1
|
Du W, Xu K, Wang S, Gao X, Jiang M, Lv X, Zhou Q, Ma P, Yang X, Wang S, Chen M. Exposure to polystyrene microplastics with different functional groups: Implications for blood pressure and heart. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126009. [PMID: 40057161 DOI: 10.1016/j.envpol.2025.126009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
The association between microplastics (MPs) exposure and cardiovascular disease is largely unknown. It is still unclear what effects MPs exposure have on blood pressure and how it affects the heart. As MPs age, their surfaces undergo modifications that may alter how the MPs interact with cells, which may affect the extent of their toxic effects. Here, we used three different surface functional-group polystyrene microplastics (PS-MPs), and exposed 5-week-old SD rats to them over 42 days. Compared with the control group, the mean blood pressure of the MPs exposed rats increased by 22-40%. Exposure to PS-MPs caused oxidative damage to the heart, and induced cardiomyocyte hypertrophy. More interestingly, MPs modified by functional groups induced enhanced adverse effects than unmodified PS-MPs, with amino-modified PS-MPs exhibiting more significant blood pressure elevation and myocardial hypertrophy. Proteomic analysis of cardiac differential proteins focused on factor XII activation, negative regulation of proteolysis, collectively pointed to the downregulation of kininogen. We demonstrated that MPs exposure induced ERK activation, the down-regulation of bradykinin, and inhibition of the downstream nitric oxide signaling pathway. This study demonstrates the different effects of MPs with different functional groups on blood pressure elevation and myocardial hypertrophy, and sheds light on the mechanisms responsible for microplastic-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Wanting Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Ke Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shuxin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xiao Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengling Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xiaojing Lv
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qi Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China; Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shaohui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mingqing Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
2
|
Dong XQ, Zhang YH, Luo J, Li MJ, Ma LQ, Qi YT, Miao YL. Keratin 1 modulates intestinal barrier and immune response via kallikrein kinin system in ulcerative colitis. World J Gastroenterol 2025; 31:102070. [PMID: 39958441 PMCID: PMC11752705 DOI: 10.3748/wjg.v31.i6.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND External factors in ulcerative colitis (UC) exacerbate colonic epithelial permeability and inflammatory responses. Keratin 1 (KRT1) is crucial in regulating these alterations, but its specific role in the progression of UC remains to be fully elucidated. AIM To explore the role and mechanisms of KRT1 in the regulation of colonic epithelial permeability and inflammation in UC. METHODS A KRT1 antibody concentration gradient test, along with a dextran sulfate sodium (DSS)-induced animal model, was implemented to investigate the role of KRT1 in modulating the activation of the kallikrein kinin system (KKS) and the cleavage of bradykinin (BK)/high molecular weight kininogen (HK) in UC. RESULTS Treatment with KRT1 antibody in Caco-2 cells suppressed cell proliferation, induced apoptosis, reduced HK expression, and increased BK expression. It further downregulated intestinal barrier proteins, including occludin, zonula occludens-1, and claudin, and negatively impacted the coagulation factor XII. These changes led to enhanced activation of BK and HK cleavage, thereby intensifying KKS-mediated inflammation in UC. In the DSS-induced mouse model, administration of KRT1 antibody mitigated colonic injury, increased colon length, alleviated weight loss, and suppressed inflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor-α. It also facilitated repair of the intestinal barrier, reducing DSS-induced injury. CONCLUSION KRT1 inhibits BK expression, suppresses inflammatory cytokines, and enhances markers of intestinal barrier function, thus ameliorating colonic damage and maintaining barrier integrity. KRT1 is a viable therapeutic target for UC.
Collapse
Affiliation(s)
- Xiang-Qian Dong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Hui Zhang
- Department of Gastroenterology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Mao-Juan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Lan-Qing Ma
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ya-Ting Qi
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Lei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| |
Collapse
|
3
|
Udayanga SAK, Seneviratne J, Saumyamala MGA, Amarasekara ADDS. Association between Angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism on the susceptibility to psoriasis and oxidative stress (OS) in a cohort of pediatric psoriatic patients in Sri Lanka: A cross sectional study. Health Sci Rep 2024; 7:e2309. [PMID: 39229476 PMCID: PMC11369909 DOI: 10.1002/hsr2.2309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Pediatric psoriasis accounts for nearly one-third of the global psoriasis burden. Multiple lines of evidence have shown the relationship between Angiotensin-converting enzyme (ACE) Insertion (I)/deletion(D) polymorphism with psoriasis susceptibility, and oxidative stress (OS) in psoriatic patients. However, such studies, particularly on pediatric psoriasis, are scarce in the local setting. Aims Our study investigated the prevalence of ACE I/D polymorphism and its associations with oxidative stress in pediatric psoriasis patients in Sri Lanka. Methods Thirty patients were recruited for this study after obtaining ethical clearance. The polymerase chain reaction was used to explore the ACE I/D polymorphism. Serum Nitric Oxide (NO) levels and the Total Antioxidant Capacity (TAC) were measured using the Griess assay and the FRAP assay. Clinical details were obtained from the clinic reports. Results Female predominance (76.67%) in pediatric psoriasis was reported, while Plaque psoriasis (66.67%) was found to be the most prevalent form. I/D was reported as the predominant genotype (66.67%) while I/I and D/D genotypes were recorded in 23.33% and 10% of patients, respectively. Significantly higher NO levels were observed in I/D patients than in I/I patients but not among other groups. No differences in TAC among ACE genotypes were reported. Conclusion This pilot study revealed female gender and I/D genotype with increased NO levels as risk factors for pediatric psoriasis in Sri Lanka. However, it is prudent to increase the sample size to further validate the results.
Collapse
Affiliation(s)
- S. A. K. Udayanga
- Center for Immunology and Molecular Biology, Department of Zoology and Environment Sciences, Faculty of ScienceUniversity of Colombo, Kumaratunga Munidasa MawathaColombo 03Sri Lanka
| | - J. Seneviratne
- Lady Ridgeway Hospital for Children, Dr. Denister De Silva MawathaColombo 08Sri Lanka
| | - M. G. A. Saumyamala
- Department of Statistics, Faculty of ScienceUniversity of Colombo, Kumaratunga Munidasa MawathaColombo 03Sri Lanka
| | - A. D. D. S. Amarasekara
- Center for Immunology and Molecular Biology, Department of Zoology and Environment Sciences, Faculty of ScienceUniversity of Colombo, Kumaratunga Munidasa MawathaColombo 03Sri Lanka
| |
Collapse
|
4
|
Mohammadi K, Shafie D, Ghomashi N, Abdolizadeh A, Sadeghpour M. Kinin-kallikrein system: New perspectives in heart failure. Heart Fail Rev 2024; 29:729-737. [PMID: 38381277 DOI: 10.1007/s10741-024-10393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.
Collapse
Affiliation(s)
- Keivan Mohammadi
- Shahid Chamran Heart Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Newsha Ghomashi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Abdolizadeh
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Majid Sadeghpour
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Eun M, Kim D, Shin SI, Yang HO, Kim KD, Choi SY, Park S, Kim DK, Jeong CW, Moon KC, Lee H, Park J. Chromatin accessibility analysis and architectural profiling of human kidneys reveal key cell types and a regulator of diabetic kidney disease. Kidney Int 2024; 105:150-164. [PMID: 37925023 DOI: 10.1016/j.kint.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023]
Abstract
Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis.
