030681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenesis of chronic kidney disease (CKD) is accompanied by extracellular acidosis inflammation, fibrosis and epithelial-to-mesenchymal transition (EMT). The aim of this study was to assess the influence of acidosis on tubule epithelial cells (NRK-52E) and fibroblasts (NRK-49F) in dependence of cellular crosstalk. NRK-52E and NRK-49F were used in mono- and co-cultures, and were treated with acidic media (pH 6.0) for 48 h. The intracellular proteins were measured by Western blot. Secreted proteins were measured by ELISA. Distribution of E-cadherin was assessed by immunofluorescence and epithelial barrier function by FITC-dextran diffusion. Inflammation: Acidosis led to an increase in COX-2 in NRK-52E and TNF in NRK-49F in monoculture. In co-culture, this effect was reversed. EMT: Acidosis led to an increase in vimentin protein in both cell lines, whereas in co-culture, the effect was abolished. In NRK-52E, the E-cadherin expression was unchanged, but subcellular E-cadherin showed a disturbed distribution, and cellular barrier function was decreased. Fibrosis: Monoculture acidosis led to an increased secretion of collagen I and fibronectin in NRK-52E and collagen I in NRK-49F. In co-culture, the total collagen I secretion was unchanged, and fibronectin secretion was decreased. Intercellular crosstalk between epithelial cells and fibroblasts has a protective function regarding the development of acidosis-induced damage.
Collapse
|
7
|
Liu L, Ma F, Hao Y, Yi Z, Yu X, Xu B, Wei C, Hu J. Integrative Informatics Analysis of Transcriptome and Identification of Interacted Genes in the Glomeruli and Tubules in CKD. Front Med (Lausanne) 2021; 7:615306. [PMID: 33644086 PMCID: PMC7906987 DOI: 10.3389/fmed.2020.615306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is a complex disease in which the renal function is compromised chronically. Many studies have indicated the crosstalk between the tubule and the glomerulus in CKD progression. However, our understanding of the interaction of tubular and glomerular injury remains incomplete. In this study, we applied a meta-analysis approach on the transcriptome of the tubules and glomeruli of CKD patients to identify differentially expressed genes (DEGs) signature. Functional analysis of pathways and Gene Ontology found that tubular DEGs were mainly involved in cell assembly and remodeling, glomerular DEGs in cell proliferation and apoptosis, and overlapping DEGs mainly in immune response. Correlation analysis was performed to identify the associated DEGs in the tubules and glomeruli. Secreted protein comparison and verification experiments indicated that WFDC2 from the tubule could downregulate PEX19 mRNA and protein levels at the glomeruli in diabetic kidney disease (DKD). This study revealed the distinctive pathways of the tubules and glomeruli and identified interacted genes during CKD progression.
Collapse
Affiliation(s)
- Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Jilin, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Jilin, China
| | - Yuanyuan Hao
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaoxia Yu
- Division of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Bo Xu
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Chengguo Wei
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jinghai Hu
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
8
|
Cox SN, Chiurlia S, Divella C, Rossini M, Serino G, Bonomini M, Sirolli V, Aiello FB, Zaza G, Squarzoni I, Gangemi C, Stangou M, Papagianni A, Haas M, Schena FP. Formalin-fixed paraffin-embedded renal biopsy tissues: an underexploited biospecimen resource for gene expression profiling in IgA nephropathy. Sci Rep 2020; 10:15164. [PMID: 32938960 PMCID: PMC7494931 DOI: 10.1038/s41598-020-72026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Primary IgA nephropathy (IgAN) diagnosis is based on IgA-dominant glomerular deposits and histological scoring is done on formalin-fixed paraffin embedded tissue (FFPE) sections using the Oxford classification. Our aim was to use this underexploited resource to extract RNA and identify genes that characterize active (endocapillary–extracapillary proliferations) and chronic (tubulo-interstitial) renal lesions in total renal cortex. RNA was extracted from archival FFPE renal biopsies of 52 IgAN patients, 22 non-IgAN and normal renal tissue of 7 kidney living donors (KLD) as controls. Genome-wide gene expression profiles were obtained and biomarker identification was carried out comparing gene expression signatures a subset of IgAN patients with active (N = 8), and chronic (N = 12) renal lesions versus non-IgAN and KLD. Bioinformatic analysis identified transcripts for active (DEFA4,TNFAIP6,FAR2) and chronic (LTB,CXCL6, ITGAX) renal lesions that were validated by RT-PCR and IHC. Finally, two of them (TNFAIP6 for active and CXCL6 for chronic) were confirmed in the urine of an independent cohort of IgAN patients compared with non-IgAN patients and controls. We have integrated transcriptomics with histomorphological scores, identified specific gene expression changes using the invaluable repository of archival renal biopsies and discovered two urinary biomarkers that may be used for specific clinical decision making.
