1
|
Mohanty SK, Sahu VK, Singh BP, Suchiang K. Bidirectional upregulation of Klotho by triiodothyronine and baicalein: mitigating chronic kidney disease and associated complications in aged BALB/c mice. Biogerontology 2025; 26:114. [PMID: 40418372 DOI: 10.1007/s10522-025-10257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
Chronic kidney disease (CKD) is a global health challenge marked by progressive renal decline and increased mortality. The interplay between CKD and hypothyroidism, particularly nonthyroidal low-triiodothyronine (T3) syndrome, exacerbates disease progression, driven by HPT axis dysfunction and reduced Klotho levels due to the Wnt/β-catenin pathway activation. This study explored Klotho as a link between CKD and hypothyroidism using an adenine-induced CKD aged mouse model. Exogenous T3 and baicalein (BAI), targeting the Wnt pathway, were used to upregulate Klotho expression. Combined T3 and BAI treatment significantly increased Klotho levels, surpassing individual effects, and suppressed key signaling molecules (TGF, NFκB, GSK3), mitigating renal fibrosis and CKD complications, including cardiovascular disorders and dyslipidemia. This bidirectional approach, enhancing Klotho via T3 and sustained Wnt pathway inhibition, offers a novel and effective strategy for CKD management, particularly in elderly patients with hypothyroidism.
Collapse
Affiliation(s)
- Saswat Kumar Mohanty
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India.
| | - Vikas Kumar Sahu
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India
| | - Bhanu Pratap Singh
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India
| | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, 793022, India
| |
Collapse
|
2
|
Vue Z, Prasad P, Le H, Neikirk K, Harris C, Garza-Lopez E, Wang E, Murphy A, Jenkins B, Vang L, Scudese E, Shao B, Kadam A, Shao J, Marshall AG, Crabtree A, Kirk B, Koh A, Wilson G, Oliver A, Rodman T, Kabugi K, Koh HJ, Smith Q, Zaganjor E, Wanjalla CN, Dash C, Evans C, Phillips MA, Hubert D, Ajijola O, Whiteside A, Do Koo Y, Kinder A, Demirci M, Albritton CF, Wandira N, Jamison S, Ahmed T, Saleem M, Tomar D, Williams CR, Sweetwyne MT, Murray SA, Cooper A, Kirabo A, Jadiya P, Quintana A, Katti P, Fu Dai D, McReynolds MR, Hinton A. The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598108. [PMID: 38915644 PMCID: PMC11195114 DOI: 10.1101/2024.06.09.598108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Genesis Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Aaron Whiteside
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Claude F. Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taseer Ahmed
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anita Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Dao Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
3
|
Nguyen BT, Shin EJ, Jeong JH, Sharma N, Nah SY, Ko SK, Byun JK, Lee Y, Lei XG, Kim DJ, Nabeshima T, Kim HC. Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free Radic Biol Med 2022; 189:2-19. [PMID: 35840016 DOI: 10.1016/j.freeradbiomed.2022.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
Ginseng is known to possess anti-aging potential. Klotho mutant mice exhibit phenotypes that resemble the phenotype of the human aging process. Similar to Klotho deficient mice, patients with chronic kidney disease (CKD) suffer vascular damage and cognitive impairment, which might upregulate the angiotensin II AT1 receptor. Since AT1 receptor expression was more pronounced than endothelin ET-1 expression in the hippocampus of aged Klotho deficient (±) mice, we focused on the AT1 receptor in this study. Ginsenoside Re (GRe), but not ginsenoside Rb1 (GRb1), significantly attenuated the increase in AT1 receptor expression in aged Klotho deficient mice. Both GRe and the AT1 receptor antagonist losartan failed to attenuate the decrease in phosphorylation of JAK2/STAT3 in aged Klotho deficient (±) mice but significantly activated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling. Both GRe and losartan attenuated the increased NADPH oxidase (NOX) activity and reactive oxygen species (ROS) in aged Klotho deficient mice. Furthermore, of all the antioxidant enzymes, GRe significantly increased glutathione peroxidase (GPx) activity. GRe significantly attenuated the reduced phosphorylation of ERK and CREB in GPx-1 knockout mice; however, genetic overexpression of GPx-1 did not significantly affect them in aged mice. Klotho-, Nrf2-, and GPx-1-immunoreactivities were co-localized in the same cells of the hippocampus in aged Klotho wild-type mice. Both the GPx inhibitor mercaptosuccinate and Nrf2 inhibitor brusatol counteracted the effects of GRe on all neurobehavioral impairments in aged Klotho deficient (±) mice. Our results suggest that GRe attenuates all alterations, such as AT1 receptor expression, NOX-, ROS-, and GPx-levels, and cognitive dysfunction in aged Klotho deficient (±) mice via upregulation of Nrf2/GPx-1/ERK/CREB signaling.