Collapse
Affiliation(s)
- Minho Eun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Donggun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Oh Yang
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sehoon Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Thomaz MS, Sertorio MN, Gazarini ML, Ribeiro DA, Pisani LP, Nagaoka MR. Effect of Kinins on the Hepatic Oxidative Stress in Mice Treated with a Methionine-Choline Deficient Diet. Biomedicines 2023; 11:2199. [PMID: 37626696 PMCID: PMC10452290 DOI: 10.3390/biomedicines11082199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver is the leading cause of hepatic disease worldwide and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) due to cell injury, oxidative stress, and apoptosis. The kinins' role in the liver has been studied in experimental fibrosis, partial hepatectomy, and ischemia-reperfusion and is related to cell death and regeneration. We investigated its role in experimental NASH induced by a methionine-choline deficient diet for 4 weeks. After that, liver perfusion was performed, and bradykinin (BK) or des-Arg9-BK was infused. Cell death was evaluated by cathepsin-B and caspase-3 activity and oxidative stress by catalase (CAT), glutathione S-transferase, and superoxide dismutase (SOD) activities, as well as malondialdehyde and carbonylated proteins. In control livers, DABK increased CAT activity, which was reversed by antagonist DALBK. In the NASH group, kinins tend to decrease antioxidant activity, with SOD activity being significantly reduced by BK and DABK. Malondialdehyde levels increased in all NASH groups, but carbonylated protein did not. DABK significantly decreased cathepsin-B in the NASH group, while caspase-3 was increased by BK in control animals. Our results suggest that B1R and/or B2R activation did not induce oxidative stress but affected the antioxidant system, reducing SOD in the NASH group.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcia Regina Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil; (M.S.T.)
| |
Collapse
|
8
|
Chen X, Xie K, Zhang X, Gu X, Wu Y, Su S. Bradykinin receptor participates in doxorubicin-induced cardiotoxicity by modulating iNOS signal pathway. J Biochem Mol Toxicol 2023; 37:e23393. [PMID: 37409694 DOI: 10.1002/jbt.23393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Doxorubicin (DOX), an effective and broad-spectrum anthracycline antibiotic, is widely used in the treatment of numerous malignancies. However, dose-dependent cardiotoxicity limits the clinical application of DOX, and the molecular mechanisms are still unknown. In this study, we used the BK receptor B1/B2 double-knockout (B1B2 -/- ) mice to observe the role of BK receptor in cardiotoxicity induced by DOX and the underlying mechanisms. DOX induced myocardial injury with increased serum levels of AST, CK, and LDH, upregulated tissue expression of bradykinin B1/B2 receptor, FABP4 and iNOS, and downregulated expression of eNOS. However, these altered releases of myocardial enzyme and the expression level of iNOS were significantly prevented in the B1B2-/- mice. We concluded that the activation of both B1 and B2 receptors of BK were involved in the DOX-induced acute myocardial injury, possibly mediated through iNOS signaling pathways.
Collapse
Affiliation(s)
- Xueyan Chen
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| | - Kerang Xie
- Department of Pharmacy, Shijiazhuang people's hospital, Shijiazhuang, P. R. China
| | - Xiaofei Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Yi Wu
- State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
9
|
Shen JK, Zhang HT. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol Sin 2023; 44:489-498. [PMID: 36075965 PMCID: PMC9453710 DOI: 10.1038/s41401-022-00982-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
Type 2 bradykinin receptor (B2R) is an essential G protein-coupled receptor (GPCR) that regulates the cardiovascular system as a vasodepressor. Dysfunction of B2R is also closely related to cancers and hereditary angioedema (HAE). Although several B2R agonists and antagonists have been developed, icatibant is the only B2R antagonist clinically used for treating HAE. The recently determined structures of B2R have provided molecular insights into the functions and regulation of B2R, which shed light on structure-based drug design for the treatment of B2R-related diseases. In this review, we summarize the structure and function of B2R in relation to drug discovery and discuss future research directions to elucidate the remaining unknown functions of B2R dimerization.
Collapse
Affiliation(s)
- Jin-Kang Shen
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Tao Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
10
|
Rex DAB, Vaid N, Deepak K, Dagamajalu S, Prasad TSK. A comprehensive review on current understanding of bradykinin in COVID-19 and inflammatory diseases. Mol Biol Rep 2022; 49:9915-9927. [PMID: 35596055 PMCID: PMC9122735 DOI: 10.1007/s11033-022-07539-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 12/28/2022]
Abstract
Bradykinin, a member of the kallikrein–kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodilator and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, Gαq and Gβ1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including IL-6, IL-1β, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understanding of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.
Collapse
Affiliation(s)
- Devasahayam Arokiar Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Neelanchal Vaid
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - K Deepak
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
11
|
Xiao M, Zheng L, Zhang X, Duan X, Hang T, Lu S, Liu S, Lin H. Renal-on-Chip Microfluidic Platform with a Force-Sensitive Resistor (ROC-FS) for Molecular Pathogenesis Analysis of Hydronephrosis. Anal Chem 2021; 94:748-757. [PMID: 34951537 DOI: 10.1021/acs.analchem.1c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydronephrosis is one of the most common diseases in urology. However, due to the difficulties in clinical trials and the lack of reliable in vitro platforms, the surgical indicators are not clear. Herein, the renal-on-chip with a force-sensitive resistor microfluidic platform was established to simulate the state of hydronephrosis. Cell counting kit-8 (CCK-8) and tight junction protein claudin-2 were detected on a renal-on-chip microfluidic platform with a force-sensitive resistor (ROC-FS). The results indicated that the ROC-FS had normal physiological functions and the cell viability on ROC-FS declined to around 40% after 48 h of hydronephrosis-simulated treatment. In addition, proteomics analysis of 15 clinical ureteropelvic junction obstruction (UPJO) samples showed that compared with normal children, a total of 50 common proteins were differentially expressed in UPJO children (P < 0.05, |log2fold change| ≥ 1). Metabolomic analysis of 39 clinical UPJO samples showed that a total of 241 metabolisms were dysregulated. Subsequent immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analysis using ROC-FS were performed to identify the clinical multi-omics results for screening. All results pointed out that the TGF-β-related signaling pathways and arginine-related metabolism signaling pathways were dysregulated and α-SMA, AGT, and AGA might be the potential biomarkers of hydronephrosis. In addition, correlation analysis of AGT and KLK1 with differential renal function (DRF) from clinical samples indicated good correlation coefficients (R2 0.923, 0.8742, 0.6412, and 0.8347). This demonstrates the state of hydronephrosis could be significantly correlated with the biomarkers. These findings could provide a reliable reference for determining surgical biomarkers clinically, and ROC could be further used in the analysis of other kidney diseases.
Collapse
Affiliation(s)
- Mingming Xiao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, 526 Jugong Road, Shanghai 200093, China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xiaoxiao Duan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tian Hang
- Department of Pediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, 2468 East Zhonghuan Road, Jiaxing, Zhejiang 314050, China
| | - Shijiao Lu
- Department of Pediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, 2468 East Zhonghuan Road, Jiaxing, Zhejiang 314050, China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Houwei Lin
- Department of Pediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, 2468 East Zhonghuan Road, Jiaxing, Zhejiang 314050, China
| |
Collapse
|
12
|
de Oliveira NA, Cardoso SC, Barbosa DA, da Fonseca CD. Acute kidney injury caused by venomous animals: inflammatory mechanisms. J Venom Anim Toxins Incl Trop Dis 2021; 27:20200189. [PMID: 34512738 PMCID: PMC8394371 DOI: 10.1590/1678-9199-jvatitd-2020-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
Either bites or stings of venomous animals comprise relevant public health problems in tropical countries. Acute kidney injury (AKI) induced by animal toxins is related to worse prognostic and outcomes. Being one the most important pathways to induce AKI following envenoming due to animal toxins, inflammation is an essential biological response that eliminates pathogenic bacteria and repairs tissue after injury. However, direct nephrotoxicity (i.e. apoptotic and necrotic mechanisms of toxins), pigmenturia (i.e. rhabdomyolysis and hemolysis), anaphylactic reactions, and coagulopathies could contribute to the renal injury. All these mechanisms are closely integrated, but inflammation is a distinct process. Hence, it is important to improve our understanding on inflammation mechanisms of these syndromes to provide a promising outlook to reduce morbidity and mortality. This literature review highlights the main scientific evidence of acute kidney injury induced by bites or stings from venomous animals and their inflammatory mechanisms. It included observational, cross-sectional, case-control and cohort human studies available up to December 2019. Descriptors were used according to Medical Subject Headings (MeSH), namely: “Acute kidney injury” or “Venom” and “Inflammation” on Medline/Pubmed and Google Scholar; “Kidney disease” or “Acute kidney injury” on Lilacs and SciELO. The present review evidenced that, among the described forms of renal inflammation, it can occur either directly or indirectly on renal cells by means of intravascular, systemic and endothelial hemolysis, activation of inflammatory pathway, as well as direct action of venom cytotoxic components on kidney structures.
