1
|
Liu M, Wang Y, Shi W, Yang C, Wang Q, Chen J, Li J, Chen B, Sun G. PCDH7 as the key gene related to the co-occurrence of sarcopenia and osteoporosis. Front Genet 2023; 14:1163162. [PMID: 37476411 PMCID: PMC10354703 DOI: 10.3389/fgene.2023.1163162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 07/22/2023] Open
Abstract
Sarcopenia and osteoporosis, two degenerative diseases in older patients, have become severe health problems in aging societies. Muscles and bones, the most important components of the motor system, are derived from mesodermal and ectodermal mesenchymal stem cells. The adjacent anatomical relationship between them provides the basic conditions for mechanical and chemical signals, which may contribute to the co-occurrence of sarcopenia and osteoporosis. Identifying the potential common crosstalk genes between them may provide new insights for preventing and treating their development. In this study, DEG analysis, WGCNA, and machine learning algorithms were used to identify the key crosstalk genes of sarcopenia and osteoporosis; this was then validated using independent datasets and clinical samples. Finally, four crosstalk genes (ARHGEF10, PCDH7, CST6, and ROBO3) were identified, and mRNA expression and protein levels of PCDH7 in clinical samples from patients with sarcopenia, with osteoporosis, and with both sarcopenia and osteoporosis were found to be significantly higher than those from patients without sarcopenia or osteoporosis. PCDH7 seems to be a key gene related to the development of both sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongheng Wang
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Shi
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyao Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Kong H, Song Q, Hu W, Guo S, Xiang D, Huang S, Xu X, He J, Pan L, Tao R, Yu H, Huang J. MicroRNA-29a-3p prevents Schistosoma japonicum-induced liver fibrosis by targeting Roundabout homolog 1 in hepatic stellate cells. Parasit Vectors 2023; 16:184. [PMID: 37280619 DOI: 10.1186/s13071-023-05791-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Schistosomiasis is a serious but neglected parasitic disease in humans that may lead to liver fibrosis and death. Activated hepatic stellate cells (HSCs) are the principal effectors that promote the accumulation of extracellular matrix (ECM) proteins during hepatic fibrosis. Aberrant microRNA-29 expression is involved in the development of fibrotic diseases. However, less is known about the role of miR-29 in Schistosoma japonicum (S. japonicum)-induced hepatic fibrosis. METHODS The levels of microRNA-29a-3p (miR-29a-3p) and Roundabout homolog 1 (Robo1) were examined in liver tissues during S. japonicum infection. The possible involvement of the miR-29a-3p-Robo1 signaling pathway was determined. We used MIR29A conditional knock-in mice and mice injected with an miR-29a-3p agomir to investigate the role of miR-29a-3p in schistosomiasis-induced hepatic fibrosis. The functional contributions of miR-29a-3p-Robo1 signaling in liver fibrosis and HSC activation were investigated using primary mouse HSCs and the human HSC cell line LX-2. RESULTS MiR-29a-3p was downregulated in humans and mice with schistosome-induced fibrosis, and Robo1 was upregulated in liver tissues. The miR-29a-3p targeted Robo1 and negatively regulated its expression. Additionally, the expression level of miR-29a-3p in schistosomiasis patients was highly correlated with the portal vein and spleen thickness diameter, which represent the severity of fibrosis. Furthermore, we demonstrated that efficient and sustained elevation of miR-29a-3p reversed schistosome-induced hepatic fibrosis. Notably, we showed that miR-29a-3p targeted Robo1 in HSCs to prevent the activation of HSCs during infection. CONCLUSIONS Our results provide experimental and clinical evidence that the miR-29a-3p-Robo1 signaling pathway in HSCs plays an important role in the development of hepatic fibrosis. Therefore, our study highlights the potential of miR-29a-3p as a therapeutic intervention for schistosomiasis and other fibrotic diseases.
