1
|
Safarian A, Mirshahvalad SA, Farbod A, Nasrollahi H, Pirich C, Beheshti M. Artificial intelligence for tumor [ 18F]FDG-PET imaging: Advancement and future trends-part I. Semin Nucl Med 2025; 55:328-344. [PMID: 40158896 DOI: 10.1053/j.semnuclmed.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [18F]FDG PET/CT, a well-established cornerstone of oncological imaging. Furthermore, the use of artificial intelligence (AI) algorithms has shown considerable promise in enhancing the interpretation of these quantitative parameters. Additionally, AI-driven models enable the integration of parameters from multiple imaging modalities along with clinical data, facilitating the development of comprehensive models with significant clinical impact. However, challenges remain regarding standardization and validation of the AI-powered models, as well as their implementation in real-world clinical practice. The variability in imaging acquisition protocols, segmentation methods, and feature extraction approaches across different institutions necessitates robust harmonization efforts to ensure reproducibility and clinical utility. Moreover, the successful translation of AI models into clinical practice requires prospective validation in large cohorts, as well as seamless integration into existing workflows to assess their ability to enhance clinicians' performance. This review aims to provide an overview of the literature and highlight three key applications: diagnostic impact, prediction of treatment response, and long-term patient prognostication. In the first part, we will focus on head and neck, lung, breast, gastroesophageal, colorectal, and gynecological malignancies.
Collapse
Affiliation(s)
- Alireza Safarian
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Rajaie Cardiovascular Medical and Research Center, Rajaie Cardiovascular Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Nasrollahi
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Babacan GB, Öner Tamam M, Saraçoğlu S, Acar Tayyar MN, Şahin MC, Özçevik H, Kulduk G, Ekinci ÖB, Çelik E. Novel heterogeneity method for predicting survival in non-metastatic triple-negative breast cancer. Rev Esp Med Nucl Imagen Mol 2025:500112. [PMID: 39921170 DOI: 10.1016/j.remnie.2025.500112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE This study aimed to investigate the relationship between semiquantitative positron emission tomography (PET) parameters and intratumoral heterogeneity (ITH) on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging and survival data of non-metastatic triple-negative breast cancer (TNBC) patients. METHODS Sixty-two consecutive female patients who underwent pretreatment 18F-FDG PET/CT with non-metastatic TNBC were enrolled. Heterogeneity index (HI) variables derived from the metabolic tumor volume (MTV) and standardized uptake value (SUV) parameters of primary lesions were evaluated. A novel modified method introducing a percentage-based (30-40-50%) MTV slope comparison was proposed. The association between conventional 18F-FDG PET/CT parameters, HI values, and survival results was analyzed retrospectively. RESULTS Tumors with higher HI values were associated with shorter survival times. For overall survival (OS), HI2 and HI3 were statistically significant (p=0.009, p=0.016). Regarding radiological progression-free survival (rPFS), HI1 and HI3 were statistically significant (p=0.01, p=0.025). A significant weak correlation between HI1 (p=0.005, ρ=0.34) and a strong correlation was found for HI2 (p<0.0001, ρ=0.89), HI3 and tumor size were not statistically significantly correlated (p=0.063, ρ=0.23). T stage was statistically significantly associated with rPFS and OS ((p=0.038, p=0.003). In contrast, no statistically significant difference was found for the N stage, anatomical, and clinical staging (p>0.05). CONCLUSION This study concluded that ITH predicts survival for non-metastatic TNBC patients. This conclusion was reached with the heterogeneity index variables obtained by different methods. However, our results revealed that HI2 depends on tumor size. Our modified method (HI3) predicts survival independently of tumor size.