Collapse
Affiliation(s)
- Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju, 12106, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, 28644, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Li X, Yang D, Li Q, Wang H, Wang M, Yan P, Wu N, Li F, Ma S, Ding Y, Liu J, Wang H. Safety, Pharmacokinetics, and Pharmacodynamics of a Single Bolus of the γ-aminobutyric Acid (GABA) Receptor Potentiator HSK3486 in Healthy Chinese Elderly and Non-elderly. Front Pharmacol 2021; 12:735700. [PMID: 34512361 PMCID: PMC8430033 DOI: 10.3389/fphar.2021.735700] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
Background: The present clinical trial investigated the potential influences of dosage and age on the pharmacokinetic properties and safety profile of HSK3486, and whether any adjustment in dosing regimen is necessary in elderly patients. Methods: Twenty-four elderly participants (65–73 years) were apportioned to three equal cohorts to receive a single IV bolus of 0.2, 0.3, and 0.4 mg/kg HSK3486, respectively. An additional control group comprised eight non-elderly participants (21–44 years), who each received a single IV bolus dose of 0.4 mg/kg. Safety was assessed throughout the study, and the clinical effects were assessed based on modified observer’s assessment of alertness/sedation and bispectral index (BIS) monitor. Pharmacokinetic parameters were calculated. Results: The rates of drug-related adverse reactions among the elderly groups were a little higher than that of the non-elderly, and were slightly higher in the elderly receiving 0.4 mg/kg compared with the elderly given lower doses. The pharmacokinetic characteristics of 0.4 mg/kg HSK3486 in the elderly and non-elderly were comparable. The time to recovery was similar in elderly 0.3 mg/kg, elderly 0.4 mg/kg and non-elderly 0.4 mg/kg groups. In the elderly 0.2 mg/kg group, the time to loss of consciousness was a little longer, and the time to recovery was shorter, relative to the other three groups. Conclusions: Administration of 0.3 mg/kg to the elderly and 0.4 mg/kg to the non-elderly were similarly efficacious. A dose of HSK3486 of 0.3 mg/kg may be chosen for clinical use in elderly patients.
Collapse
Affiliation(s)
- Xiaojiao Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Deming Yang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Qianqian Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Hong Wang
- Jilin Medical Products Administration, Jilin, China
| | - Meng Wang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Pangke Yan
- Haisco Pharmaceutical Group, Chengdu, China
| | - Nan Wu
- Haisco Pharmaceutical Group, Chengdu, China
| | | | - Shiping Ma
- Haisco Pharmaceutical Group, Chengdu, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Jingrui Liu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Hushan Wang
- Department of Anesthesiology, First Hospital, Jilin University, Jilin, China
| |
Collapse
|
5
|
Bahri F, Khaksari M, Movahedinia S, Shafiei B, Rajizadeh MA, Nazari-Robati M. Improving SIRT1 by trehalose supplementation reduces oxidative stress, inflammation, and histopathological scores in the kidney of aged rats. J Food Biochem 2021; 45:e13931. [PMID: 34494279 DOI: 10.1111/jfbc.13931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022]
Abstract
The aging process leads to progressive loss of kidney function. Sirtuin1 (SIRT1) exerts renoprotective effects by conferring resistance to cellular stresses. Trehalose potentially displayed various beneficial effects to promote health span. In this study, we investigated the effects of trehalose on renal SIRT1 and kidney function in senescent rats. Trehalose (2% w/v) was administrated in drinking water for 1 month to male aged rats (24 months). Then, the level of SIRT1 mRNA and protein, malondialdehyde, total antioxidant capacity, tumor necrosis factor α as well as parameters related to the function and histology of the kidneys were evaluated. Trehalose supplementation increased the level of SIRT1, whereas alleviated the level of oxidative stress, inflammation, and histopathology scores in senescent tissues. However, trehalose administration did not alter kidney function indices in old rats. Collectively, these findings suggested that trehalose was an effective intervention to ameliorate some aspects of age-associated injury in the old kidneys. PRACTICAL APPLICATIONS: Aging is associated with impairment in renal structure and function. Trehalose is a natural disaccharide, which is widely distributed in many organisms. The consumption of trehalose as a dietary supplement is increasing worldwide. This study showed that trehalose administration to aged rats had renoprotective effects through reducing oxidative stress and inflammation, which was mediated by SIRT1. Our results provide useful information for individuals using this sugar as a supplement.
Collapse
Affiliation(s)
- Faegheh Bahri
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjadeh Movahedinia
- Pathology and Stem Cell Research Center, Department of Pathology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Bentolhoda Shafiei
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Li X, Yu J, Wu M, Li Q, Liu J, Zhang H, Zhu X, Li C, Zhang J, Ning Z, Ding Y. Pharmacokinetics and Safety of Chiglitazar, a Peroxisome Proliferator-Activated Receptor Pan-Agonist, in Patients < 65 and ≥ 65 Years With Type 2 Diabetes. Clin Pharmacol Drug Dev 2020; 10:789-796. [PMID: 33345463 DOI: 10.1002/cpdd.893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022]
Abstract
The effect of age on the pharmacokinetics and safety of chiglitazar was evaluated in patients < 65 and ≥ 65 years with type 2 diabetes mellitus (T2DM). A total of 20 T2DM patients (<65 vs ≥65 years 1:1) completed the study. Patients received multiple doses of 48 mg chiglitazar once daily for 7 days consecutively. After the first dosing, chiglitazar maximum plasma concentration (Cmax ) and area under the plasma concentration-time curve (AUC) in patients ≥ 65 years were similar to those observed in patients < 65 years, with the geometric mean ratio (GMR) for Cmax and AUC being 97.22% and 96.83%, respectively. No significant difference was observed in Cmax (GMR, 97.23%) in the steady state. Compared with the patients < 65 years, a slight increase (8%-13%) of AUC was observed in the patients ≥ 65 years after multiple doses. Chiglitazar was generally well tolerated following multiple doses in both age groups. In conclusion, there were no significant clinical influences on the pharmacokinetic properties and safety profiles of chiglitazar between patients with T2DM < 65 and ≥ 65 years, indicating that in the future it is not required to adjust the dosing regimen by age for T2DM patients ≥ 65 years.