Collapse
Affiliation(s)
- Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqin Song
- Cancer Institute, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wenjiang Hu
- Department of Gastroenterology, The People's Hospital of Jianshi, Enshi, China
| | - Shusen Guo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Xiang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaiwen Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinan He
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanyue Pan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijing Yu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Park JS, Cho R, Kang EY, Oh YM. Effect of Slit/Robo signaling on regeneration in lung emphysema. Exp Mol Med 2021; 53:986-992. [PMID: 34035465 PMCID: PMC8178402 DOI: 10.1038/s12276-021-00633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/01/2022] Open
Abstract
Emphysema, a pathological component of chronic obstructive pulmonary disease, causes irreversible damage to the lung. Previous studies have shown that Slit plays essential roles in cell proliferation, angiogenesis, and organ development. In this study, we evaluated the effect of Slit2 on the proliferation and migration of mouse lung epithelial cells and its role in regeneration in an emphysema lung mouse model. Here, we have shown that Slit2/Robo signaling contributes to the regeneration of lungs damaged by emphysema. Mouse epithelial lung cells treated with Slit2 exhibited increased proliferation and migration in vitro. Our results also showed that Slit2 administration improved alveolar regeneration in the emphysema mouse model in vivo. Furthermore, Slit2/Robo signaling increased the phosphorylation of ERK and Akt, which was mediated by Ras activity. These Slit2-mediated cellular signaling processes may be involved in the proliferation and migration of mouse lung epithelial cells and are also associated with the potential mechanism of lung regeneration. Our findings suggest that Slit2 administration may be beneficial for alveolar regeneration in lungs damaged by emphysema. A protein called Slit2 may help in treating emphysema by promoting regeneration of cells that line the tiny air sacs called alveoli in the lungs. In the alveoli, oxygen is transferred from the lungs to the blood. In emphysema, the alveoli become damaged, reducing patients’ ability to exhale ‘old’ air and limiting capacity to breathe in fresh, oxygen-rich air. No treatments are available. Yeon-Mok Oh at the University of Ulan College of Medicine, Seoul, South Korea and co-workers investigated whether Slit2, known to be involved in nervous system development, cell proliferation, and migration, could aid in regenerating lung cells. Testing in mouse lung cells produced increased proliferation and migration. Further testing in a mouse model of emphysema showed that the alveoli could regenerate. These results hold promise for developing new treatments for emphysema.
Collapse
Affiliation(s)
| | | | | | - Yeon-Mok Oh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
5
|
Huang G, Wang S, Yan J, Li C, Feng J, Chen Q, Zheng X, Li H, He Y, Young AJ, Li H, Li W, Li J, Wang L. Depression-/Anxiety-Like Behavior Alterations in Adult Slit2 Transgenic Mice. Front Behav Neurosci 2021; 14:622257. [PMID: 33613201 PMCID: PMC7892588 DOI: 10.3389/fnbeh.2020.622257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Slit2 is a member of the Slit family of secreted glycoproteins that plays highly conserved roles in neuronal axon guidance and cellular migration. Our previous experimental results showed Alzheimer's disease-like alterations and increased permeability of the blood–brain barrier in Slit2-overexpressing transgenic (Slit2-Tg) mice aged 8–9 months. Nevertheless, relatively little is known about behavioral alterations in adult Slit2-Tg mice (2–6 months of age). To observe the age-related behavioral effects of Slit2 overexpression in adult mice, we performed a battery of behavioral tests with adult Slit2-Tg mice at 2–6 months of age. Results: The body weight of Slit2-Tg mice was lower than that of the wild-type mice from 15 weeks of age. Compared with the control mice, depression-like behaviors were found in Slit2-Tg mice from 15 to 21 weeks of age in the sucrose preference test, although Slit2-Tg mice were hyperactive in the tail suspension test. The anxiety-like behaviors were found in Slit2-Tg mice in the open field test, as well as increased locomotor activity. The anxiety-like behaviors were also found in adult Slit2-Tg mice in the elevated plus maze. Compared to wild-type mice at 23 weeks old, impairment of the hippocampal neurons were found in Slit2-Tg mice at the same age in hematoxylin–eosin staining (H&E), including some eccentric dispersion and expansion of neuronal bodies. In addition, the messenger RNA (mRNA) expression of TNF-α was elevated in the hippocampus of adult Slit2-Tg mice. Conclusions: Slit2 overexpression causes depression-/anxiety-like behaviors in adult mice that may be related to an increase in inflammatory factors and damage to hippocampal neurons.