Collapse
Affiliation(s)
- G B Babacan
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey; Clinic of Nuclear Medicine, Şırrnak State Hospital, Şırnak, Turkey.
| | - M Öner Tamam
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - S Saraçoğlu
- Clinic of Nuclear Medicine, Van Training and Research Hospital, University of Health Sciences, Van, Turkey
| | - M N Acar Tayyar
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - M C Şahin
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - H Özçevik
- Department of Nuclear Medicine, Başakşehir Çam ve Sakura City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - G Kulduk
- Department of Pathology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Ö B Ekinci
- Department of Medical Oncology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - E Çelik
- Department of Medical Oncology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Chen D, Zhou R, Li B. Preoperative Prediction of Her-2 and Ki-67 Status in Gastric Cancer Using 18F-FDG PET/CT Radiomics Features of Visceral Adipose Tissue. Br J Hosp Med (Lond) 2024; 85:1-18. [PMID: 39347666 DOI: 10.12968/hmed.2024.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Aims/Background Immunohistochemistry (IHC) is the main method to detect human epidermal growth factor receptor 2 (Her-2) and Ki-67 expression levels. However, IHC is invasive and cannot reflect their expression status in real-time. This study aimed to build radiomics models based on visceral adipose tissue (VAT)'s 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging, and to evaluate the relationship between radiomics features of VAT and positive expression of Her-2 and Ki-67 in gastric cancer (GC). Methods Ninety patients with GC were enrolled in this study. 18F-FDG PET/CT radiomics features were calculated using the PyRadiomics package. Two methods were employed to reduce radiomics features. The machine learning models, logistic regression (LR), and support vector machine (SVM), were constructed and estimated by the receiver operator characteristic (ROC) curve. The correlation of outstanding features with Ki-67 and Her-2 expression status was evaluated. Results For the Ki-67 set, the area under of the receiver operator characteristic curve (AUC) and accuracy were 0.86 and 0.79 for the LR model and 0.83 and 0.69 for the SVM model. For the Her-2 set, the AUC and accuracy were 0.84 and 0.86 for the LR model and 0.65 and 0.85 for the SVM model. The LR model for Ki-67 exhibited outstanding prediction performance. Three wavelet transform features were correlated with Her-2 expression status (p all < 0.001), and one wavelet transform feature was correlated with the expression status of Ki-67 (p = 0.042). Conclusion 18F-FDG PET/CT-based radiomics models of VAT demonstrate good performance in predicting Her-2 and Ki-67 expression status in patients with GC. Radiomics features can be used as imaging biomarkers for GC.
Collapse
Affiliation(s)
- Demei Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Rui Zhou
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Li
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
4
|
Zheng X, Huang Y, Lin Y, Zhu T, Zou J, Wang S, Wang K. 18F-FDG PET/CT-based deep learning radiomics predicts 5-years disease-free survival after failure to achieve pathologic complete response to neoadjuvant chemotherapy in breast cancer. EJNMMI Res 2023; 13:105. [PMID: 38052965 DOI: 10.1186/s13550-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/19/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND This study aimed to assess whether a combined model incorporating radiomic and depth features extracted from PET/CT can predict disease-free survival (DFS) in patients who failed to achieve pathologic complete response (pCR) after neoadjuvant chemotherapy. RESULTS This study retrospectively included one hundred and five non-pCR patients. After a median follow-up of 71 months, 15 and 7 patients experienced recurrence and death, respectively. The primary tumor volume underwent feature extraction, yielding a total of 3644 radiomic features and 4096 depth features. The modeling procedure employed Cox regression for feature selection and utilized Cox proportional-hazards models to make predictions on DFS. Time-dependent receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were utilized to evaluate and compare the predictive performance of different models. 2 clinical features (RCB, cT), 4 radiomic features, and 7 depth features were significant predictors of DFS and were included to develop models. The integrated model incorporating RCB, cT, and radiomic and depth features extracted from PET/CT images exhibited the highest accuracy for predicting 5-year DFS in the training (AUC 0.943) and the validation cohort (AUC 0.938). CONCLUSION The integrated model combining radiomic and depth features extracted from PET/CT images can accurately predict 5-year DFS in non-pCR patients. It can help identify patients with a high risk of recurrence and strengthen adjuvant therapy to improve survival.