Collapse
Affiliation(s)
- Sharon Natasha Cox
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy. .,Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| | - Samantha Chiurlia
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy
| | - Chiara Divella
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, 70013, Castellana Grotte, Bari, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittorio Sirolli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Francesca B Aiello
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Isabella Squarzoni
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Concetta Gangemi
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maria Stangou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Francesco Paolo Schena
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy. .,Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| |
Collapse
|
9
|
Kim JY, Bai Y, Jayne LA, Hector RD, Persaud AK, Ong SS, Rojesh S, Raj R, Feng MJHH, Chung S, Cianciolo RE, Christman JW, Campbell MJ, Gardner DS, Baker SD, Sparreboom A, Govindarajan R, Singh H, Chen T, Poi M, Susztak K, Cobb SR, Pabla NS. A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury. Nat Commun 2020; 11:1924. [PMID: 32317630 PMCID: PMC7174303 DOI: 10.1038/s41467-020-15638-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI. Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9-associated transcriptional network.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yuntao Bai
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Laura A Jayne
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ralph D Hector
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Avinash K Persaud
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Su Sien Ong
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shreshtha Rojesh
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Raj
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mei Ji He Ho Feng
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Rachel E Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - John W Christman
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Moray J Campbell
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, UK
| | - Sharyn D Baker
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Poi
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Navjot Singh Pabla
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Hagiyama M, Nakatani Y, Takashima Y, Kato T, Inoue T, Kimura R, Otani T, Sato Y, Mori H, Arima S, Ito A. Urinary Cell Adhesion Molecule 1 Is a Novel Biomarker That Links Tubulointerstitial Damage to Glomerular Filtration Rates in Chronic Kidney Disease. Front Cell Dev Biol 2019; 7:111. [PMID: 31316980 PMCID: PMC6610501 DOI: 10.3389/fcell.2019.00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Cell adhesion molecule 1 (CADM1) is an immunoglobulin superfamily member strongly expressed on renal tubular epithelia in the urinary tract. Enzymatic cleavage of its ectodomain increases in chronic kidney disease (CKD), and is assumed to contribute to tubulointerstitial lesion formation. Because the cleaved ectodomain fragments are likely to be released into the urine, a sandwich enzyme-linked immunosorbent assay (ELISA) system for urinary CADM1 was developed using two anti-ectodomain antibodies. Urinary CADM1 concentrations in patients with CKD based on various forms of glomerulonephritis and nephropathy (n = 127) were measured. A total of 44 patients (35%) had elevated CADM1 concentrations over the normal upper limit (362 pg/mL), with a mean of 1,727 pg/mL. Renal biopsy specimens of all patients were pathologically scored for tubulointerstitial lesions using epithelial degeneration, interstitial inflammation, and fibrosis. There were no correlations between urinary CADM1 concentrations and pathological scores or any widely used renal markers, including glomerular filtration rate (GFR), but there was a weak inverse correlation between pathological scores and GFR (R2 = 0.292). Notably, this correlation gradually increased in patients with increasing CADM1 concentrations, and reached a maximum R2 (0.899) at a cutoff of 1,569 pg/mL. The results of this study suggest that urinary CADM1 is a useful marker indicating tubulointerstitial damage from elevated GFR levels in CKD.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yoshihisa Nakatani
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yasutoshi Takashima
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Takashi Kato
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Tomoyuki Otani
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yasufumi Sato
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Hideo Mori
- Department of Pathology, Osaka Rosai Hospital, Sakai, Japan
| | - Shuji Arima
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| |
Collapse
|
11
|