Collapse
Affiliation(s)
- Guilan Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sheng Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changxi Li
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianwen Feng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaomeng Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huimin Li
- Department of Applied Psychology, School of Humanities and Communication, Guangdong University of Finance & Economics, Guangzhou, China
| | - Yajun He
- Department of Pathology, Bao'an People's Hospital of Shenzhen, Guangdong, China
| | | | - Haobin Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weidong Li
- School of Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Qian C, Xia M, Yang X, Chen P, Ye Q. Long Noncoding RNAs in the Progression of Atherosclerosis: An Integrated Analysis Based on Competing Endogenous RNA Theory. DNA Cell Biol 2020; 40:283-292. [PMID: 33332208 DOI: 10.1089/dna.2020.6106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been increasingly accepted to function importantly in human diseases by serving as competing endogenous RNAs (ceRNAs). To date, the ceRNA mechanisms of lncRNAs in the progression of atherosclerosis (AS) remain largely unclear. On the basis of ceRNA theory, we implemented a multistep computational analysis to construct an lncRNA-mRNA network for AS progression (ASpLMN). The probe reannotation method and microRNA-target interactions from databases were systematically integrated. Three lncRNAs (GS1-358P8.4, OIP5-AS1, and TUG1) with central topological features in the ASpLMN were firstly identified. By using subnetwork analysis, we then obtained two highly clustered modules and one dysregulated module from the ASpLMN network. These modules, sharing three lncRNAs (GS1-358P8.4, OIP5-AS1, and RP11-690D19.3), were significantly enriched in biological pathways such as regulation of actin cytoskeleton, tryptophan metabolism, lysosome, and arginine and proline metabolism. In addition, random walking in the ASpLMN network indicated that lncRNA RP1-39G22.7 and MBNL1-AS1 may also play an essential role in the pathology of AS progression. The identified six lncRNAs from the aforementioned steps could distinguish advanced- from early-staged AS, with a strong diagnostic power for AS occurrence. In conclusion, the results of this study will improve our understanding about the ceRNA-mediated regulatory mechanisms in AS progression, and provide novel lncRNAs as biomarkers or therapeutic targets for acute cardiovascular events.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Meng Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xueying Yang
- Department of Medical Records, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Pengfei Chen
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
7
|
Zhu J, Chen G. Protective effect of FOXP3-mediated miR-146b-5p/Robo1/NF-κB system on lipopolysaccharide-induced acute lung injury in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1651. [PMID: 33490163 PMCID: PMC7812239 DOI: 10.21037/atm-20-7703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background As a key transcription factor, forkhead box protein 3 (FOXP3) plays an important role in the development and function of natural cluster of differentiation 4 [CD4 (+)] regulatory T cells (Treg cells). However, the function of FOXP3 in Lipopolysaccharide (LPS)-induced acute lung injury (ALI) through regulating miR-146b-5p is unclear. This research aimed to disclose the regulatory effect of the FOXP3-mediated miR-146b-5p/Roundabout 1 (Robo1)/NF-κB system on LPS-induced ALI in mice. Methods The mice were subjected to 5 mg/kg of LPS via intratracheal instillation to induce ALI and generate the ALI model. Mice was divided into five group, including control group, ALI group, ALI + FOXP3 group, the ALI + miR antagomir group and ALI + miR antagomir+ FOXP3 group. Lung tissue injury were detected by hematoxylin and eosin (HE) staining. Lung wet/dry weight ratio, total cells in bronchoalveolar lavage fluid (BALF), total protein in BALF and the polymorphonuclear leukocyte (PMN) in BALF were detected. The levels of tumor necrosis factor-α (TNF-α), Interleukin 6 (IL-6) and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA) kit. The dual-luciferase reporter assay were used to detect the target relationship between FOXP3 and Robo1. Mice was divided into five group, including control group, ALI group, ALI + FOXP3 group, ALI + Robo1 group and ALI + FOXP3+ Robo1 group. The protein levels of FOXP3, Robo1 and p-p65 were detected by western bolt. The mRNA levels of miR-146b-5p and Robo1 were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Although protein expression levels of FOXP3 were significantly down-regulated in the ALI model, the increased FOXP3 levels promoted an increase in miR-146b-5p. Compared with the control group, the ALI model group exhibited severe histopathologic injury, such as thickening of the alveolar wall, pulmonary congestion, and decreased alveolar numbers. By mediating the overexpression of miR-146b-5p, FOXP3 also increased alveolar clearance and inhibited inflammatory responses in the ALI model. Importantly, Robo1 is a potential target of miR-146b-5p. Conclusions FOXP3 could inhibit NF-κB activation, reduce lung pathological damage, and inhibit inflammatory responses by mediating the miR-146b-5p/Robo1/NF-κB system in the ALI model. These results may provide a new potential target for the treatment of ALI disease.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Respiratory and Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University Hospital of Electronic Science & Technology of China, Chengdu, China