Collapse
Affiliation(s)
- Xiaojiao Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Jia Yu
- Shenzhen Chipscreen Biosciences, Shenzhen, China
| | - Min Wu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Qianqian Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Jingrui Liu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Hong Zhang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Cuiyun Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Jinwen Zhang
- Shenzhen Chipscreen Biosciences, Shenzhen, China
| | | | - Yanhua Ding
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| |
Collapse
|
7
|
Li H, Wang B, Li D, Li J, Luo Y, Dan J. Roles of telomeres and telomerase in age‑related renal diseases (Review). Mol Med Rep 2020; 23:96. [PMID: 33300081 PMCID: PMC7723152 DOI: 10.3892/mmr.2020.11735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023] Open
Abstract
Age‑related renal diseases, which account for various progressive renal disorders associated with cellular and organismal senescence, are becoming a substantial public health burden. However, their aetiologies are complicated and their pathogeneses remain poorly understood. Telomeres and telomerase are known to be essential for maintaining the integrity and stability of eukaryotic genomes and serve crucial roles in numerous related signalling pathways that activate renal functions, such as repair and regeneration. Previous studies have reported that telomere dysfunction served a role in various types of age‑related kidney disease through various different molecular pathways. The present review aimed to summarise the current knowledge of the association between telomeres and ageing‑related kidney diseases and explored the contribution of dysfunctional telomeres to these diseases. The findings may help to provide novel strategies for treating patients with renal disease.
Collapse
Affiliation(s)
- Haili Li
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Boyuan Wang
- The Key Lab of Sports and Rehabilitation, Faculty of Physical Education, Yuxi Normal University, Yuxi, Yunnan 653100, P.R. China
| | - Daoqun Li
- Department of Human Anatomy, School of Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250014, P.R. China
| | - Jinyuan Li
- Department of General Surgery, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
8
|
Rowland J, Akbarov A, Eales J, Xu X, Dormer JP, Guo H, Denniff M, Jiang X, Ranjzad P, Nazgiewicz A, Prestes PR, Antczak A, Szulinska M, Wise IA, Zukowska-Szczechowska E, Bogdanski P, Woolf AS, Samani NJ, Charchar FJ, Tomaszewski M. Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. Kidney Int 2020; 95:624-635. [PMID: 30784661 PMCID: PMC6390171 DOI: 10.1016/j.kint.2018.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Nephrons scar and involute during aging, increasing the risk of chronic kidney disease. Little is known, however, about genetic mechanisms of kidney aging. We sought to define the signatures of age on the renal transcriptome using 563 human kidneys. The initial discovery analysis of 260 kidney transcriptomes from the TRANScriptome of renaL humAn TissuE Study (TRANSLATE) and the Cancer Genome Atlas identified 37 age-associated genes. For 19 of those genes, the association with age was replicated in 303 kidney transcriptomes from the Nephroseq resource. Surveying 42 nonrenal tissues from the Genotype–Tissue Expression project revealed that, for approximately a fifth of the replicated genes, the association with age was kidney-specific. Seventy-three percent of the replicated genes were associated with functional or histological parameters of age-related decline in kidney health, including glomerular filtration rate, glomerulosclerosis, interstitial fibrosis, tubular atrophy, and arterial narrowing. Common genetic variants in four of the age-related genes, namely LYG1, PPP1R3C, LTF and TSPYL5, correlated with the trajectory of age-related changes in their renal expression. Integrative analysis of genomic, epigenomic, and transcriptomic information revealed that the observed age-related decline in renal TSPYL5 expression was determined both genetically and epigenetically. Thus, this study revealed robust molecular signatures of the aging kidney and new regulatory mechanisms of age-related change in the kidney transcriptome.
Collapse
Affiliation(s)
- Joshua Rowland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - James Eales
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Hui Guo
- Division of Population Health, Health Services Research and Primary Care, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Xiao Jiang
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Parisa Ranjzad
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Alicja Nazgiewicz
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Monika Szulinska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Ingrid A Wise
- Faculty of Health and Life Sciences, Federation University Australia, Ballarat, Victoria, Australia
| | - Ewa Zukowska-Szczechowska
- Department of Health Care, Silesian Medical College, Katowice, Poland; Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; Leicester National Institute for Health Research Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; Faculty of Health and Life Sciences, Federation University Australia, Ballarat, Victoria, Australia; Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Division of Medicine and Manchester Heart Centre, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
9
|
Obert LA, Frazier KS. Intrarenal Renin–Angiotensin System Involvement in the Pathogenesis of Chronic Progressive Nephropathy—Bridging the Informational Gap Between Disciplines. Toxicol Pathol 2019; 47:799-816. [DOI: 10.1177/0192623319861367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic progressive nephropathy (CPN) is the most commonly encountered spontaneous background finding in laboratory rodents. Various theories on its pathogenesis have been proposed, but there is a paucity of data regarding specific mechanisms or physiologic pathways involved in early CPN development. The current CPN mechanism of action for tumorigenesis is largely based on its associated increase in tubular cell proliferation without regard to preceding subcellular degenerative changes. Combing through the published literature from multiple biology disciplines provided insight into the preceding cellular events. Mechanistic pathways involved in the progressive age-related decline in rodent kidney function and several key inflexion points have been identified. These critical pathway factors were then connected using data from renal models from multiple rodent strains, other species, and mechanistic work in humans to form a cohesive picture of pathways and protein interactions. Abundant data linked similar renal pathologies to local events involving hypoxia (hypoxia-inducible factor 1α), altered intrarenal renin–angiotensin system (RAS), oxidative stress (nitric oxide), and pro-inflammatory pathways (transforming growth factor β), with positive feedback loops and downstream effectors amplifying the injury and promoting scarring. Intrarenal RAS alterations seem to be central to all these events and may be critical to CPN development and progression.