Michgehl U, Skryabin BV, Bayraktar S, Vollenbröker B, Ciarimboli G, Heitplatz B, Van Marck V, Gröne HJ, Pavenstädt H, Weide T. Nephron-specific knockin of the PIKfyve-binding-deficient Vac14 L156R mutant results in albuminuria and mesangial expansion. Am J Physiol Renal Physiol 2018; 315:F1307-F1319. [PMID: 30066585 DOI: 10.1152/ajprenal.00191.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular trafficking processes play a key role for the establishment and maintenance of membrane surfaces in renal epithelia. Therefore, dysfunctions of these trafficking processes could be key events and important determinants in the onset and progression of diseases. The presence of cellular vacuoles-observed in many histologic analyses of renal diseases-is a macroscopic hint for disturbed intracellular trafficking processes. However, how vacuoles develop and which intracellular pathways are directly affected remain largely unknown. Previous studies showed that in some cases, vacuolization is linked to malfunction of the Vac14 complex. This complex, including the scaffold protein Vac14, the lipid kinase PIKfyve, and its counteracting lipid phosphatase Fig4, regulates intracellular phosphatidylinositol phosphate levels, which in turn, control the maturation of early-into-late endosomes, as well as the processing of autophagosomes into autophagolysosomes. Here, we analyzed the role of Vac14 in mice and observed that the nephron-specific knockin of the PIKfyve-binding-deficient Vac14L156R mutant led to albuminuria, accompanied by mesangial expansion, increased glomerular size, and an elevated expression of several kidney injury markers. Overexpression of this Vac14 variant in podocytes did not reveal a strong in vivo phenotype, indicating that Vac14-dependent trafficking processes are more important for tubular than for glomerular processes in the kidney. In vitro overexpression of Vac14L156R in Madin-Darby canine kidney cells had no impact on apico-basal polarity defects but resulted in a faster reassembly of junctional structures after Ca2+ depletion and delayed endo- and transcytosis rates. Taken together, our data suggest that increased albuminuria of Vac14L156R-overexpressing mice is a consequence of a lowered endo- and transcytosis of albumin in renal tubules.
Collapse
Affiliation(s)
- Ulf Michgehl
- Internal Medicine D, University Hospital Muenster , Muenster , Germany
| | - Boris V Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models, University of Muenster , Muenster , Germany
| | - Samet Bayraktar
- Internal Medicine D, University Hospital Muenster , Muenster , Germany
| | | | | | - Barbara Heitplatz
- Institute for Pathology, University Hospital Muenster , Muenster , Germany
| | - Veerle Van Marck
- Institute for Pathology, University Hospital Muenster , Muenster , Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, Deutsches Krebsforschungszentrum, Heidelberg , Germany
| | | | - Thomas Weide
- Internal Medicine D, University Hospital Muenster , Muenster , Germany
| |
Collapse
|
12
|
The use of dipyrone in the ICU is associated with acute kidney injury: A retrospective cohort analysis. Eur J Anaesthesiol 2018; 34:673-680. [PMID: 28306590 DOI: 10.1097/eja.0000000000000627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Use of dipyrone (metamizole) in perioperative and ICU pain therapy remains controversial due to a lack of solid evidence weighing dipyrone benefit against its potential life-threatening complications. Although dipyrone has known analgesic and antipyretic properties, its mechanisms of actions are incompletely understood. Although dipyrone effects on renal vasodilator prostaglandin synthesis are documented, little is known about its potential renal side effects, especially in the critical care environment. OBJECTIVE Investigation of the perioperative nephrotoxic potential of dipyrone in patients prone to acute kidney injury (AKI). DESIGN Retrospective cohort study. SETTING Single centre study in a tertiary referral hospital from January 2013 until June 2013. PATIENTS A total of 500 consecutive patients aged 18 years and older referred to the anaesthesia ICU. Patients were excluded if admitted from or discharged to other ICUs, if referred for post resuscitation care, or if repeatedly admitted to the ICU. MAIN OUTCOME MEASURES Incidence of AKI, as defined by the Kidney Disease: Improving Global Outcomes Acute Kidney Injury Work Group criteria, and duration of vasopressor therapy. RESULTS Use of dipyrone was associated with an increased incidence of AKI in a dose-dependent manner with a 1.6-fold increase in the incidence of AKI with each additional gram of intravenous dipyrone per day. Dipyrone dose of more than 2.5 g day was the best risk predictive cut-off for AKI. Patients receiving dipyrone on the ICU presented with a prolonged duration of vasopressor therapy. CONCLUSION Increasing dipyrone dosage is a potential independent risk factor for AKI in adult ICU patients and may prolong vasopressor therapy. Clinical evidence for a benefit of dipyrone therapy in the ICU is insufficient and needs further critical evaluation.