Collapse
Affiliation(s)
- Naila Albertina de Oliveira
- Department of Nursing, Institute of Health Sciences, Paulista University (Unip), Jundiaí, SP, Brazil.,Graduate Program in Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | | | - Dulce Aparecida Barbosa
- Department of Clinical and Surgical Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Cassiane Dezoti da Fonseca
- Department of Clinical and Surgical Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| |
Collapse
|
13
|
Henderson MW, Sparkenbaugh EM, Wang S, Ilich A, Noubouossie DF, Mailer R, Renné T, Flick MJ, Luyendyk JP, Chen ZL, Strickland S, Stravitz RT, McCrae KR, Key NS, Pawlinski R. Plasmin-mediated cleavage of high-molecular-weight kininogen contributes to acetaminophen-induced acute liver failure. Blood 2021; 138:259-272. [PMID: 33827130 PMCID: PMC8310429 DOI: 10.1182/blood.2020006198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.
Collapse
Affiliation(s)
- Michael W Henderson
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erica M Sparkenbaugh
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shaobin Wang
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Denis F Noubouossie
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Reiner Mailer
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - R Todd Stravitz
- Hume-Lee Transplant Center of Virginia Commonwealth University, Richmond, VA; and
| | - Keith R McCrae
- Taussig Cancer Institute and Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Nigel S Key
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
14
|
Kinins and Kinin Receptors in Cardiovascular and Renal Diseases. Pharmaceuticals (Basel) 2021; 14:ph14030240. [PMID: 33800422 PMCID: PMC8000381 DOI: 10.3390/ph14030240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses the physiological role of the kallikrein–kinin system in arteries, heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R), distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular and renal diseases are discussed. This discussion addresses either the activation or inhibition of these receptors, based on recent clinical and experimental studies.
Collapse
|
15
|
Abassi Z, Skorecki K, Hamo-Giladi DB, Kruzel-Davila E, Heyman SN. Kinins and chymase: the forgotten components of the renin-angiotensin system and their implications in COVID-19 disease. Am J Physiol Lung Cell Mol Physiol 2021; 320:L422-L429. [PMID: 33404363 PMCID: PMC7938643 DOI: 10.1152/ajplung.00548.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The unique clinical features of COVID-19 disease present a formidable challenge in the understanding of its pathogenesis. Within a very short time, our knowledge regarding basic physiological pathways that participate in SARS-CoV-2 invasion and subsequent organ damage have been dramatically expanded. In particular, we now better understand the complexity of the renin-angiotensin-aldosterone system (RAAS) and the important role of angiotensin converting enzyme (ACE)-2 in viral binding. Furthermore, the critical role of its major product, angiotensin (Ang)-(1-7), in maintaining microcirculatory balance and in the control of activated proinflammatory and procoagulant pathways, generated in this disease, have been largely clarified. The kallikrein-bradykinin (BK) system and chymase are intensively interwoven with RAAS through many pathways with complex reciprocal interactions. Yet, so far, very little attention has been paid to a possible role of these physiological pathways in the pathogenesis of COVID-19 disease, even though BK and chymase exert many physiological changes characteristic to this disorder. Herein, we outline the current knowledge regarding the reciprocal interactions of RAAS, BK, and chymase that are probably turned-on in COVID-19 disease and participate in its clinical features. Interventions affecting these systems, such as the inhibition of chymase or blocking BKB1R/BKB2R, might be explored as potential novel therapeutic strategies in this devastating disorder.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Karl Skorecki
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dalit B Hamo-Giladi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Etty Kruzel-Davila
- Department of Nephrology, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
16
|
Curran CS, Rivera DR, Kopp JB. COVID-19 Usurps Host Regulatory Networks. Front Pharmacol 2020; 11:1278. [PMID: 32922297 PMCID: PMC7456869 DOI: 10.3389/fphar.2020.01278] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the cell surface and this complex is internalized. ACE2 serves as an endogenous inhibitor of inflammatory signals associated with four major regulator systems: the renin-angiotensin-aldosterone system (RAAS), the complement system, the coagulation cascade, and the kallikrein-kinin system (KKS). Understanding the pathophysiological effects of SARS-CoV-2 on these pathways is needed, particularly given the current lack of proven, effective treatments. The vasoconstrictive, prothrombotic and pro-inflammatory conditions induced by SARS-CoV-2 can be ascribed, at least in part, to the activation of these intersecting physiological networks. Moreover, patients with immune deficiencies, hypertension, diabetes, coronary heart disease, and kidney disease often have altered activation of these pathways, either due to underlying disease or to medications, and may be more susceptible to SARS-CoV-2 infection. Certain characteristic COVID-associated skin, sensory, and central nervous system manifestations may also be linked to viral activation of the RAAS, complement, coagulation, and KKS pathways. Pharmacological interventions that target molecules along these pathways may be useful in mitigating symptoms and preventing organ or tissue damage. While effective anti-viral therapies are critically needed, further study of these pathways may identify effective adjunctive treatments and patients most likely to benefit.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Donna R Rivera
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Ayres LS, Berger M, Durli ICLDO, Kuhl CP, Terraciano PB, Garcez TNA, Dos Santos BG, Guimarães JA, Passos EP, Cirne-Lima EO. Kallikrein-kinin system and oxidative stress in cisplatin-induced ovarian toxicity. Reprod Toxicol 2019; 93:1-9. [PMID: 31874189 DOI: 10.1016/j.reprotox.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 01/05/2023]
Abstract
Kallikrein-kinin system (KKS) is involved in vascular reactivity and inflammatory response to cytotoxic drugs. Since cisplatin is a widely used chemotherapy and its cytotoxic mechanism can trigger inflammation and oxidative damage, in this work we evaluated the role of KKS in an animal model of cisplatin-induced ovarian toxicity. Biomarkers of ovarian stem cells, activity of KKS, inflammation and oxidative damage were measured in ovarian tissue of C57BL/6 female mice treated with vehicle or cisplatin (2.5 mg/kg). Cisplatin group presented greater number of atretic follicles, and lower numbers of antral and total viable follicles. Ki67, DDX4 and OCT-4 markers were similar between groups. Cisplatin triggered plasma and ovarian tissue kallikrein generation; and increased expression of bradykinin receptors B1 and B2. Neutrophil and macrophage infiltration markers increased. Superoxide anion generation also increased, while reduced glutathione levels decreased. These results suggest that KKS is activated and contributes to ovarian injury during cisplatin treatment.
Collapse
Affiliation(s)
- Laura Silveira Ayres
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Isabel Cirne Lima de Oliveira Durli
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Cristiana Palma Kuhl
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Paula Barros Terraciano
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Tuane Nerissa Alves Garcez
- Unidade de Experimentação Animal, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil.
| | - Bruna Gomes Dos Santos
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil.
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Campus do Vale - Building 43421, 91501-970, Porto Alegre, RS, Brazil.
| | - Eduardo Pandolfi Passos
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Elizabeth Obino Cirne-Lima
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Ancion A, Tridetti J, Nguyen Trung ML, Oury C, Lancellotti P. A Review of the Role of Bradykinin and Nitric Oxide in the Cardioprotective Action of Angiotensin-Converting Enzyme Inhibitors: Focus on Perindopril. Cardiol Ther 2019; 8:179-191. [PMID: 31578675 PMCID: PMC6828891 DOI: 10.1007/s40119-019-00150-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
The functional integrity of the endothelium is essential for vascular health. In addition to maintaining a delicate balance between vasodilation and vasoconstriction, the endothelium has numerous other complex roles involved in the maintenance of vascular homeostasis. Chronic exposure to cardiovascular risk factors and oxidative stress results in an imbalance in these functions, creating an environment that favors reduced vasodilation and a proinflammatory and prothrombic state. The involvement of endothelial dysfunction in all stages of the cardiovascular continuum makes it an important target for treatment. One of the major endothelial-derived factors involved in the maintenance of endothelial function is nitric oxide (NO). Angiotensin-converting enzyme (ACE) inhibitors increase NO production both directly and indirectly by preventing production of angiotensin II (which diminishes NO production) and inhibiting the degradation of bradykinin (which stimulates local release of NO). Among the ACE inhibitors, perindopril appears to have the greatest effects on bradykinin and has demonstrated efficacy in a number of markers of endothelial dysfunction including arterial stiffness and progression of atherosclerosis. There is also strong evidence supporting the use of perindopril-based therapy for the treatment of hypertension and for reducing the risk of cardiovascular morbidity and mortality in a wide range of patients across the cardiovascular continuum.Funding: The journal's Rapid Service Fee was funded by Servier.