Collapse
|
10
|
Abstract
An aging worldwide population demands that anesthesiologists consider geriatrics a unique subset of patients requiring customization of practice. This article reviews the current literature investigating physiologic changes of the elderly that affect pharmacokinetics and pharmacodynamics. Changes in drug absorption, distribution, metabolism, and excretion are discussed as well as the ultimate effects of medications. Implications for practice regarding specific anesthetic and analgesic drugs are addressed. Despite the immense body of research that contributes to understanding of geriatric pharmacology, elderly patients often are excluded from rigorous research trials, and further scientific investigation to inform best practices for this group of patients is needed.
Collapse
Affiliation(s)
- Tate M Andres
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive, 4648 TVC, Nashville, TN, USA.
| | - Tracy McGrane
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive, 4648 TVC, Nashville, TN 37232, USA
| | - Matthew D McEvoy
- Perioperative Consult Service, Division of Multispecialty Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive, 4648 TVC, Nashville, TN 37232, USA
| | - Brian F S Allen
- Regional and Acute Pain Medicine Fellowship, Regional and Acute Pain Medicine Service, Division of Multispecialty Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive, 4648 TVC, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Zhao Y, Dong Y, Wang J, Sheng L, Chai Q, Zhang H, Liu Z. Longitudinal association of carotid endothelial shear stress with renal function decline in aging adults with normal renal function: A population-based cohort study. Sci Rep 2019; 9:2051. [PMID: 30765747 PMCID: PMC6376032 DOI: 10.1038/s41598-018-38470-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the associations between carotid wall shear stress (WSS) and renal function impairment (RFI) and albuminuria in aging adults. A total of 1,447 subjects aged 60 years and older with normal estimated glomerular filtration rate (eGFR ≥ 60 mL·min-1·1.72 m-2) and albumin/creatinine ratio (ACR < 30 mg·g-1) were enrolled between April 2007 and October 2009 in the Shandong area, China. Carotid WSS was assessed at baseline, and eGFR, which is based on serum creatinine and cystatin C, and ACR were assessed at baseline and at the annual follow-up visits. After an average of 62.9 months of follow-up, the reduction in eGFR and the increase in ACR were significantly higher in the Q1+2+3 group than the Q4 group, as classified by either the interquartile of the mean WSS or the interquartile of the peak WSS after adjustment for multi-variabilities, including the average blood pressures at every annual visit and baseline eGFR and ACR. For groups classified by mean WSS, the hazard ratios (95% confidence intervals) were 3.45 (1.36-8.75, p = 0.008) in the incident RFI and 3.24 3.22 (1.37-7.57, p = 0.009) in the incident albuminuria for the Q1+2+3 group compared with the Q4 group. Similar results were observed among groups classified by peak WSS. The Q1+2+3 group was associated with endothelial dysfunction and inflammation with respect to the Q4 group as classified by mean or peak WSS. The results indicate that carotid WSS plays an important role in RFI and albuminuria progression in aging adults. Lower WSS was associated with a higher risk of RFI and albuminuria compared with higher WSS.
Collapse
Affiliation(s)
- Yingxin Zhao
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China
| | - Yuanli Dong
- Department of Community, Lanshan District People Hospital, Linyi, Shandong, 276002, China
| | - Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, 250000, China
| | - Lin Sheng
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, 250000, China
| | - Qiang Chai
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China
| | - Hua Zhang
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China
| | - Zhendong Liu
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China.
| |
Collapse
|
12
|
Compound effects of aging and experimental FSGS on glomerular epithelial cells. Aging (Albany NY) 2017; 9:524-546. [PMID: 28222042 PMCID: PMC5361679 DOI: 10.18632/aging.101176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/09/2017] [Indexed: 12/27/2022]
Abstract
Advanced age portends a poorer prognosis in FSGS. To understand the impact of age on glomerular podocytes and parietal epithelial cells (PECs), experimental FSGS was induced in 3m-old mice (20-year old human age) and 27m-old mice (78-year old human age) by abruptly depleting podocytes with a cytopathic anti-podocyte antibody. Despite similar binding of the disease-inducing antibody, podocyte density was lower in aged FSGS mice compared to young FSGS mice. Activated PEC density was higher in aged versus young FSGS mice, as was the percentage of total activated PECs. Additionally, the percentage of glomeruli containing PECs with evidence of phosphorylated ERK and EMT was higher in aged FSGS mice. Extracellular matrix, measured by collagen IV and silver staining, was higher in aged FSGS mice along Bowman's capsule. However, collagen IV accumulation in the glomerular tufts alone and in glomeruli with both tuft and Bowman's capsule accumulation were similar in young FSGS and aged FSGS mice. Thus, the major difference in collagen IV staining in FSGS was along Bowman's capsule in aged mice. The significant differences in podocytes, PECs and extracellular matrixaccumulation between young mice and old mice with FSGS might explain the differences in outcomes in FSGS based on age.
Collapse
|
13
|
Wang XX, Luo Y, Wang D, Adorini L, Pruzanski M, Dobrinskikh E, Levi M. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice. J Biol Chem 2017; 292:12018-12024. [PMID: 28596381 DOI: 10.1074/jbc.c117.794982] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Indexed: 11/06/2022] Open
Abstract
Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver Veterans Affairs Medical Center and University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Yuhuan Luo
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver Veterans Affairs Medical Center and University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Dong Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver Veterans Affairs Medical Center and University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | | | | | - Evgenia Dobrinskikh
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver Veterans Affairs Medical Center and University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver Veterans Affairs Medical Center and University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|
14
|
Braun F, Rinschen MM, Bartels V, Frommolt P, Habermann B, Hoeijmakers JHJ, Schumacher B, Dollé MET, Müller RU, Benzing T, Schermer B, Kurschat CE. Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 2017; 8:441-57. [PMID: 26886165 PMCID: PMC4833139 DOI: 10.18632/aging.100900] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valerie Bartels
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Cardiology and Angiology, University of Münster, Münster, Germany
| | - Peter Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bianca Habermann
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan H J Hoeijmakers
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martijn E T Dollé
- National Institute of Public Health and the Environment, Centre for Health Protection, Bilthoven, The Netherlands
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Current Understanding of the Pathogenesis of Progressive Chronic Kidney Disease in Cats. Vet Clin North Am Small Anim Pract 2016; 46:1015-48. [PMID: 27461408 DOI: 10.1016/j.cvsm.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In cats with chronic kidney disease (CKD), the most common histopathologic finding is tubulointerstitial inflammation and fibrosis. However, these changes reflect a nonspecific response of the kidney to any inciting injury. The risk of developing CKD is likely to reflect the composite effects of genetic predisposition, aging, and environmental and individual factors that affect renal function over the course of a cat's life. However, there is still little information available to determine exactly which individual risk factors predispose a cat to develop CKD. Although many cats diagnosed with CKD have stable disease for years, some cats show overtly progressive disease.