| | - Gaoli Chen
- Department of Blood Transfusion, Teaching Hospital of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
8
|
Sherchan P, Travis ZD, Tang J, Zhang JH. The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opin Ther Targets 2020; 24:805-818. [PMID: 32378435 PMCID: PMC7529836 DOI: 10.1080/14728222.2020.1766445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA and Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
9
|
Romano E, Manetti M, Rosa I, Fioretto BS, Ibba-Manneschi L, Matucci-Cerinic M, Guiducci S. Slit2/Robo4 axis may contribute to endothelial cell dysfunction and angiogenesis disturbance in systemic sclerosis. Ann Rheum Dis 2018; 77:1665-1674. [PMID: 30021803 DOI: 10.1136/annrheumdis-2018-213239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE In systemic sclerosis (SSc), early microvascular injury is followed by impaired angiogenesis and peripheral capillary loss. Here, we investigated the possible contribution of the neurovascular guidance molecule Slit2 and its Roundabout (Robo) receptors to SSc-related endothelial cell dysfunction. METHODS Circulating Slit2 levels were measured in patients with SSc and healthy controls. Slit2, Robo1 and Robo4 expression was investigated in SSc and healthy skin biopsies and explanted dermal microvascular endothelial cells (MVECs). Slit2/Robo4 function in MVEC angiogenesis was studied by cell viability, wound healing and capillary-like tube formation assays. RESULTS Circulating Slit2 was significantly increased in either SSc or patients with a very early diagnosis of SSc (VEDOSS) compared with controls. Interestingly, serum Slit2 levels were raised in patients with VEDOSS with nailfold videocapillaroscopy (NVC) abnormalities, while they were similar in VEDOSS with normal NVC and controls. In SSc, Slit2 and Robo4 expression was upregulated in clinically affected skin and explanted MVECs in respect to controls. The angiogenic performance of healthy MVECs was significantly reduced after challenge with recombinant human Slit2 or SSc sera. These inhibitory effects were significantly attenuated when SSc sera were preincubated with an anti-Slit2 blocking antibody. In vitro angiogenesis was severely compromised in SSc-MVECs and could be significantly ameliorated by Slit2 neutralisation or ROBO4 gene silencing. Slit2/Robo4 axis interfered with angiogenesis through the inhibition of Src kinase phosphorylation. CONCLUSIONS In SSc, increased circulating levels of Slit2 and activation of the Slit2/Robo4 antiangiogenic axis may contribute to peripheral microangiopathy since the very early phase of the disease.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
10
|
Guan T, Huang K, Liu Y, Hou S, Hu C, Li Y, Zhang J, Zhao J, Zhang J, Wang R, Huang Y. Aristolochic acid inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in human umbilical vein endothelial cells. Toxicol Lett 2018; 300:51-58. [PMID: 30381256 DOI: 10.1016/j.toxlet.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Robo1/Robo2-NCK1/NCK2 signaling pathway controls endothelial cell sprouting and migration induced by Slit2 or VEGF, but whether it is involved in peritubular capillary (PTC) rarefaction of Aristolochic acid nephropathy (AAN) is unclear. In the present study, we evaluated whether AA exerts antiangiogenic effects by targeting this signaling pathways in HUVECs. HUVECs or lentivirus-mediated NCK1-overexpressing HUVECs were stimulated with AA (1, 2 or 3 μg/ml) in the absence or presence of 6 nM Slit2. Our results showed that AAІ (1-3 μg/ml) dose-dependently inhibited the migration and tube formation of HUVECs. This inhibition was in parallel with down-regulated mRNA and protein expression of Slit2/Robo1/Robo2-NCK1/NCK2 signaling pathway. Importantly, overexpression of NCK1 rescued AAІ-impaired angiogenesis, as evidenced by the increase of cell migration and tube formation of HUVECs in response to Slit2. The down-regulation of NCK2 and decreased activation of Rac1 was also restored by overexpression of NCK1. Taken together, our findings show that AA inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in HUVECs, and NCK1 might be a potential agent for vascular remodeling in AAN and diseases associated with impaired angiogenesis.