Collapse
Affiliation(s)
- Arnaud Ancion
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Julien Tridetti
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Mai-Linh Nguyen Trung
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Cécile Oury
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium.
| |
Collapse
|
19
|
Alhenc-Gelas F, Bouby N, Girolami JP. Kallikrein/K1, Kinins, and ACE/Kininase II in Homeostasis and in Disease Insight From Human and Experimental Genetic Studies, Therapeutic Implication. Front Med (Lausanne) 2019; 6:136. [PMID: 31316987 PMCID: PMC6610447 DOI: 10.3389/fmed.2019.00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023] Open
Abstract
Kallikrein-K1 is the main kinin-forming enzyme in organs in resting condition and in several pathological situations whereas angiotensin I-converting enzyme/kininase II (ACE) is the main kinin-inactivating enzyme in the circulation. Both ACE and K1 activity levels are genetic traits in man. Recent research based mainly on human genetic studies and study of genetically modified mice has documented the physiological role of K1 in the circulation, and also refined understanding of the role of ACE. Kallikrein-K1 is synthesized in arteries and involved in flow-induced vasodilatation. Endothelial ACE synthesis displays strong vessel and organ specificity modulating bioavailability of angiotensins and kinins locally. In pathological situations resulting from hemodynamic, ischemic, or metabolic insult to the cardiovascular system and the kidney K1 and kinins exert critical end-organ protective action and K1 deficiency results in severe worsening of the conditions, at least in the mouse. On the opposite, genetically high ACE level is associated with increased risk of developing ischemic and diabetic cardiac or renal diseases and worsened prognosis of these diseases. The association has been well-documented clinically while causality was established by ACE gene titration in mice. Studies suggest that reduced bioavailability of kinins is prominently involved in the detrimental effect of K1 deficiency or high ACE activity in diseases. Kinins are involved in the therapeutic effect of both ACE inhibitors and angiotensin II AT1 receptor blockers. Based on these findings, a new therapeutic hypothesis focused on selective pharmacological activation of kinin receptors has been launched. Proof of concept was obtained by using prototypic agonists in experimental ischemic and diabetic diseases in mice.
Collapse
Affiliation(s)
- Francois Alhenc-Gelas
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | - Nadine Bouby
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | | |
Collapse
|
20
|
Deng T, Xie X, Duan J, Chen M. Di-(2-ethylhexyl) phthalate induced an increase in blood pressure via activation of ACE and inhibition of the bradykinin-NO pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:927-934. [PMID: 30823347 DOI: 10.1016/j.envpol.2019.01.099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological studies and animal experiments have suggested that exposure to Di-(2-ethylhexyl) phthalate (DEHP) is strongly associated with an increase in blood pressure. However, the mechanisms that result in the detrimental effects of DEHP exposure on blood pressure are unclear. In our study, mice were orally exposed to DEHP dosages of 0.1, 1, 10 mg/kg/day for 6 weeks. The results showed that DEHP could induce a significant increase in systolic blood pressure (SBP) and heart rate, and a significant thickening of the ventricular wall. To explore the underlying mechanism, we measured the level of: angiotensin converting enzyme (ACE); bradykinin B2 receptor (BK2R); endothelial nitric oxide synthase (eNOS); bradykinin and Ca2+ in cardiac cytoplasm as well as in serum nitric oxide (NO). The results suggested that DEHP could induce an increase in ACE levels, and a decrease in bradykinin levels. Moreover, BK2R, Ca2+, eNOS and NO decreased when mice were exposed to 10 mg/kg/day DEHP. Interestingly, 5 mg/kg/day angiotensin converting enzyme inhibitor (ACEI) treatment inhibited the increase in blood pressure, and inhibited the decrease in the levels of BK2R, Ca2+, eNOS, and NO, that were induced by DEHP exposure. Our results suggest that DEHP might increase blood pressure by activating ACE expression, and inhibiting the bradykinin-NO pathway.
Collapse
Affiliation(s)
- Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
21
|
Wang J, Ji E, Lin C, Wang L, Dai L, Gao W. Effects of bradykinin on the survival of multiterritory perforator flaps in rats. World J Surg Oncol 2019; 17:44. [PMID: 30813916 PMCID: PMC6394035 DOI: 10.1186/s12957-019-1570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Bradykinin, a vasoactive peptide, has many biological functions. For example, it accelerates angiogenesis. Thus, we studied the effects of bradykinin on the survival of perforator flaps. Methods Averagely, 50 male Sprague–Dawley rats were divided into control and bradykinin groups and underwent procedures to the multiterritory perforator flap. Areas of flap survival were tested 7 days later. Flap perfusion was evaluated by laser Doppler imaging. We assessed the extent of autophagy by determining LC3-II/I, Beclin 1, and p62. Flap angiogenesis was assessed by immunohistochemistry and H&E staining. We measured the level of vascular endothelial growth factor (VEGF) protein using western blot. We assessed oxidative stress by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The apoptotic index was also evaluated by western blot, and we determined nitric oxide (NO) production using an NO assay kit. Results The bradykinin group exhibited significantly larger areas of flap survival, higher blood supply, and more neovascularization. The bradykinin group also had higher SOD activity, higher VEGF expression and NO content, and reduced MDA compared to the control group. Rats treated with bradykinin also had lower levels of apoptosis and autophagy relative to the control group. Conclusion Our results suggest that bradykinin promotes the survival of multiterritory perforator flaps by increasing angiogenesis, promoting the release of NO, suppressing apoptosis, reducing oxidative stress, and inhibiting autophagy.
Collapse
Affiliation(s)
- Jieke Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Encheng Ji
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Chen Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Long Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Li Dai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Weiyang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China.
| |
Collapse
|
22
|
Lindström M, Valkonen M, Tohmola N, Renkonen R, Strandin T, Vaheri A, Itkonen O. Plasma bradykinin concentrations during septic shock determined by a novel LC-MS/MS assay. Clin Chim Acta 2019; 493:20-24. [PMID: 30802439 DOI: 10.1016/j.cca.2019.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Bradykinin is an important mediator of inflammation and vascular permeability and could have an important role in the development of septic shock. Measurement of bradykinin by immunological methods may suffer from interference and lack of specificity. We developed and validated a liquid chromatography mass spectrometry assay (LC-MS/MS) for plasma bradykinin. METHODS We used plasma samples from healthy volunteers (n = 19) and patients with septic shock (n = 47). Stable isotope bradykinin internal standard was added to samples before solid-phase extraction and quantification by LC-MS/MS. Stability of bradykinin was studied for 12 months. RESULTS Our assay has good sensitivity (0.1 nmol/l) and a wide linear range (0.1-1000 nmol/l). Bradykinin added to plasma was stable for 12 months at -20 °C when a mixture of protease inhibitors was added at sampling but degraded during repeated freezing and thawing. Bradykinin concentration in plasma from septic shock patients (<0.1-0.6 nmol/l) did not change significantly during shock and recovery but differed slightly from that in healthy individuals (0.5-1.1 nmol/l). CONCLUSIONS Our bradykinin assay was successfully used to determine bradykinin concentrations in plasma samples. Intensive care unit patients with septic shock had low concentrations of plasma bradykinin during both shock and recovery phases.