Collapse
|
16
|
Rückgang der Nierenfunktion im Alter. Z Gerontol Geriatr 2016; 49:469-76. [DOI: 10.1007/s00391-016-1109-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
17
|
Kim EN, Lim JH, Kim MY, Kim HW, Park CW, Chang YS, Choi BS. PPARα agonist, fenofibrate, ameliorates age-related renal injury. Exp Gerontol 2016; 81:42-50. [PMID: 27130813 DOI: 10.1016/j.exger.2016.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022]
Abstract
The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney.
Collapse
Affiliation(s)
- Eun Nim Kim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Wook Kim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Sik Chang
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Leierer J, Rudnicki M, Braniff SJ, Perco P, Koppelstaetter C, Mühlberger I, Eder S, Kerschbaum J, Schwarzer C, Schroll A, Weiss G, Schneeberger S, Wagner S, Königsrainer A, Böhmig GA, Mayer G. Metallothioneins and renal ageing. Nephrol Dial Transplant 2016; 31:1444-52. [PMID: 26908771 DOI: 10.1093/ndt/gfv451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/16/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Human lifespan is increasing continuously and about one-third of the population >70 years of age suffers from chronic kidney disease. The pathophysiology of the loss of renal function with ageing is unclear. METHODS We determined age-associated gene expression changes in zero-hour biopsies of deceased donor kidneys without laboratory signs of impaired renal function, defined as a last serum creatinine >0.96 mg/dL in females and >1.18 mg/dL in males, using microarray technology and the Significance Analysis of Microarrays routine. Expression changes of selected genes were confirmed by quantitative polymerase chain reaction and in situ hybridization and immunohistochemistry for localization of respective mRNA and protein. Functional aspects were examined in vitro. RESULTS Donors were classified into three age groups (<40, 40-59 and >59 years; Groups 1, 2 and 3, respectively). In Group 3 especially, genes encoding for metallothionein (MT) isoforms were more significantly expressed when compared with Group 1; localization studies revealed predominant staining in renal proximal tubular cells. RPTEC/TERT1 cells overexpressing MT2A were less susceptible towards cadmium chloride-induced cytotoxicity and hypoxia-induced apoptosis, both models for increased generation of reactive oxygen species. CONCLUSIONS Increased expression of MTs in the kidney with ageing might be a protective mechanism against increased oxidative stress, which is closely related to the ageing process. Our findings indicate that MTs are functionally involved in the pathophysiology of ageing-related processes.
Collapse
Affiliation(s)
- Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Susie-Jane Braniff
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Paul Perco
- Emergentec Biodevelopment GmbH, Vienna, Austria
| | - Christian Koppelstaetter
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | | | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Julia Kerschbaum
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases, Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases, Medical University, Innsbruck, Austria
| | - Stefan Schneeberger
- Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University of Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University of Tübingen, Tübingen, Germany
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Zhou L, Mo H, Miao J, Zhou D, Tan RJ, Hou FF, Liu Y. Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3211-3223. [PMID: 26475416 PMCID: PMC4729238 DOI: 10.1016/j.ajpath.2015.08.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Loss of Klotho and activation of the renin-angiotensin system (RAS) are common pathological findings in chronic kidney diseases. However, whether these two events are intricately connected is poorly understood. We hypothesized that Klotho might protect kidneys by targeted inhibition of RAS activation in diseased kidneys. To test this hypothesis, mouse models of remnant kidney, as well as adriamycin nephropathy and unilateral ureteral obstruction, were utilized. At 6 weeks after 5/6 nephrectomy, kidney injury was evident, characterized by elevated albuminuria and serum creatinine levels, and excessive deposition of interstitial matrix proteins. These lesions were accompanied by loss of renal Klotho expression, up-regulation of RAS components, and development of hypertension. In vivo expression of exogenous Klotho through hydrodynamic-based gene delivery abolished the induction of multiple RAS proteins, including angiotensinogen, renin, angiotensin-converting enzyme, and angiotensin II type 1 receptor, and normalized blood pressure. Klotho also inhibited β-catenin activation and ameliorated renal fibrotic lesions. Similar results were obtained in mouse models of adriamycin and obstructive nephropathy. In cultured kidney tubular epithelial cells, Klotho dose-dependently blocked Wnt1-triggered RAS activation. Taken together, these results demonstrate that Klotho exerts its renal protection by targeted inhibition of RAS, a pathogenic pathway known to play a key role in the evolution and progression of hypertension and chronic kidney disorders.