Collapse
|
13
|
E3 ligase FBXW7 aggravates TMPD-induced systemic lupus erythematosus by promoting cell apoptosis. Cell Mol Immunol 2018; 15:1057-1070. [PMID: 30275535 DOI: 10.1038/s41423-018-0167-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, and the pathogenesis of SLE has not been fully elucidated. The E3 ubiquitin ligase FBXW7 has been well characterized in cancer as a tumor suppressor that can promote the ubiquitination and subsequent degradation of various oncoproteins; however, the potential role of FBXW7 in autoimmune diseases is unclear. In the present study, we identified that FBXW7 is a crucial exacerbating factor for SLE development and progression in a mouse model induced by 2, 6, 10, 14-tetramethylpentadecane (TMPD). Myeloid cell-specific FBXW7-deficient (Lysm+FBXW7f/f) C57BL/6 mice showed decreased immune complex accumulation, glomerulonephritis, glomerular mesangial cell proliferation, and base-membrane thickness in the kidney. Lysm+FBXW7f/f mice produced fewer anti-Sm/RNP and anti-ANA autoantibodies and showed a decreased MHC II expression in B cells. In Lysm+FBXW7f/f mice, we observed that cell apoptosis was reduced and that fewer CD11b+Ly6Chi inflammatory monocytes were recruited to the peritoneal cavity. Consistently, diffuse pulmonary hemorrhage (DPH) was also decreased in Lysm+FBXW7f/f mice. Mechanistically, we clarified that FBXW7 promoted TMPD-induced cell apoptosis by catalyzing MCL1 degradation through K48-linked ubiquitination. Our work revealed that FBXW7 expression in myeloid cells played a crucial role in TMPD-induced SLE progression in mice, which may provide novel ideas and theoretical support for understanding the pathogenesis of SLE.
Collapse
|
14
|
Huang S, Park J, Qiu C, Chung KW, Li SY, Sirin Y, Han SH, Taylor V, Zimber-Strobl U, Susztak K. Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming. PLoS Biol 2018; 16:e2005233. [PMID: 30226866 PMCID: PMC6161902 DOI: 10.1371/journal.pbio.2005233] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 09/28/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
While Notch signaling has been proposed to play a key role in fibrosis, the direct molecular pathways targeted by Notch signaling and the precise ligand and receptor pair that are responsible for kidney disease remain poorly defined. In this study, we found that JAG1 and NOTCH2 showed the strongest correlation with the degree of interstitial fibrosis in a genome-wide expression analysis of a large cohort of human kidney samples. Transcript analysis of mouse kidney disease models, including folic-acid (FA)-induced nephropathy, unilateral ureteral obstruction (UUO), or apolipoprotein L1 (APOL1)-associated kidney disease, indicated that Jag1 and Notch2 levels were higher in all analyzed kidney fibrosis models. Mice with tubule-specific deletion of Jag1 or Notch2 (Kspcre/Jag1flox/flox and Kspcre/Notch2flox/flox) had no kidney-specific alterations at baseline but showed protection from FA-induced kidney fibrosis. Tubule-specific genetic deletion of Notch1 and global knockout of Notch3 had no effect on fibrosis. In vitro chromatin immunoprecipitation experiments and genome-wide expression studies identified the mitochondrial transcription factor A (Tfam) as a direct Notch target. Re-expression of Tfam in tubule cells prevented Notch-induced metabolic and profibrotic reprogramming. Tubule-specific deletion of Tfam resulted in fibrosis. In summary, Jag1 and Notch2 play a key role in kidney fibrosis development by regulating Tfam expression and metabolic reprogramming.