Collapse
Affiliation(s)
- Tao Guan
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Ke Huang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yuanyuan Liu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Shihui Hou
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Chengfang Hu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Yi Li
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jingbo Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jun Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Rupeng Wang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yunjian Huang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
11
|
Li G, He X, Li H, Wu Y, Guan Y, Liu S, Jia H, Li Y, Wang L, Huang R, Pei Z, Lan Y, Zhang Y. Overexpression of Slit2 improves function of the paravascular pathway in the aging mouse brain. Int J Mol Med 2018; 42:1935-1944. [PMID: 30085336 PMCID: PMC6108881 DOI: 10.3892/ijmm.2018.3802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with impairment of the paravascular pathway caused by the activation of astrocytes and depolarization of protein aquaporin-4 (AQP4) water channels, resulting in the accumulation of protein waste, including amyloid β (Aβ), in the brain parenchyma. The secreted glycoprotein slit guidance ligand 2 (Slit2) is important in regulating the function of the central nervous system and inflammatory response process. In the present study, 15-month-old Slit2 overexpression transgenic mice (Slit2-Tg mice) and two-photon fluorescence microscopy were used to evaluate the dynamic clearance of the paravascular pathway and the integrity of the blood-brain barrier (BBB). The reactivity of astrocytes, polarity of AQP4 and deposition of Aβ in the brain parenchyma were analyzed by immunofluorescence. A Morris water maze test was used to examine the effect of Slit2 on spatial memory cognition in aging mice. It was found that the overexpression of Slit2 improved the clearance of the paravascular pathway by inhibiting astrocyte activation and maintaining AQP4 polarity on the astrocytic endfeet in Slit2-Tg mice. In addition, Slit2 restored the disruption of the BBB caused by aging. The accumulation of Aβ was significantly reduced in the brain of Slit2-Tg mice. Furthermore, the water maze experiment showed that Slit2 improved spatial memory cognition in the aging mice. These results indicated that Slit2 may have the potential to be used in the prevention and treatment of neurodegenerative diseases in the elderly.
Collapse
Affiliation(s)
- Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Xiaofei He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hang Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yu'e Wu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Shuhua Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Huanhuan Jia
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| |
Collapse
|
12
|
Yang M, Fan Z, Wang F, Tian ZH, Ma B, Dong B, Li Z, Zhang M, Zhao W. BMP-2 enhances the migration and proliferation of hypoxia-induced VSMCs via actin cytoskeleton, CD44 and matrix metalloproteinase linkage. Exp Cell Res 2018; 368:248-257. [DOI: 10.1016/j.yexcr.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/24/2022]
|
13
|
Liu J, Hou W, Guan T, Tang L, Zhu X, Li Y, Hou S, Zhang J, Chen H, Huang Y. Slit2/Robo1 signaling is involved in angiogenesis of glomerular endothelial cells exposed to a diabetic-like environment. Angiogenesis 2018; 21:237-249. [PMID: 29299781 DOI: 10.1007/s10456-017-9592-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/26/2017] [Indexed: 01/08/2023]
Abstract
Abnormal angiogenesis plays a pathological role in diabetic nephropathy (DN), contributing to glomerular hypertrophy and microalbuminuria. Slit2/Robo1 signaling participates in angiogenesis in some pathological contexts, but whether it is involved in glomerular abnormal angiogenesis of early DN is unclear. The present study evaluated the effects of Slit2/Robo1 signaling pathway on angiogenesis of human renal glomerular endothelial cells (HRGECs) exposed to a diabetic-like environment or recombinant Slit2-N. To remove the effect of Slit2 derived from mesangial cells, human renal mesangial cells (HRMCs) grown in high glucose (HG) medium (33 mM) were transfected with Slit2 siRNA and then the HG-HRMCs-CM with Slit2 depletion was collected after 48 h. HRGECs were cultured in the HG-HRMCs-CM or recombinant Slit2-N for 0, 6, 12, 24, or 48 h. The mRNA and protein expressions of Slit2/Robo1, PI3K/Akt and HIF-1α/VEGF signaling pathways were detected by quantitative real-time PCR, western blotting, and ELISA, respectively. The CCK-8 cell proliferation assay, flow cytometry and the scratch wound-healing assay were used to assess cell proliferation, cycles, and migration, respectively. Matrigel was used to perform a tubule formation assay. Our results showed that the HG-HRMCs-CM with Slit2 depletion enhanced the activation of Slit2/Robo1, PI3K/Akt, and HIF-1α/VEGF signaling in HRGECs in time-dependent manner (0-24 h post-treatment). In addition, the HG-HRMCs-CM with Slit2 depletion significantly