Collapse
Affiliation(s)
- Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hongyan Mo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Abstract
Aging involves changes in several physiologic processes that lead to decreased volumes of distribution, slowed metabolism, and increased end-organ sensitivity to anesthetics. These changes generally result in increased potency. Elderly patients require less anesthetic medication, but the true extent of reduction is underappreciated and less uniformly practiced. The impact of potential anesthetic drug overdosing on intermediate and long-term outcomes is not fully appreciated. It may be necessary to consider age as a continuous variable for anesthetic drug dosing in older patients rather than treating adult versus elderly patients. Further pharmacologic studies are required in people more than 85 years old.
Collapse
Affiliation(s)
- Shamsuddin Akhtar
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, Tompkins # 3, New Haven, CT 06520, USA.
| | - Ramachandran Ramani
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, Tompkins # 3, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Transgenic Strategies to Study Podocyte Loss and Regeneration. Stem Cells Int 2015; 2015:678347. [PMID: 26089920 PMCID: PMC4451768 DOI: 10.1155/2015/678347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023] Open
Abstract
Podocyte death and regeneration are major topics in kidney research but remain controversial. Data obtained in humans demonstrate the existence of cells sited along Bowman's capsule that behave as podocyte progenitors in vitro and in in vivo mouse models of podocyte injury xenotrasplanted with this human-derived population. However, this podocyte reservoir still remains elusive in murine models, where it could be more easily studied. Transgenic models can be a powerful tool to identify this population and to better understand its dynamics and hierarchies in both physiological and pathological conditions. Indeed, exploiting transgenic approaches allows detecting, at the single cell level, movements, cell death, and replacement. Moreover, through lineage tracing it is now possible to identify specific population increase and to point out clonal expansions during or after the regenerative processes. However, applying transgenic strategies to study glomerular regeneration requires the search of markers to unequivocally identify this progenitor population. Achieving this aim would lead to a deep comprehension of the biological processes that underlie glomerular regeneration and clarify how different cell pools interface during this phase. Here we discuss strategies that have been used and new approaches in transgenic models finalized to study podocyte loss and subsequent replacement.
Collapse
|
22
|
Abstract
Human senescence induces changes in the renin-angiotensin-aldosterone system (RAAS) which consists of a substantial decrease in its plasma activity. Consequently, the distal tubule´s capability of handling sodium and potassium is significantly reduced in the elderly, while distal tubule acidification is slightly delayed but preserved in this age group. Several studies in animal models support the hypothesis that senile renal structural changes could be induced by the local production of angiotensin II, and also that enalapril significantly decreases senile mesangial expansion, glomerulosclerosis and peritubular and medullar interstitial sclerosis. The same applies to several highly prevalent diseases in the elderly, such as hypertension, obesity, cardiac insufficiency, chronic nephropathy and dementia. In conclusion, the relationship between the RAAS and senescence is complex, since not only does aging cause many changes on this hormonal system, but also RAAS overactivity seems to be one of the main inducing mechanisms for normal senescence, and for many prevalent diseases in the elderly.
Collapse
Affiliation(s)
- Carlos G Musso
- a Ageing Biology Unit, Hospital Italiano de Buenos Aires, Juan Perón 4190, Buenos Aires, Argentina
| | - José R Jauregui
- a Ageing Biology Unit, Hospital Italiano de Buenos Aires, Juan Perón 4190, Buenos Aires, Argentina
| |
Collapse
|
23
|
Abstract
Aging is associated with progressive functional deterioration and structural changes in the kidney. Changes in the activity or responsiveness of the renin-angiotensin system (RAS) occur with aging. RAS changes predispose the elderly to various fluid and electrolyte imbalances as well as acute kidney injury and chronic kidney disease. Among the multiple pathways involved in renal aging, the RAS plays a central role. This review summarizes the association of the RAS with structural and functional changes in the aging kidney and age-related renal injury, and describes the underlying mechanisms of RAS-related renal aging. An improved understanding of the renal aging process may lead to better individualized care of the elderly and improved renal survival in age-related diseases.
Collapse
Affiliation(s)
- Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Pippin JW, Glenn ST, Krofft RD, Rusiniak ME, Alpers CE, Hudkins K, Duffield JS, Gross KW, Shankland SJ. Cells of renin lineage take on a podocyte phenotype in aging nephropathy. Am J Physiol Renal Physiol 2014; 306:F1198-209. [PMID: 24647714 DOI: 10.1152/ajprenal.00699.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aging nephropathy is characterized by podocyte depletion accompanied by progressive glomerulosclerosis. Replacement of terminally differentiated podocytes by local stem/progenitor cells is likely a critical mechanism for their regeneration. Recent studies have shown that cells of renin lineage (CoRL), normally restricted to the kidney's extraglomerular compartment, might serve this role after an abrupt depletion in podocyte number. To determine the effects of aging on the CoRL reserve and if CoRL moved from an extra- to the intraglomerular compartment during aging, genetic cell fate mapping was performed in aging Ren1cCre × Rs-ZsGreen reporter mice. Podocyte number decreased and glomerular scarring increased with advanced age. CoRL number decreased in the juxtaglomerular compartment with age. There was a paradoxical increase in CoRL in the intraglomerular compartment at 52 and 64 wk of age, where a subset coexpressed the podocyte proteins nephrin, podocin, and synaptopodin. Transmission electron microscopy studies showed that a subset of labeled CoRL in the glomerulus displayed foot processes, which attached to the glomerular basement membrane. No CoRL in the glomerular compartment stained for renin. These results suggest that, despite a decrease in the reserve, a subpopulation of CoRL moves to the glomerulus after chronic podocyte depletion in aging nephropathy, where they acquire a podocyte-like phenotype. This suggests that they might serve as adult podocyte stem/progenitor cells under these conditions, albeit in insufficient numbers to fully replace podocytes depleted with age.