Collapse
Affiliation(s)
- Mikael Lindström
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Miia Valkonen
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Tohmola
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Finland
| | | | - Antti Vaheri
- Faculty of Medicine, University of Helsinki, Finland
| | - Outi Itkonen
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Berger M, de Moraes JA, Beys-da-Silva WO, Santi L, Terraciano PB, Driemeier D, Cirne-Lima EO, Passos EP, Vieira MAR, Barja-Fidalgo TC, Guimarães JA. Renal and vascular effects of kallikrein inhibition in a model of Lonomia obliqua venom-induced acute kidney injury. PLoS Negl Trop Dis 2019; 13:e0007197. [PMID: 30763408 PMCID: PMC6392336 DOI: 10.1371/journal.pntd.0007197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/27/2019] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lonomia obliqua venom is nephrotoxic and acute kidney injury (AKI) is the main cause of death among envenomed victims. Mechanism underlying L. obliqua-induced AKI involves renal hypoperfusion, inflammation, tubular necrosis and loss of glomerular filtration and tubular reabsorption capacities. In the present study, we aimed to investigate the contribution of kallikrein to the hemodynamic instability, inflammation and consequent renal and vascular impairment. METHODOLOGY/PRINCIPAL FINDINGS Addition of L. obliqua venom to purified prekallikrein and human plasma in vitro or to vascular smooth muscle cells (VSMC) in culture, was able to generate kallikrein in a dose-dependent manner. Injected in rats, the venom induced AKI and increased kallikrein levels in plasma and kidney. Kallikrein inhibition by aprotinin prevented glomerular injury and the decrease in glomerular filtration rate, restoring fluid and electrolyte homeostasis. The mechanism underlying these effects was associated to lowering renal inflammation, with decrease in pro-inflammatory cytokines and matrix metalloproteinase expression, reduced tubular degeneration, and protection against oxidative stress. Supporting the key role of kallikrein, we demonstrated that aprotinin inhibited effects directly associated with vascular injury, such as the generation of intracellular reactive oxygen species (ROS) and migration of VSMC induced by L. obliqua venom or by diluted plasma obtained from envenomed rats. In addition, kallikrein inhibition also ameliorated venom-induced blood incoagulability and decreased kidney tissue factor expression. CONCLUSIONS/SIGNIFICANCE These data indicated that kallikrein and consequently kinin release have a key role in kidney injury and vascular remodeling. Thus, blocking kallikrein may be a therapeutic alternative to control the progression of venom-induced AKI and vascular disturbances.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - João Alfredo de Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Laboratório de Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Del Giacco SR, Firinu D, Minciullo PL, Barca MP, Manconi PE, Tartarisco G, Cristani M, Saija A, Gangemi S. Oxidative stress markers in patients with hereditary angioedema. Arch Med Sci 2019; 15:92-98. [PMID: 30697258 PMCID: PMC6348350 DOI: 10.5114/aoms.2017.66160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Hereditary angioedema due to C1-INH deficiency (C1-INH-HAE) or with normal C1-INH is characterized by recurrent swellings due to uncontrolled production of vasoactive mediators, among which bradykinin (BK) is crucial. Through the binding and activation of the two human BK-receptors, kinins may have dual beneficial and deleterious effects in vascular and inflammation physiopathology by inducing oxidative stress. We aimed to assess the serum concentrations of advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs) in patients affected by HAE. MATERIAL AND METHODS Blood samples were collected to measure the serum concentrations of AGEs and AOPPs by spectrofluorimetric and spectrophotometric methods in patients affected by C1-INH-HAE and FXII-HAE during the remission state. RESULTS We showed that the circulating levels of AOPPs observed on control group (0.94 (0.36) nmol/mg) were significantly lower than those observed on the C1-INH-HAE group (1.68 (0.47) nmol/mg; p = 0.002) and FXII-HAE (1.50 (0.27) nmol/mg; p = 0.001). Moreover, the circulating levels of AGEs were significantly higher in C1-INH-HAE group (211.58 (151.05) AU/g; p = 0.02) than the FXII group (141.48 (89.59) AU/g), thus demonstrating a state of heightened oxidative stress. CONCLUSIONS Our observations show additional underlying events involved in HAE and are of central importance for further investigations of differences in bradykinin receptors signaling among the two disease subgroups.
Collapse
Affiliation(s)
| | - Davide Firinu
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paola Lucia Minciullo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Pina Barca
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paolo Emilio Manconi
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR) – Institute of Applied Science and Intelligent System (ISASI), Messina Unit, Messina, Italy
| | - Mariateresa Cristani
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Wu M, Yang Y, Wang M, Zeng F, Li Q, Liu W, Guo S, He M, Wang Y, Huang J, Zhou L, Li Y, Hu J, Gong W, Zhang Z. Exogenous Pancreatic Kallikrein Improves Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetes. Front Pharmacol 2018; 9:855. [PMID: 30131697 PMCID: PMC6091235 DOI: 10.3389/fphar.2018.00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aims: To evaluate the protective effects of exogenous pancreatic kallikrein (PKK) treatment on diabetic cardiomyopathy (DCM) and explore the underlying mechanisms. Methods and Results: Streptozotocin (STZ)-induced diabetic rats, a type 1 diabetic model, were treated with either PKK or saline for 12 weeks. Non-diabetic rats were used as controls. PKK administration attenuated the mitochondria swelling, Z line misalignments, myofibrosis and interstitial collagen accumulation in diabetic myocardial tissue. The oxidative stress imbalance including increased nitrotyrosine, decreased anti-oxidative components such as nuclear receptor nuclear factor like 2 (Nrf2), glutathione peroxidase 1(GPx-1), catalase (CAT) and superoxide dismutase (SOD), were recovered in the heart of PKK-treated diabetic rats. In diabetic rats, protein expression of TGF-β1 and accumulation of collagen I in the heart tissues was decreased after PKK administration. Markers for inflammation were decreased in diabetic rats by PKK treatment. Compared to diabetic rats, PKK reversed the degradation of IκB-α, an inhibitive element of heterotrimer nuclear factor kappa B (NF-κB). The endothelial nitric oxide synthase (eNOS) protein and myocardial nitrate/nitrite were impaired in the heart of diabetic rats, which, however, were restored after PKK treatment. The sarcoplasmic reticulum Ca2+-ATPase 2 (SERCA2) and phospholamban (PLN) were mishandled in diabetic rats, while were rectified in PKK-treated diabetic rats. The plasma NT-proBNP level was increased in diabetic rats while was reduced with PKK treatment. Conclusion: PKK protects against DCM via reducing fibrosis, inflammation, and oxidative stress, promoting nitric oxide production, as well as restoring the function of the calcium channel.
Collapse
Affiliation(s)
- Meng Wu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zeng
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin Li
- Division of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Liu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Shizhe Guo
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Min He
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Yi Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Changzhou Qianhong Biopharma Co., Ltd., Changzhou, China
| | - Linuo Zhou
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Tang Z, Cui K, Luan Y, Ruan Y, Wang T, Yang J, Wang S, Liu J, Wang D. Human tissue kallikrein 1 ameliorates erectile function via modulation of macroautophagy in aged transgenic rats. Andrology 2018; 6:766-774. [PMID: 29939496 DOI: 10.1111/andr.12512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/03/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Previously, we have demonstrated that human tissue kallikrein 1 (hKLK1) improves age-related erectile dysfunction (ED). Autophagy has been implicated in age-related diseases, including ED. However, the molecular mechanisms underlying hKLK1-mediated amelioration of age-related ED via regulation of autophagy remains unknown. To explore the potential mechanism, male wild-type Sprague-Dawley rats (WTR) and transgenic rats harboring human KLK1 (TGR) were bred till 4 or 18 months of age and divided into three groups: young WTR (yWTR) as the control group, aged WTR (aWTR) group, and aged TGR (aTGR) group. The erectile function of each rat was evaluated using cavernous nerve electrostimulation. The ratio of intracavernous pressure/mean arterial pressure (ICP/MAP) and total ICP were also measured. Western blotting, immunohistochemistry, and transmission electron microscopy were performed to detect the levels of autophagy. The expression levels of related signaling pathways were determined by western blotting and immunohistochemistry. We found that hKLK1 improved the impaired erectile function of aged rats. Compared to the yWTR and aTGR groups, the aWTR group showed reduced smooth muscle/collagen ratio, fewer autophagosomes, and lower expression of Beclin 1 and LC3-II, which indicate impaired smooth muscle function and low level of autophagy in the smooth muscle cells. Moreover, the PI3K/Akt/mTOR signaling pathway, which is considered to be a negative regulator of autophagy, was upregulated in the aWTR group. hKLK1 may partially restore erectile function in aged transgenic rats by upregulating protective autophagy via the PI3K/Akt/mTOR pathway. These observations indicate that hKLK1 is a potential gene therapy candidate for age-related ED.