Collapse
Affiliation(s)
- Shizheng Huang
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jihwan Park
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chengxiang Qiu
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ki Wung Chung
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Szu-yuan Li
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yasemin Sirin
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environment and Health, Munich, Germany
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
16
|
Kishore BK, Robson SC, Dwyer KM. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 2018; 14:109-120. [PMID: 29332180 PMCID: PMC5940625 DOI: 10.1007/s11302-017-9596-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP interacts with purinergic type 2 (P2) receptors and elicits many crucial biological functions. Extracellular ATP is sequentially hydrolyzed to ADP and AMP by the actions of defined nucleotidases, such as CD39, and AMP is converted to adenosine, largely by CD73, an ecto-5'-nucleotidase. Extracellular adenosine interacts with P1 receptors and often opposes the effects of P2 receptor activation. The balance between extracellular ATP and adenosine in the blood and extracellular fluid is regulated chiefly by the activities of CD39 and CD73, which constitute the CD39-adenosinergic axis. In recent years, several studies have shown this axis to play critical roles in transport of water/sodium, tubuloglomerular feedback, renin secretion, ischemia reperfusion injury, renal fibrosis, hypertension, diabetic nephropathy, transplantation, inflammation, and macrophage transformation. Important developments include global and targeted gene knockout and/or transgenic mouse models of CD39 or CD73, biological or small molecule inhibitors, and soluble engineered ectonucleotidases to directly impact the CD39-adenosinergic axis. This review presents a comprehensive picture of the multiple roles of CD39-adenosinergic axis in renal physiology, pathophysiology, and therapeutics. Scientific advances and greater understanding of the role of this axis in the kidney, in both health and illness, will direct development of innovative therapies for renal diseases.
Collapse
Affiliation(s)
- Bellamkonda K. Kishore
- Departments of Internal Medicine and Nutrition & Integrative Physiology, and Center on Aging, University of Utah Health, Salt Lake City, UT USA
- Nephrology Research, VA Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT 84148 USA
| | - Simon C. Robson
- Division of Gastroenterology/Hepatology and Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220 Australia
| |
Collapse
|
17
|
Christov M, Clark AR, Corbin B, Hakroush S, Rhee EP, Saito H, Brooks D, Hesse E, Bouxsein M, Galjart N, Jung JY, Mundel P, Jüppner H, Weins A, Greka A. Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities. JCI Insight 2018; 3:95091. [PMID: 29467330 DOI: 10.1172/jci.insight.95091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/23/2018] [Indexed: 01/20/2023] Open
Abstract
Progressive chronic kidney diseases (CKDs) are on the rise worldwide. However, the sequence of events resulting in CKD progression remain poorly understood. Animal models of CKD exploring these issues are confounded by systemic toxicities or surgical interventions to acutely induce kidney injury. Here we report the generation of a CKD mouse model through the inducible podocyte-specific ablation of an essential endogenous molecule, the chromatin structure regulator CCCTC-binding factor (CTCF), which leads to rapid podocyte loss (iCTCFpod-/-). As a consequence, iCTCFpod-/- mice develop severe progressive albuminuria, hyperlipidemia, hypoalbuminemia, and impairment of renal function, and die within 8-10 weeks. CKD progression in iCTCFpod-/- mice leads to high serum phosphate and elevations in fibroblast growth factor 23 (FGF23) and parathyroid hormone that rapidly cause bone mineralization defects, increased bone resorption, and bone loss. Dissection of the timeline leading to glomerular pathology in this CKD model led to the surprising observation that podocyte ablation and the resulting glomerular filter destruction is sufficient to drive progressive CKD and osteodystrophy in the absence of interstitial fibrosis. This work introduces an animal model with significant advantages for the study of CKD progression, and it highlights the need for podocyte-protective strategies for future kidney therapeutics.