Collapse
Affiliation(s)
- Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Sean T Glenn
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York; and
| | - Ronald D Krofft
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Michael E Rusiniak
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York; and
| | - Charles E Alpers
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kelly Hudkins
- Department of Pathology, University of Washington, Seattle, Washington
| | - Jeremy S Duffield
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York; and
| | | |
Collapse
|
25
|
Abstract
Aging is associated with structural and functional changes in the kidney. Structural changes include glomerulosclerosis, thickening of the basement membrane, increase in mesangial matrix, tubulointerstitial fibrosis and arteriosclerosis. Glomerular filtration rate is maintained until the fourth decade of life, after which it declines. Parallel reductions in renal blood flow occur with redistribution of blood flow from the cortex to the medulla. Other functional changes include an increase in glomerular basement permeability and decreased ability to dilute or concentrate urine.
Collapse
Affiliation(s)
- Zeina Karam
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
26
|
Speeckaert MM, Vanfraechem C, Speeckaert R, Delanghe JR. Peroxisome proliferator-activated receptor agonists in a battle against the aging kidney. Ageing Res Rev 2014; 14:1-18. [PMID: 24503003 DOI: 10.1016/j.arr.2014.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
As aging is a complex phenomenon characterized by intraindividual and interindividual diversities in the maintenance of the homeostatic condition of cells and tissues, changes in renal function are not uniform and depend on associated diseases and environmental factors. Multiple studies have investigated the possible underlying mechanisms of age-related decline in kidney function. Evolutionary, molecular, cellular and systemic theories have been postulated to explain the primary disease independent age-related changes and adaptive responses. As peroxisome proliferator-activated receptors (PPARs) are involved in a broad spectrum of biological processes, PPAR activation might have an effect on the prevention of cell senescence. In this review, we will focus on the experimental and clinical evidence of PPAR agonists in a battle against the aging kidney.
Collapse
Affiliation(s)
| | | | | | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
27
|
Somma C, Trillini M, Kasa M, Gentile G. Managing end-stage renal disease in the elderly: state-of-the-art, challenges and opportunities. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/ahe.13.52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Schermer B, Bartels V, Frommolt P, Habermann B, Braun F, Schultze JL, Roodbergen M, Hoeijmakers JH, Schumacher B, Nürnberg P, Dollé ME, Benzing T, Müller RU, Kurschat CE. Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging. BMC Genomics 2013; 14:559. [PMID: 23947592 PMCID: PMC3751413 DOI: 10.1186/1471-2164-14-559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022] Open
Abstract
Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Conclusion Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.
Collapse
Affiliation(s)
- Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Quimby JM, Maranon DG, Battaglia CLR, McLeland SM, Brock WT, Bailey SM. Feline chronic kidney disease is associated with shortened telomeres and increased cellular senescence. Am J Physiol Renal Physiol 2013; 305:F295-303. [DOI: 10.1152/ajprenal.00527.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Telomeres are protective structures at the ends of chromosomes that have important implications for aging. To address the question of whether telomeres contribute to feline chronic kidney disease (CKD), we evaluated kidney, liver, and skin samples from 12 cats with naturally occurring CKD, 12 young normal cats, and 6 old normal cats. Telomere length was assessed using standard telomere fluorescent in situ hybridization (TEL-FISH) combined with immunohistochemistry (TELI-FISH) to identify proximal (PTEC) and distal tubular epithelial cells (DTEC), whereas senescence-associated β-galactosidase (SABG) staining was used to evaluate senescence. Results revealed statistically significant decreases in the average telomere fluorescence intensity (TFI) of PTEC in CKD cats compared with young and geriatric normal cats, and in the DTEC of CKD cats compared with young normal cats. When histograms of individual TFI were compared, statistically significant decreases in the PTEC and DTEC of CKD cats were observed compared with young and geriatric normal cats. Concomitantly, a statistically significant increase in SABG staining was seen in CKD kidney samples compared with young normal cats. CKD cats tended to have increased SABG staining in the kidney compared with normal geriatric cats, but this did not reach statistical significance. No significant telomere shortening in liver or skin from any group was observed. Real-time quantitative telomeric repeat amplification protocol assessment of renal telomerase activity revealed comparable low levels of telomerase activity in all groups. Our results suggest that shortened telomeres and increased senescence in the kidneys of CKD cats may represent novel targets for interventional therapy.