Collapse
Affiliation(s)
- Z Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - K Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - S Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - D Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is one of the most common complications in diabetes mellitus and accounts for a large proportion of clinical nephrology practice. Studies have shown that the kallikrein-kinin system (KKS) may be involved in several pathogenic mechanisms that contribute to DKD, including oxidative stress, inflammatory cytokines, and profibrotic autacoids. This review focuses on recent research advance on the potential role of the KKS in the development of DKD and its clinical relevance. RECENT FINDINGS A number of recent studies support the idea that there is a protective role of the KKS in diabetes. For example, agents that activate the KKS have shown strong renal protective effects that might highlight its potential to change the clinical practice. In addition, diabetic mice lacking both bradykinin B2 and B1 receptors have worse kidney lesions as compared with wild-type diabetic mice. SUMMARY Current basic research has demonstrated that pharmacological activation of the KKS improves renal outcomes in diabetes. These findings suggest that this system may be a therapeutic target in preventing and treating DKD.
Collapse
|
29
|
Seliga A, Lee MH, Fernandes NC, Zuluaga-Ramirez V, Didukh M, Persidsky Y, Potula R, Gallucci S, Sriram U. Kallikrein-Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation. Front Immunol 2018; 9:156. [PMID: 29456540 PMCID: PMC5801412 DOI: 10.3389/fimmu.2018.00156] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 01/13/2023] Open
Abstract
The Kallikrein–Kinin System (KKS), comprised of kallikreins (klks), bradykinins (BKs) angiotensin-converting enzyme (ACE), and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand), R848 (TLR7 ligand), or recombinant IFN-α to induce interferon-stimulated genes (ISGs) and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein), or captopril (an ACE inhibitor). BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice), and in human PBMCs, especially the induction of Irf7 gene (p < 0.05), the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs). BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10), the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2), suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.
Collapse
Affiliation(s)
- Alecia Seliga
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Michael Hweemoon Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Marta Didukh
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
30
|
Desposito D, Zadigue G, Taveau C, Adam C, Alhenc-Gelas F, Bouby N, Roussel R. Neuroprotective effect of kinin B1 receptor activation in acute cerebral ischemia in diabetic mice. Sci Rep 2017; 7:9410. [PMID: 28842604 PMCID: PMC5572700 DOI: 10.1038/s41598-017-09721-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
Activation of the kallikrein-kinin system enhances cardiac and renal tolerance to ischemia. Here we investigated the effects of selective agonists of kinin B1 or B2 receptor (R) in brain ischemia-reperfusion in diabetic and non-diabetic mice. The role of endogenous kinins was assessed in tissue kallikrein deficient mice (TK−/−). Mice underwent 60min-middle cerebral artery occlusion (MCAO), eight weeks after type 1-diabetes induction. Treatment with B1R-, B2R-agonist or saline was started at reperfusion. Neurological deficit (ND), infarct size (IS), brain water content (BWC) were measured at day 0, 1 and 2 after injury. MCAO induced exaggerated ND, mortality and IS in diabetic mice. B2R-agonist increased ND and mortality to 60% and 80% in non-diabetic and diabetic mice respectively, by mechanisms involving hemodynamic failure and renal insufficiency. TK−/− mice displayed reduced ND and IS compared to wild-type littermate, consistent with suppression of B2R activity. B1R mRNA level increased in ischemic brain but B1R-agonist had no effect on ND, mortality or IS in non-diabetic mice. In contrast, in diabetic mice, B1R-agonist tested at two doses significantly reduced ND by 42–52% and IS by 66–71%, without effect on BWC or renal function. This suggests potential therapeutic interest of B1R agonism for cerebral protection in diabetes.
Collapse
Affiliation(s)
- Dorinne Desposito
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | | | - Christopher Taveau
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Clovis Adam
- Anatomopathology Department, Kremlin-Bicêtre Hospital, Paris, France
| | - François Alhenc-Gelas
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Nadine Bouby
- INSERM U 1138, Cordeliers Research Center, Paris, France. .,Paris Descartes University, Paris, France. .,Pierre et Marie Curie University, Paris, France.
| | - Ronan Roussel
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Denis Diderot University, Paris, France.,Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Bichat Hospital, AP-HP, Paris, France
| |
Collapse
|
31
|
Desposito D, Waeckel L, Potier L, Richer C, Roussel R, Bouby N, Alhenc-Gelas F. Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications. Biol Chem 2017; 397:1217-1222. [PMID: 27622831 DOI: 10.1515/hsz-2016-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/19/2016] [Indexed: 11/15/2022]
Abstract
Genetic and pharmacological studies, clinical and experimental, focused on kallikrein-K1, kinin receptors and ACE/kininase II suggest that kinin release in the settings of ischemia or diabetes reduces organ damage, especially in the heart and kidney. Kinin bioavailability may be a limiting factor for efficacy of current kinin-potentiating drugs, like ACE inhibitors. Primary activation of kinin receptors by prototypic pharmacological agonists, peptidase-resistant, selective B1 or B2, displays therapeutic efficacy in experimental cardiac and peripheral ischemic and diabetic diseases. B1R agonism was especially efficient in diabetic animals and had no unwanted effects. Clinical development of kinin receptor agonists may be warranted.
Collapse
|
32
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
33
|
The role of the kallikrein-kinin system, matrix metalloproteinases, and tissue inhibitors of metalloproteinases in the early restenosis of covered stents in the femoropopliteal arterial segment. J Vasc Surg 2017; 65:119-127. [DOI: 10.1016/j.jvs.2016.06.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/21/2016] [Indexed: 11/23/2022]
|
34
|
Abstract
Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling.
Collapse
Affiliation(s)
- Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | - L Bortolotto
- Heart Institute-Hypertension Unit, Medical School University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development. Particular progress has also been made in the visualization of tubuloglomerular feedback. SUMMARY The review summarizes our current understanding of pathway functions in health and disease, as well as future therapeutic options to protect the healthy and injured kidney.
Collapse
Affiliation(s)
- David A. Ferenbach
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph V. Bonventre
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Visconti L, Santoro D, Cernaro V, Buemi M, Lacquaniti A. Kidney-lung connections in acute and chronic diseases: current perspectives. J Nephrol 2016; 29:341-348. [PMID: 26940339 DOI: 10.1007/s40620-016-0276-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/30/2016] [Indexed: 02/06/2023]
Abstract
Lung and kidney functions are intimately related in both health and disease. The regulation of acid-base equilibrium, modification of partial pressure of carbon dioxide and bicarbonate concentration, and the control of blood pressure and fluid homeostasis all closely depend on renal and pulmonary activities. These interactions begin in fetal age and are often responsible for the genesis and progression of diseases. In gestational age, urine is a fundamental component of the amniotic fluid, acting on pulmonary maturation and growth. Moreover, in the first trimester of pregnancy, kidney is the main source of proline, contributing to collagen synthesis and lung parenchyma maturation. Pathologically speaking, the kidneys could become damaged by mediators of inflammation or immuno-mediated factors related to a primary lung pathology or, on the contrary, it could be the renal disease that determines a consecutive pulmonary damage. Furthermore, non immunological mechanisms are frequently involved in renal and pulmonary diseases, as observed in chronic pathologies such as sleep apnea syndrome, pulmonary hypertension, progressive renal disease and hemodialysis. Kidney damage has also been related to mechanical ventilation. The aim of this review is to describe pulmonary-renal interactions and their related pathologies, underscoring the need for a close collaboration between intensivists, pneumologists and nephrologists.