Collapse
Affiliation(s)
- Marta Christov
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Abbe R Clark
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Braden Corbin
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Samy Hakroush
- Department of Pathology, University of Göttingen, Göttingen, Germany
| | - Eugene P Rhee
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. USA
| | - Hiroaki Saito
- Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma, Hand & Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dan Brooks
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Hesse
- Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma, Hand & Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mary Bouxsein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Niels Galjart
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Ji Yong Jung
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Pediatric Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Astrid Weins
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Jadot I, Colombaro V, Martin B, Habsch I, Botton O, Nortier J, Declèves AE, Caron N. Restored nitric oxide bioavailability reduces the severity of acute-to-chronic transition in a mouse model of aristolochic acid nephropathy. PLoS One 2017; 12:e0183604. [PMID: 28832640 PMCID: PMC5568239 DOI: 10.1371/journal.pone.0183604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
Aristolochic Acid (AA) nephropathy (AAN) is a progressive tubulointerstitial nephritis characterized by an early phase of acute kidney injury (AKI) leading to chronic kidney disease (CKD). The reduced nitric oxide (NO) bioavailability reported in AAN might contribute to renal function impairment and progression of the disease. We previously demonstrated that L-arginine (L-Arg) supplementation is protective in AA-induced AKI. Since the severity of AKI may be considered a strong predictor of progression to CKD, the present study aims to assess the potential benefit of L-Arg supplementation during the transition from the acute phase to the chronic phase of AAN. C57BL/6J male mice were randomly subjected to daily i.p. injections of vehicle or AA for 4 days. To determine whether renal AA-induced injuries were linked to reduced NO production, L-Arg was added to drinking water from 7 days before starting i.p. injections, until the end of the protocol. Mice were euthanized 5, 10 and 20 days after vehicle or AA administration. AA-treated mice displayed marked renal injury and reduced NO bioavailability, while histopathological features of AAN were reproduced, including interstitial cell infiltration and tubulointerstitial fibrosis. L-Arg treatment restored renal NO bioavailability and reduced the severity of AA-induced injury, inflammation and fibrosis. We concluded that reduced renal NO bioavailability contributes to the processes underlying AAN. Furthermore, L-Arg shows nephroprotective effects by decreasing the severity of acute-to-chronic transition in experimental AAN and might represent a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Inès Jadot
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
- * E-mail:
| | - Vanessa Colombaro
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Isabelle Habsch
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Olivia Botton
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Joëlle Nortier
- Nephrology Department, Erasme Academic Hospital and Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Molecular Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
19
|
Long KR, Shipman KE, Rbaibi Y, Menshikova EV, Ritov VB, Eshbach ML, Jiang Y, Jackson EK, Baty CJ, Weisz OA. Proximal tubule apical endocytosis is modulated by fluid shear stress via an mTOR-dependent pathway. Mol Biol Cell 2017; 28:2508-2517. [PMID: 28720662 PMCID: PMC5597323 DOI: 10.1091/mbc.e17-04-0211] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/02/2022] Open
Abstract
Kidney proximal tubule cells cultured under shear stress become remarkably well differentiated and endocytic capacity is rapidly tuned in response to acute changes in shear stress. The results have implications for understanding how proximal tubule function is regulated acutely by daily variations in glomerular filtration rate. Cells lining the proximal tubule (PT) have unique membrane specializations that are required to maintain the high-capacity ion transport and endocytic functions of this nephron segment. PT cells in vivo acutely regulate ion transport in response to changes in glomerular filtration rate (GFR) to maintain glomerulotubular balance. PT cells in culture up-regulate endocytic capacity in response to acute changes in fluid shear stress (FSS); however, it is not known whether GFR modulates PT endocytosis to enable maximally efficient uptake of filtered proteins in vivo. Here, we show that cells cultured under continuous FSS develop an expanded apical endocytic pathway and increased endocytic capacity and lysosomal biogenesis. Furthermore, endocytic capacity in fully differentiated cells is rapidly modulated by changes in FSS. PT cells exposed to continuous FSS also acquired an extensive brush border and basolateral membrane invaginations resembling those observed in vivo. Culture under suboptimal levels of FSS led to intermediate phenotypes, suggesting a threshold effect. Cells exposed to FSS expressed higher levels of key proteins necessary for PT function, including ion transporters, receptors, and membrane-trafficking machinery, and increased adenine nucleotide levels. Inhibition of the mechanistic target of rapamycin (mTOR) using rapamycin prevented the increase in cellular energy levels, lysosomal biogenesis, and endocytic uptake, suggesting that these represent a coordinated differentiation program. In contrast, rapamycin did not prevent the FSS-induced increase in Na+/K+-ATPase levels. Our data suggest that rapid tuning of the endocytic response by changes in FSS may contribute to glomerulotubular balance in vivo. Moreover, FSS provides an essential stimulus in the differentiation of PT cells via separate pathways that up-regulate endocytosis and ion transport capacity. Variations in FSS may also contribute to the maturation of PT cells during kidney development and during repair after kidney injury.