promoted HRGECs proliferation, migration, and tube formation. Pretreatment of HRGECs with Robo1 siRNA suppressed the activation of PI3K/Akt and HIF-1α/VEGF signaling and inhibited angiogenesis, whereas PI3K inhibitor suppressed HIF-1α/VEGF signaling, without influencing Robo1 expression. In the HRGECs treated with Slit2-N, Slit2-N time-dependently enhanced the activation of Robo1/PI3K/Akt/VEGF pathway but not HIF-1α activity, and promoted HRGECs proliferation, migration, and tube formation. The effects induced by Slit2 were also abolished by Robo1 siRNA and PI3K inhibitor. Taken together, our findings indicate that in a diabetic-like environment, in addition to mesangial cells, autocrine activation of Slit2/Robo1 signaling of HRGECs may contribute to angiogenesis of HRGECs through PI3K/Akt/VEGF pathway; therefore, Slit2/Robo1 signaling may be a potent therapeutic target for the treatment of abnormal angiogenesis in early DN and may have broad implications for the treatment of other diseases dependent on pathologic angiogenesis.
Collapse
Affiliation(s)
- Junhui Liu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Weiping Hou
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Tao Guan
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Luyao Tang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xufei Zhu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yi Li
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shihui Hou
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jun Zhang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hua Chen
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yunjian Huang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
14
|
Recombinant Slit2 Reduces Surgical Brain Injury Induced Blood Brain Barrier Disruption via Robo4 Dependent Rac1 Activation in a Rodent Model. Sci Rep 2017; 7:746. [PMID: 28389649 PMCID: PMC5429690 DOI: 10.1038/s41598-017-00827-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Brain tissue surrounding surgical resection site can be injured inadvertently due to procedures such as incision, retractor stretch, and electrocauterization when performing neurosurgical procedures, which is termed as surgical brain injury (SBI). Blood brain barrier (BBB) disruption due to SBI can exacerbate brain edema in the post-operative period. Previous studies showed that Slit2 exhibited vascular anti-permeability effects outside the brain. However, BBB protective effects of Slit2 following SBI has not been evaluated. The objective of this study was to evaluate whether recombinant Slit2 via its receptor roundabout4 (Robo4) and the adaptor protein, Paxillin were involved in reducing BBB permeability in SBI rat model. Our results showed that endogenous Slit2 increased in the surrounding peri-resection brain tissue post-SBI, Robo4 remained unchanged and Paxillin showed a decreasing trend. Recombinant Slit2 administered 1 h before injury increased BBB junction proteins, reduced BBB permeability, and decreased neurodeficits 24 h post-SBI. Furthermore, recombinant Slit2 administration increased Rac1 activity which was reversed by Robo4 and Paxillin siRNA. Our findings suggest that recombinant Slit2 reduced SBI-induced BBB permeability, possibly by stabilizing BBB tight junction via Robo4 mediated Rac1 activation. Slit2 may be beneficial for BBB protection during elective neurosurgeries.
Collapse
|
15
|
The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization. Nat Commun 2016; 7:13517. [PMID: 27882935 PMCID: PMC5123080 DOI: 10.1038/ncomms13517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
Vascular permeability and neovascularization are implicated in many diseases including retinopathies and diabetic wound healing. Robo4 is an endothelial-specific transmembrane receptor that stabilizes the vasculature, as shown in Robo4−/− mice that develop hyperpermeability, but how Robo4 signals remained unclear. Here we show that Robo4 deletion enhances permeability and revascularization in oxygen-induced retinopathy (OIR) and accelerates cutaneous wound healing. To determine Robo4 signalling pathways, we generated transgenic mice expressing a truncated Robo4 lacking the cytoplasmic domain (Robo4ΔCD). Robo4ΔCD expression is sufficient to prevent permeability, and inhibits OIR revascularization and wound healing in Robo4−/− mice. Mechanistically, Robo4 does not affect Slit2 signalling, but Robo4 and Robo4ΔCD counteract Vegfr2-Y949 (Y951 in human VEGFR2) phosphorylation by signalling through the endothelial UNC5B receptor. We conclude that Robo4 inhibits angiogenesis and vessel permeability independently of its cytoplasmic domain, while activating VEGFR2-Y951 via ROBO4 inhibition might accelerate tissue revascularization in retinopathy of prematurity and in diabetic patients. Robo4 is a transmembrane protein that regulates vascular permeability. Zhang et al. now reveal the mechanism of Robo4 action and show that Robo4 and UncB are required for VEGF-mediated regulation of vascular barrier by suppressing VEGF-induced phosphorylation of its receptor Vegfr2 on Y949.