Collapse
Affiliation(s)
- Jessica M. Quimby
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - David G. Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Christine L. R. Battaglia
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Shannon M. McLeland
- Department of Molecular Biology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - William T. Brock
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado; and
| |
Collapse
|
30
|
Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J Am Soc Nephrol 2013; 24:771-785. [PMID: 23559584 PMCID: PMC3636797 DOI: 10.1681/asn.2012080865] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/02/2013] [Indexed: 12/24/2022] Open
Abstract
Aging is an independent risk factor for CKD, but the molecular mechanisms that link aging and CKD are not well understood. The antiaging protein Klotho may be an endogenous antagonist of Wnt/β-catenin signaling, which promotes fibrogenesis, suggesting that loss of Klotho may contribute to CKD through increased Wnt/β-catenin activity. Here, normal adult kidneys highly expressed Klotho in the tubular epithelium, but various models of nephropathy exhibited markedly less expression of Klotho. Loss of Klotho was closely associated with increased β-catenin in the diseased kidneys, suggesting an inverse correlation between Klotho and canonical Wnt signaling. In vitro, both full-length and secreted Klotho bound to multiple Wnts, including Wnt1, Wnt4, and Wnt7a. Klotho repressed gene transcription induced by Wnt but not by active β-catenin. Furthermore, Klotho blocked Wnt-triggered activation and nuclear translocation of β-catenin, as well as the expression of its target genes in tubular epithelial cells. Investigating potential mediators of Klotho loss in CKD, we found that TGF-β1 suppressed Klotho expression and concomitantly activated β-catenin; conversely, overexpression of Klotho abolished fibrogenic effects of TGF-β1. In two mouse models of CKD induced by unilateral ureteral obstruction or adriamycin, in vivo expression of secreted Klotho inhibited the activation of renal β-catenin and expression of its target genes. Secreted Klotho also suppressed myofibroblast activation, reduced matrix expression, and ameliorated renal fibrosis. Taken together, these results suggest that Klotho is an antagonist of endogenous Wnt/β-catenin activity; therefore, loss of Klotho may contribute to kidney injury by releasing the repression of pathogenic Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lili Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China, and
- Department of Pathology and
| | | | | | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China, and
- Department of Pathology and
| |
Collapse
|
31
|
Santulli G, Iaccarino G. Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes. IMMUNITY & AGEING 2013; 10:10. [PMID: 23497413 PMCID: PMC3763845 DOI: 10.1186/1742-4933-10-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/10/2013] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a key role in cellular communication, allowing human cells to sense external cues or to talk each other through hormones or neurotransmitters. Research in this field has been recently awarded with the Nobel Prize in chemistry to Robert J. Lefkowitz and Brian K. Kobilka, for their pioneering work on beta adrenergic receptors (βARs), a prototype GPCR. Such receptors, and β2AR in particular, which is extensively distributed throughout the body, are involved in a number of pathophysiological processes. Moreover, a large amount of studies has demonstrated their participation in ageing process. Reciprocally, age-related changes in regulation of receptor responses have been observed in numerous tissues and include modifications of βAR responses. Impaired sympathetic nervous system function has been indeed evoked as at least a partial explanation for several modifications that occur with ageing. This article represents an updated presentation of the current knowledge in the field, summarizing in a systematic way the major findings of research on ageing in several organs and tissues (crime scenes) expressing βARs: heart, vessels, skeletal muscle, respiratory system, brain, immune system, pancreatic islets, liver, kidney and bone.
Collapse
Affiliation(s)
- Gaetano Santulli
- Departments of Translational Medical Sciences and Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
| | | |
Collapse
|
32
|
Casalena G, Daehn I, Bottinger E. Transforming growth factor-β, bioenergetics, and mitochondria in renal disease. Semin Nephrol 2012; 32:295-303. [PMID: 22835461 DOI: 10.1016/j.semnephrol.2012.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transforming growth factor-β (TGF-β) family comprises more than 30 family members that are structurally related secreted dimeric cytokines, including TGF-β, activins, and bone morphogenetic proteins/growth and differentiation factors. TGF-β are pluripotent regulators of cell proliferation, differentiation, apoptosis, migration, and adhesion of many different cell types. TGF-β pathways are highly evolutionarily conserved and control embryogenesis, tissue repair, and tissue homeostasis in invertebrates and vertebrates. Aberrations in TGF-β activity and signaling underlie a broad spectrum of developmental disorders and major pathologies in human beings, including cancer, fibrosis, and autoimmune diseases. Recent observations have indicated an emerging role for TGF-β in the regulation of mitochondrial bioenergetics and oxidative stress responses characteristic of chronic degenerative diseases and aging. Conversely, energy and metabolic sensory pathways cross-regulate mediators of TGF-β signaling. Here, we review TGF-β and regulation of bioenergetic and mitochondrial functions, including energy and oxidant metabolism and apoptotic cell death, as well as their emerging relevance in renal biology and disease.
Collapse
Affiliation(s)
- Gabriella Casalena
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
33
|
Abstract
Long-term transplant outcome is importantly influenced by the age of the organ donor. The mechanisms how age carries out its pathophysiological impact on graft survival are still not understood. One major contributing factor for the observed poor performance of old donor kidneys seems in particular the age-related loss in renal regenerative capacity. In this review, we will summarize recent findings about the molecular basis of renal aging with specific focus on the potential role of somatic cellular senescence and mitochondrial aging in renal transplant outcome.
Collapse
Affiliation(s)
- R Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
34
|
Chugh G, Pokkunuri I, Asghar M. Renal dopamine and angiotensin II receptor signaling in age-related hypertension. Am J Physiol Renal Physiol 2012; 304:F1-7. [PMID: 23097467 DOI: 10.1152/ajprenal.00441.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Kidneys play a vital role in long-term regulation of blood pressure. This is achieved by actions of many renal and nonrenal factors acting on the kidney that help maintain the body's water and electrolyte balance and thus control blood pressure. Several endogenously formed or circulating hormones/peptides, by acting within the kidney, regulate fluid and water homeostasis and blood pressure. Dopamine and angiotensin II are the two key renal factors that, via acting on their receptors and counterregulating each other's function, maintain water and sodium balance. In this review, we provide recent advances in the signaling cascades of these renal receptors, especially at the level of their cross talk, and discuss their roles in blood pressure regulation in the aging process.
Collapse
Affiliation(s)
- Gaurav Chugh
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
35
|
Felipe Salech M, Rafael Jara L, Luis Michea A. Cambios fisiológicos asociados al envejecimiento. REVISTA MÉDICA CLÍNICA LAS CONDES 2012. [DOI: 10.1016/s0716-8640(12)70269-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Abstract
Utilization rates of organs from elderly donors have shown the highest proportional increase during the last decade. Clinical reports support the concept of transplanting older organs. However, the engraftment of such organs has been linked to accelerated immune responses based on ageing changes per se and a proinflammatory environment subsequent to compromised injury and repair mechanism. We analyzed the clinical consequences of transplanting older donor organs and present mechanistic aspects correlating age, injury repair and effects on host immunoresponsiveness.
Collapse
Affiliation(s)
- R Oberhuber
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|