Collapse
Affiliation(s)
- Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Vladimir B Ritov
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Megan L Eshbach
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
20
|
Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury. Kidney Int 2017; 92:1395-1403. [PMID: 28709637 DOI: 10.1016/j.kint.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/21/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023]
Abstract
Chronic glomerular injury is associated with eventual development of tubulointerstitial fibrosis. Here we aimed to assess whether, and how, mild chronic tubulointerstitial injury affects glomeruli. For this, we generated mice expressing different toxin receptors, one on their proximal tubular epithelial cells (diphtheria toxin receptor [DTR]) and the other only on podocytes (human CD25 [IL-2R] driven by the nephrin promoter [Nep25]), allowing serial induction of tubule-specific and glomerular (podocyte)-specific injury, respectively. Six weeks after diphtheria toxin injection, mild interstitial fibrosis was found in Nep25+/DTR+, but not in Nep25+/DTR- mice. However, atubular glomeruli and neuronal nitric oxide synthase, a mediator of tubuloglomerular feedback, were higher in Nep25+/DTR+ than in DTR- mice and these atubular glomeruli had less podocyte density as assessed by WT-1 biomarker expression. Peritubular capillary density, hypoxia-inducible factor-1 and -2, and cyclooxygenase 2 expression were similar at week six in the two groups. At week seven, all mice were given the immunotoxin LMB-2, which binds to CD25 to induce podocyte injury. Ten days later, proteinuria, podocyte injury, and glomerulosclerosis were more severe in Nep25+/DTR+ than Nep25+/DTR- mice with more severe sclerosis in the tubule-connected glomeruli. This supports the concept that even mild preexisting tubulointerstitial injury sensitizes glomeruli to subsequent podocyte-specific injury. Thus, increased atubular glomeruli and abnormal tubuloglomerular feedback significantly contribute to the crosstalk between the tubulointerstitium and glomeruli.
Collapse
|
21
|
Lu A, Li H, Niu J, Wu S, Xue G, Yao X, Guo Q, Wan N, Abliz P, Yang G, An L, Meng G. Hyperactivation of the NLRP3 Inflammasome in Myeloid Cells Leads to Severe Organ Damage in Experimental Lupus. THE JOURNAL OF IMMUNOLOGY 2016; 198:1119-1129. [PMID: 28039299 DOI: 10.4049/jimmunol.1600659] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune syndrome associated with severe organ damage resulting from the activation of immune cells. Recently, a role for caspase-1 in murine lupus was described, indicating an involvement of inflammasomes in the development of SLE. Among multiple inflammasomes identified, the NLRP3 inflammasome was connected to diverse diseases, including autoimmune encephalomyelitis. However, the function of NLRP3 in SLE development remains elusive. In this study, we explored the role of NLRP3 in the development of SLE using the pristane-induced experimental lupus model. It was discovered that more severe lupus-like syndrome developed in Nlrp3-R258W mice carrying the gain-of-function mutation. Nlrp3-R258W mutant mice exhibited significantly higher mortality upon pristane challenge. Moreover, prominent hypercellularity and interstitial nephritis were evident in the glomeruli of Nlrp3-R258W mice. In addition, hyperactivation of the NLRP3 inflammasome in this mouse line resulted in proteinuria and mesangial destruction. Importantly, all of these phenotypes were largely attributed to the Nlrp3-R258W mutation expressed in myeloid cells, because Cre recombinase-mediated depletion of this mutant from such cells rescued mice from experimental lupus. Taken together, our study demonstrates a critical role for NLRP3 in the development of SLE and suggests that modulating the inflammasome signal may help to control the inflammatory damage in autoimmune diseases, including lupus.
Collapse
Affiliation(s)
- Ailing Lu
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Li
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Junling Niu
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuxian Wu
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Xue
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaomin Yao
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiuhong Guo
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nianhong Wan
- Department of Laboratory Medicine, Central Hospital of Zhabei District, Shanghai 200070, China; and
| | - Paride Abliz
- Department of Dermatology, First Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Guiwen Yang
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Liguo An
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Guangxun Meng
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|