Collapse
Affiliation(s)
- Xingxing Zheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuhong Huang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yingyi Lin
- Shantou University Medical College, Shantou, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiachen Zou
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Medical University, Zhanjiang, China
| | - Shuxia Wang
- Department of Nuclear Medicine and PET Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Travaglio Morales D, Huerga Cabrerizo C, Losantos García I, Coronado Poggio M, Cordero García JM, Llobet EL, Monachello Araujo D, Rizkallal Monzón S, Domínguez Gadea L. Prognostic 18F-FDG Radiomic Features in Advanced High-Grade Serous Ovarian Cancer. Diagnostics (Basel) 2023; 13:3394. [PMID: 37998530 PMCID: PMC10670627 DOI: 10.3390/diagnostics13223394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease with different clinical outcomes and poor prognosis. This could be due to tumor heterogeneity. The 18F-FDG PET radiomic parameters permit addressing tumor heterogeneity. Nevertheless, this has been not well studied in ovarian cancer. The aim of our work was to assess the prognostic value of pretreatment 18F-FDG PET radiomic features in patients with HGSOC. A review of 36 patients diagnosed with advanced HGSOC between 2016 and 2020 in our center was performed. Radiomic features were obtained from pretreatment 18F-FDGPET. Disease-free survival (DFS) and overall survival (OS) were calculated. Optimal cutoff values with receiver operating characteristic curve/median values were used. A correlation between radiomic features and DFS/OS was made. The mean DFS was 19.6 months and OS was 37.1 months. Total Lesion Glycolysis (TLG), GLSZM_ Zone Size Non-Uniformity (GLSZM_ZSNU), and GLRLM_Run Length Non-Uniformity (GLRLM_RLNU) were significantly associated with DFS. The survival-curves analysis showed a significant difference of DSF in patients with GLRLM_RLNU > 7388.3 versus patients with lower values (19.7 months vs. 31.7 months, p = 0.035), maintaining signification in the multivariate analysis (p = 0.048). Moreover, Intensity-based Kurtosis was associated with OS (p = 0.027). Pretreatment 18F-FDG PET radiomic features GLRLM_RLNU, GLSZM_ZSNU, and Kurtosis may have prognostic value in patients with advanced HGSOC.
Collapse
Affiliation(s)
- Daniela Travaglio Morales
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
- Nuclear Medicine Department, Halle University Hospital, 06120 Halle, Germany
| | - Carlos Huerga Cabrerizo
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | | - Elena López Llobet
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Yang H, Lin J, Liu H, Yao J, Lin Q, Wang J, Jiang F, Wei L, Lin C, Wu K, Wu S. Automatic analysis framework based on 3D-CT multi-scale features for accurate prediction of Ki67 expression levels in substantial renal cell carcinoma. Insights Imaging 2023; 14:130. [PMID: 37466878 DOI: 10.1186/s13244-023-01465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
PURPOSE To investigate the effectiveness of an automatic analysis framework based on 3D-CT multi-scale features in predicting Ki67 expression levels in substantial renal cell carcinoma (RCC). METHODS This retrospective study was conducted using multi-center cohorts consisting of 588 participants with pathologically confirmed RCC. The participants were divided into an internal training set (n = 485) and an external testing set (n = 103) from four and one local hospitals, respectively. The proposed automatic analytic framework comprised a 3D kidney and tumor segmentation model constructed by 3D UNet, a 3D-CT multi-scale features extractor based on the renal-tumor feature, and a low or high Ki67 prediction classifier using XGBoost. The framework was validated using a fivefold cross-validation strategy. The Shapley additive explanation (SHAP) method was used to determine the contribution of each feature. RESULTS In the prediction of low or high Ki67, the combination of renal and tumor features achieved better performance than any single features. Internal validation using a fivefold cross-validation strategy yielded AUROC values of 0.75 ± 0.1, 0.75 ± 0.1, 0.83 ± 0.1, 0.77 ± 0.1, and 0.87 ± 0.1, respectively. The optimal model achieved an AUROC of 0.87 ± 0.1 and 0.82 ± 0.1 for low vs. high Ki67 prediction in the internal validation and external testing sets, respectively. Notably, the tumor first-order-10P was identified as the most influential feature in the model decision. CONCLUSIONS Our study suggests that the proposed automatic analysis framework based on 3D-CT multi-scale features has great potential for accurately predicting Ki67 expression levels in substantial RCC. CRITICAL RELEVANCE STATEMENT Automatic analysis framework based on 3D-CT multi-scale features provides reliable predictions for Ki67 expression levels in substantial RCC, indicating the potential usage of clinical applications.