Collapse
|
16
|
Liu D, Xiao Y, Subramanian RR, Okamoto EI, Wilcox JN, Anderson L, De Leon H. Potential Role of Axonal Chemorepellent Slit2 in Modulating Adventitial Inflammation in a Rat Carotid Artery Balloon Injury Model. J Cardiovasc Pharmacol 2016; 67:433-41. [PMID: 26841069 PMCID: PMC4861666 DOI: 10.1097/fjc.0000000000000369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukocyte infiltration of adventitial and perivascular tissues is an early event in the development of vascular remodeling after injury. We investigated whether Slit/Robo-an axonal chemorepellent system in vertebrate and invertebrate development-is activated during the inflammatory phase that follows endothelial denudation. Using the rat carotid artery model of angioplasty, we conducted a time course analysis of mRNAs encoding Slit ligands (Slit2 and Slit3) and Robo receptors (Robo1, Robo2, and Robo4), as well as proinflammatory cell adhesion molecule (CAM) genes. Adventitial inflammatory cells were counted in immunostained arterial sections. E-selectin, vascular CAM-1, and intercellular CAM-1 were upregulated 2-3 hours after injury, followed by infiltration of neutrophils and monocytes as evidenced by real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry. Slit2, Slit3, and Robo genes exhibited no expression changes at 3 hours; however, they were markedly upregulated 1 day after angioplasty. Intercellular CAM-1 expression was reduced by 50%, and the number of adventitial neutrophils decreased by >75% 1 day after angioplasty. Slit2 has been shown to be a potent chemorepelent of leukocytes, endothelial cells, and smooth muscle cells. Thus, we decided to further investigate the localization of Slit2 in injured vessels. Immunohistochemical stainings revealed the presence of Slit2 within the vessel wall and in the perivascular vasa vasorum of naive and injured arteries. Double immunohistochemical analyses showed that infiltrating monocytes expressed Slit2 in the perivascular and adventitial tissues of injured arteries 1 and 3 days postangioplasty. In addition, recombinant full-length Slit2 and Slit2-N/1118, an N-terminal fragment of Slit2, inhibited stromal cell-derived factor 1-mediated migration of circulating rat peripheral blood mononuclear cells. In summary, adventitial activation of CAM genes and neutrophil infiltration preceded upregulation of Slit/Robo genes. Sli2 expression colocalized with infiltrating inflammatory cells in the adventitial layer. This temporospatial association suggests that leukocyte chemorepellent Slit2 may be involved in halting the adventitial accumulation of inflammatory cells in injured vessels.
Collapse
Affiliation(s)
- Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | - Yan Xiao
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | | | - Ei-ichi Okamoto
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322
| | - Josiah N. Wilcox
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322
| | - Leonard Anderson
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | - Hector De Leon
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| |
Collapse
|
17
|
Zhang Y, Zhou S. MicroRNA-29a inhibits mesenchymal stem cell viability and proliferation by targeting Roundabout 1. Mol Med Rep 2015; 12:6178-84. [PMID: 26252416 DOI: 10.3892/mmr.2015.4183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022] Open
Abstract
Secreted Slit glycoproteins and their Roundabout (Robo) receptors have been identified as important axon guidance molecules. The pivotal role of Slit‑Robo signaling is in regulating cell proliferation. MicroRNAs (miRNAs), a class of small non‑coding RNAs, function as critical regulators of gene expression by binding to the 3'‑untranslated region of mRNAs and causing mRNA degradation or translational repression. The present study demonstrated that downregulation of Robo1 using small interfering RNA inhibited mesenchymal stem cell (MSC) proliferation. Additionally, four miRNAs (miR), including miR‑218, miR‑29a, miR‑146 and miR‑148, inhibited the protein expression of Robo1 in the MSCs, with miR‑29 having the most marked effect. A luciferase reporter assay identified Robo1 as a novel target of miR‑29a. Overexpression of miR‑29a suppressed the protein expression levels of Robo1 and Slit2 and inhibited the viability and proliferation of the MSCs. By contrast, overexpression of Robo1 partly rescued these inhibitory effects of miR‑29a on the MSCs confirming that miR‑29a inhibited MSC viability and proliferation, at least partially, by directly targeting Robo1. These results indicated that the miR‑29a/Robo1 axis is crucial for the regulation of MSC viability and proliferation, suggesting that miR‑29a may serve as a potential clinical target for MSC expansion and stem cell transplantation.