Collapse
Affiliation(s)
- Luca Visconti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Valeria Cernaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michele Buemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Lacquaniti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
37
|
Yarovaya GA, Neshkova EA. [Kallikrein-Kinin System. Long History and Present. (To 90th Anniversary of Discovery of the System)]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:275-91. [PMID: 26502604 DOI: 10.1134/s1068162015030115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The kallikrein-kinin system (KKS) is the key proteolytic system participating in control of a wide spectrum of physiological functions and the development of many pathological conditions. This explains great interest in structures, functions and molecular biology of separate components of the system, molecular mechanisms of their interaction and relationship with other regulatory systems. The information in this field for the last two decades clarifies the role of KKS in morphogenesis of cells, regulation of smooth muscular contractility of some organs, decrease of blood pressure, increase of vascular permeability, the development of inflammation, transformation of cells and the other functions of both physiological and pathological processes. Essential progress in understanding of functions KKS was made by the discovery and study of bradykinin receptors, cloning of kininogen and kallikrein encoding genes, revealing of domain structure of kininogen, prekallikrein and some kininases and decoding of mechanisms of contact phase of proteolytic system activation in blood plasma.
Collapse
|
38
|
Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond) 2015; 130:45-56. [PMID: 26443866 DOI: 10.1042/cs20150295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/06/2015] [Indexed: 01/11/2023]
Abstract
Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.
Collapse
|
39
|
Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets. BMC Genomics 2015; 16 Suppl 5:S11. [PMID: 26040285 PMCID: PMC4460676 DOI: 10.1186/1471-2164-16-s5-s11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. METHODS We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. RESULTS Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. CONCLUSIONS Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis.
Collapse
|
40
|
Mamenko M, Zaika O, Boukelmoune N, Madden E, Pochynyuk O. Control of ENaC-mediated sodium reabsorption in the distal nephron by Bradykinin. VITAMINS AND HORMONES 2015; 98:137-154. [PMID: 25817868 DOI: 10.1016/bs.vh.2014.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Kinins, such as Bradykinin (BK), are peptide hormones of the kallikrein-kinin system. Apart from being a vasodilator, BK also increases urinary sodium excretion to reduce systemic blood pressure. It is becoming appreciated that BK modulates function of the epithelial Na(+) channel in the distal part of the renal nephron to affect tubular sodium reabsorption. In this chapter, we outline the molecular details, as well as discuss the physiological relevance of this regulation for the whole organism sodium homeostasis and setting chronic blood pressure.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eric Madden
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
41
|
Regoli D, Gobeil F. Critical insights into the beneficial and protective actions of the kallikrein-kinin system. Vascul Pharmacol 2015; 64:1-10. [PMID: 25579779 DOI: 10.1016/j.vph.2014.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
Abstract
Hypertension is characterized by an imbalance between the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II AT-1 receptor antagonists (also known as sartans or ARBs) are potent modulators of these systems and are highly effective as first-line treatments for hypertension, diabetic nephropathies, and diseases of the brain and coronary arteries. However, these agents are mechanistically distinct and should not be considered interchangeable. In this mini-review, we provide novel insights into the often neglected roles of the KKS in the beneficial, protective, and reparative actions of ACEIs. Indeed, ACEIs are the only antihypertensive drugs that properly reduce the imbalance between the RAS and the KKS, thereby restoring optimal cardiovascular homeostasis and significantly reducing morbidity and the risk of all-cause mortality among individuals affected by hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Domenico Regoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Fernand Gobeil
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4.
| |
Collapse
|
42
|
Arredondo Zamarripa D, Díaz-Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma-Colunga MG, Arnold E, Clapp C, Thebault S. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci 2014; 8:333. [PMID: 25368550 PMCID: PMC4202700 DOI: 10.3389/fncel.2014.00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.
Collapse
Affiliation(s)
- David Arredondo Zamarripa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Nundehui Díaz-Lezama
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Rodrigo Meléndez García
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jesús Chávez Balderas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Norma Adán
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Maria G Ledesma-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Edith Arnold
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Carmen Clapp
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Stéphanie Thebault
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| |
Collapse
|
43
|
Itoh K, Izumi Y, Inoue T, Inoue H, Nakayama Y, Uematsu T, Fukuyama T, Yamazaki T, Yasuoka Y, Makino T, Nagaba Y, Tomita K, Kobayashi N, Kawahara K, Mukoyama M, Nonoguchi H. Expression of three isoforms of Na-K-2Cl cotransporter (NKCC2) in the kidney and regulation by dehydration. Biochem Biophys Res Commun 2014; 453:356-61. [PMID: 25265491 DOI: 10.1016/j.bbrc.2014.09.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b.
Collapse
Affiliation(s)
- Kazuko Itoh
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Takeaki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Yushi Nakayama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Takashi Fukuyama
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Taiga Yamazaki
- Research Center for Medical Environment, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Makino
- Department of Nephrology, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yasushi Nagaba
- Department of Nephrology, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Kimio Tomita
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Noritada Kobayashi
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Hiroshi Nonoguchi
- Department of Internal Medicine and Education & Research Center, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan.
| |
Collapse
|
44
|
Maneva-Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, Charles ML, Williams MS, Robbins MS, Savinov AY. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS One 2014; 9:e107213. [PMID: 25259810 PMCID: PMC4178025 DOI: 10.1371/journal.pone.0107213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022] Open
Abstract
The kallikrein-kinin system (KKS) comprises a cascade of proteolytic enzymes and biogenic peptides that regulate several physiological processes. Over-expression of tissue kallikrein-1 and modulation of the KKS shows beneficial effects on insulin sensitivity and other parameters relevant to type 2 diabetes mellitus. However, much less is known about the role of kallikreins, in particular tissue kallikrein-1, in type 1 diabetes mellitus (T1D). We report that chronic administration of recombinant human tissue kallikrein-1 protein (DM199) to non-obese diabetic mice delayed the onset of T1D, attenuated the degree of insulitis, and improved pancreatic beta cell mass in a dose- and treatment frequency-dependent manner. Suppression of the autoimmune reaction against pancreatic beta cells was evidenced by a reduction in the relative numbers of infiltrating cytotoxic lymphocytes and an increase in the relative numbers of regulatory T cells in the pancreas and pancreatic lymph nodes. These effects may be due in part to a DM199 treatment-dependent increase in active TGF-beta1. Treatment with DM199 also resulted in elevated C-peptide levels, elevated glucagon like peptide-1 levels and a reduction in dipeptidyl peptidase-4 activity. Overall, the data suggest that DM199 may have a beneficial effect on T1D by attenuating the autoimmune reaction and improving beta cell health.
Collapse
Affiliation(s)
- Lilia Maneva-Radicheva
- Sanford Project/Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Christina Amatya
- Sanford Project/Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Camille Parker
- Sanford Project/Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Jacob Ellefson
- Sanford Project/Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Ilian Radichev
- Sanford Project/Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Arvind Raghavan
- DiaMedica USA, Inc., Minneapolis, Minnesota, United States of America
- * E-mail: (AR); (AYS)
| | | | - Mark S. Williams
- DiaMedica USA, Inc., Minneapolis, Minnesota, United States of America
| | - Mark S. Robbins
- DiaMedica USA, Inc., Minneapolis, Minnesota, United States of America
| | - Alexei Y. Savinov
- Sanford Project/Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- * E-mail: (AR); (AYS)
| |
Collapse
|
45
|
Angiotensin converting enzyme is involved in the cardiac hypertrophy induced by sinoaortic denervation in rats. Cardiovasc Pathol 2014; 24:41-8. [PMID: 25261879 DOI: 10.1016/j.carpath.2014.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/11/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The present study was designed to test the hypothesis that local angiotensin converting enzyme (ACE) was involved in the cardiac hypertrophy induced by sinoaortic denervation (SAD) in rats. METHODS Experiment 1: Six weeks after SAD of rats, components of renin-angiotensin system (RAS) in left ventricles were assayed by quantitative real-time PCR and Western blotting analysis. Experiment 2: Rats were divided into five groups treated as follows: (1) sham-operated group; (2) SAD group; (3) SAD group treated with angiotensin II type 1 receptor (AT1R) antagonist losartan (10 mg·kg(-1)·day(-1), orally); (4) SAD group treated by ACE inhibitor ramipril (1 mg·kg(-1)·day(-1), orally); (5) SAD group treated by ramipril and the B2-kinin receptor selective antagonist HOE-140 (0.25 mg·kg(-1)·day(-1), subcutaneously). RESULTS SAD led to augmentation of the mRNA levels and protein expression of left ventricular ACE and AT1R. Both losartan and ramipril ameliorated SAD-induced left ventricular hypertrophy. Both losartan and ramipril abated oxidative stress, suppressed inflammation, and reduced expression TGFβ-R in left ventricles. In addition, the protective effect of ramipril could be abolished by HOE-140. CONCLUSION Local ACE is involved in the left ventricular hypertrophy induced by sinoaortic denervation in rats, via both angiotensin II/AT1R and bradykinin/B2R pathways.