Collapse
Affiliation(s)
- Yudong Zhang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
18
|
Li H, Luo J, Xu B, Luo K, Hou J. MicroRNA-29a inhibits cell migration and invasion by targeting Roundabout 1 in breast cancer cells. Mol Med Rep 2015; 12:3121-6. [PMID: 25955714 DOI: 10.3892/mmr.2015.3749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer (EOC) remains a major gynecological problem, with a poor 5-year-survival rate due to distant metastases. The identification of microRNAs (miRNAs) may provide a novel avenue for diagnostic and treatment regimens for EOC. Several miRNAs have been reported to be involved in the progression of EOC, among which miRNA (miR)-137 has been observed to be downregulated in the ovarian tissues of patients with EOC. However, the functions of miR-137 in EOC cell apoptosis, migration and invasion remain to be elucidated. In the present study, the expression of miR-137 was measured in clinical ovarian cancer specimens and cell lines using reverse transcription-quantitative polymerase chain reaction. The role of miR-137 in the growth and survival of the SKOV3 human ovarian cancer cell line was determined using several in vitro approaches and in nude mouse models. The results demonstrated that the expression of miR-137 was downregulated in the ovarian cancer specimens and cell lines. It was also observed that enforced expression of miR-137 in the EOC cell lines decreased cell proliferation, clonogenicity, migration and invasion, and induced G1 arrest and cell apoptosis in vitro. Notably, the enforced expression of miR-137 suppressed tumor growth in the nude mice models. These findings suggested that miR-137 may act as a tumor suppressor and be used as a potential therapeutic agent for the treatment of EOC.
Collapse
Affiliation(s)
- Hui Li
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Jiashun Luo
- Institute of Medical Research, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Bin Xu
- Institute of Medical Research, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Kaijun Luo
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Juan Hou
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
19
|
Nieminen T, Toivanen PI, Laakkonen JP, Heikura T, Kaikkonen MU, Airenne KJ, Ylä-Herttuala S. Slit2 modifies VEGF-induced angiogenic responses in rabbit skeletal muscle via reduced eNOS activity. Cardiovasc Res 2015; 107:267-76. [DOI: 10.1093/cvr/cvv161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/17/2015] [Indexed: 01/31/2023] Open
|
20
|
Role of ROBO4 signalling in developmental and pathological angiogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:683025. [PMID: 24689049 PMCID: PMC3933320 DOI: 10.1155/2014/683025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 11/29/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
Transmembrane roundabout receptor family members (ROBO1-ROBO4) principally orchestrate the neuronal guidance mechanism of the nervous system. Secreted glycoprotein SLITs are the most appreciated ligands for ROBOs. Recently identified ROBO4 is the key mediator of SLIT-ROBO mediated developmental and pathological angiogenesis. Although SLIT2 has been shown to interact with ROBO4 as ligand, it remains an open question whether this protein is the physiologic partner of ROBO4. The purpose of this review is to summarise how reliable SLIT2 as ligand for ROBO4 is, if not what the other possible mechanisms demonstrated till date for ROBO4 mediated developmental and pathological angiogenesis are. We conclude that ROBO4 is expressed specially in vascular endothelial cells and maintains the vascular integrity via either SLIT2 dependent or SLIT2 independent manner. On the contrary, it promotes the pathological angiogenesis by involving different signalling arm(s)/unknown ligand(s). This review explores the interactions SLIT2/ROBO1, SLIT2/ROBO1-ROBO4, ROBO1/ROBO4, and ROBO4/UNC5B which can be promising and potential therapeutic targets for developmental angiogenesis defects and pathological angiogenesis. Finally we have reviewed the ROBO4 signalling pathways and made an effort to elaborate the insight of this signalling as therapeutic target of pathological angiogenesis.
Collapse
|