Collapse
|
46
|
Yiu KH, Tse HF. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function. Arterioscler Thromb Vasc Biol 2014; 34:1136-43. [PMID: 24743430 DOI: 10.1161/atvbaha.114.302192] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The disease burden of diabetes mellitus (DM) and its associated cardiovascular complications represent a growing and major global health problem. Recent studies suggest that circulating exogenous endothelial progenitor cells (EPCs) play an important role in endothelial repair and neovascularization at sites of injury or ischemia. Both experimental and clinical studies have demonstrated that hyperglycemia related to DM can induce alterations to EPCs. The reduction and dysfunction of EPCs related to DM correlate with the occurrence and severity of microvascular and macrovascular complications, suggesting a close mechanistic link between EPC dysfunction and impaired vascular function/repair in DM. These alterations to EPCs, likely mediated by multiple pathophysiological mechanisms, including inflammation, oxidative stress, and alterations in Akt and the nitric oxide pathway, affect EPCs at multiple stages: differentiation and mobilization in the bone marrow, trafficking and survival in the circulation, and homing and neovascularization. Several different therapeutic approaches have consequently been proposed to reverse the reduction and dysfunction of EPCs in DM and may represent a novel therapeutic approach to prevent and treat DM-related cardiovascular complications.
Collapse
Affiliation(s)
- Kai-Hang Yiu
- From the Division of Cardiology, Department of Medicine, Queen Mary Hospital (K.-H.Y., H.-F.T.) and Shenzhen Institute of Research and Innovation (H.-F.T.), University of Hong Kong, Hong Kong, China; and Research Centre of Heart, Brain, Hormone, and Healthy Aging (K.-H.Y., H.-F.T.) and Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine (H.-F.T.), Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- From the Division of Cardiology, Department of Medicine, Queen Mary Hospital (K.-H.Y., H.-F.T.) and Shenzhen Institute of Research and Innovation (H.-F.T.), University of Hong Kong, Hong Kong, China; and Research Centre of Heart, Brain, Hormone, and Healthy Aging (K.-H.Y., H.-F.T.) and Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine (H.-F.T.), Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Zhang Q, Ran X, Wang DW. Relation of plasma tissue kallikrein levels to presence and severity of coronary artery disease in a Chinese population. PLoS One 2014; 9:e91780. [PMID: 24626253 PMCID: PMC3953537 DOI: 10.1371/journal.pone.0091780] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
Objectives Tissue kallikrein (TK) has been shown to provide cardiovascular and cerebrovascular protective effects in animal models. The aim of this study was to investigate the relationship of plasma TK levels with the presence and severity of coronary artery disease (CAD) in the Chinese. Methods The study involved 898 consecutive CAD patients and 905 ethnically and geographically matched controls. CAD was angiographically confirmed in all the patients, and the severity of CAD was expressed by the number of affected vessel and coronary artery stenosis scores. Plasma TK levels were measured using an enzyme-linked immunosorbent assay. Results Plasma TK levels were significantly higher in CAD patients than controls (0.347±.082 vs. 0.256±0.087 mg/L, P<0.001), and elevated plasma TK levels were directly associated with a higher risk of CAD (OR = 3.49, 95% CI 2.90–4.19). One-way ANOVA and multivariable stepwise linear regression analysis demonstrated that TK levels were negatively associated with the severity of CAD according to vessel scores (P<0.001) and stenosis scores (r = −0.211, p<0.001). Conclusions Our findings suggest that higher levels of TK in plasma are associated with the presence of CAD and are a predictor of mild coronary arteriosclerosis.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ran
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
48
|
Girolami JP, Blaes N, Bouby N, Alhenc-Gelas F. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:145-196. [PMID: 25130042 DOI: 10.1007/978-3-319-06683-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.
Collapse
|
49
|
Delemasure S, Blaes N, Richard C, Couture R, Bader M, Dutartre P, Girolami JP, Connat JL, Rochette L. Antioxidant/oxidant status and cardiac function in bradykinin B(1)- and B(2)-receptor null mice. Physiol Res 2013; 62:511-7. [PMID: 24020815 DOI: 10.33549/physiolres.932496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Kinin-vasoactive peptides activate two G-protein-coupled receptors (R), B(1)R (inducible) and B(2)R (constitutive). Their complex role in cardiovascular diseases could be related to differential actions on oxidative stress. This study investigated impacts of B(1)R or B(2)R gene deletion in mice on the cardiac function and plasma antioxidant and oxidant status. Echocardiography-Doppler was performed in B(1)R (B(1)R(-/-)) and B(2)R (B(2)R(-/-)) deficient and wild type (WT) adult male mice. No functional alteration was observed in B(2)R(-/-) hearts. B(1)R(-/-) mice had significantly lowered fractional shortening and increased isovolumetric contraction time. The diastolic E and A waves velocity ratio was similar in all mice groups. Thus B(1)R(-/-) mice provide a model of moderate systolic dysfunction, whereas B(2)R(-/-) mice displayed a normal cardiac phenotype. Plasma antioxidant capacity (ORAC) was significantly decreased in both B(1)R(-/-) and B(2)R(-/-) mice whereas the vitamin C levels were decreased in B(2)R(-/-) mice only. Plasma ascorbyl free radical was significantly higher in B(1)R(-/-) compared to WT and B(2)R(-/-) mice. Therefore, the oxidative stress index, ascorbyl free radical to vitamin C ratio, was increased in both B(1)R(-/-) and B(2)R(-/-) mice. Hence, B(1)R and B(2)R deficiency are associated with increased oxidative stress, but there is a differential imbalance between free radical production and antioxidant defense. The interrelationship between the differential B(1)R and B(2)R roles in oxidative stress and cardiovascular diseases remain to be investigated.
Collapse
Affiliation(s)
- S Delemasure
- COHIRO Biotechnology, Faculty of Medicine, Dijon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Desouza CV. Does drug therapy reverse endothelial progenitor cell dysfunction in diabetes? J Diabetes Complications 2013; 27:519-25. [PMID: 23809765 DOI: 10.1016/j.jdiacomp.2013.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 12/17/2022]
Abstract
Endothelial progenitor cells (EPCs) are vital for the maintenance and repair of the endothelium. Decreased EPC number and function have been associated with increased cardiovascular (CVD) risk. Patients with diabetes have decreased number of circulating EPCs and decreased EPC function. This may account for some of the increased CVD risk seen in patients with diabetes that is not explained by traditional risk factors such as glycemic control, dyslipidemia and hypertension. Recent studies seem to indicate that drugs commonly used in diabetes patients such as metformin, thiazolidinediones, GLP-1 agonists, DPP-4 inhibitors, insulin, statins and ACE inhibitors may increase EPC number and improve EPC function. The mechanisms by which these drugs modulate EPC function may involve reduction in inflammation, oxidative stress and insulin resistance as well as an increase in nitric oxide (NO) bioavailability. This review will discuss the evidence in the literature regarding the above mentioned topics.
Collapse
Affiliation(s)
- Cyrus V Desouza
- Omaha VA Medical Center, Omaha, NE, USA; University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|