Collapse
Affiliation(s)
- Huancheng Yang
- Luohu Clinical Institute, Shantou University Medical College, Shantou, 515000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 51800, China
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Jiashan Lin
- Luohu Clinical Institute, Shantou University Medical College, Shantou, 515000, China
- Shantou University Medical College, Shantou University, Shantou, 515000, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hanlin Liu
- Department of Radiology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, China
| | - Jiehua Yao
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Qianyu Lin
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Jiaxin Wang
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Feiye Jiang
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Liying Wei
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Chongyang Lin
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Kai Wu
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 51800, China.
| | - Song Wu
- Luohu Clinical Institute, Shantou University Medical College, Shantou, 515000, China.
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 51800, China.
- Shantou University Medical College, Shantou University, Shantou, 515000, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, China.
| |
Collapse
|
7
|
Wang H, Zha H, Du Y, Li C, Zhang J, Ye X. An integrated radiomics nomogram based on conventional ultrasound improves discriminability between fibroadenoma and pure mucinous carcinoma in breast. Front Oncol 2023; 13:1170729. [PMID: 37427125 PMCID: PMC10324567 DOI: 10.3389/fonc.2023.1170729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 07/11/2023] Open
Abstract
Objective To evaluate the ability of integrated radiomics nomogram based on ultrasound images to distinguish between breast fibroadenoma (FA) and pure mucinous carcinoma (P-MC). Methods One hundred seventy patients with FA or P-MC (120 in the training set and 50 in the test set) with definite pathological confirmation were retrospectively enrolled. Four hundred sixty-four radiomics features were extracted from conventional ultrasound (CUS) images, and radiomics score (Radscore) was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Different models were developed by a support vector machine (SVM), and the diagnostic performance of the different models was assessed and validated. A comparison of the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) was performed to evaluate the incremental value of the different models. Results Finally, 11 radiomics features were selected, and then Radscore was developed based on them, which was higher in P-MC in both cohorts. In the test group, the clinic + CUS + radiomics (Clin + CUS + Radscore) model achieved a significantly higher area under the curve (AUC) value (AUC = 0.86, 95% CI, 0.733-0.942) when compared with the clinic + radiomics (Clin + Radscore) (AUC = 0.76, 95% CI, 0.618-0.869, P > 0.05), clinic + CUS (Clin + CUS) (AUC = 0.76, 95% CI, 0.618-0.869, P< 0.05), Clin (AUC = 0.74, 95% CI, 0.600-0.854, P< 0.05), and Radscore (AUC = 0.64, 95% CI, 0.492-0.771, P< 0.05) models, respectively. The calibration curve and DCA also suggested excellent clinical value of the combined nomogram. Conclusion The combined Clin + CUS + Radscore model may help improve the differentiation of FA from P-MC.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailing Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Du
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiulou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Cárcamo Ibarra PM, López González UA, Esteban Hurtado A, Navas de la Cruz MA, Asensio Valero L, Diez Domingo S. Progress and current utility of radiomics in PET/CT study of non-metastatic breast cancer: A systematic review. Rev Esp Med Nucl Imagen Mol 2023; 42:83-92. [PMID: 36375751 DOI: 10.1016/j.remnie.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022]
Abstract
AIM To synthesize the current evidence of the usefulness of radiomics in PET/CT image analysis in local and locally advanced breast cancer. Also, to evaluate the methodological quality of the radiomic studies published. METHODS Systematic review of articles in different databases until 2021 using the terms "PET", "radiomics", "texture", "breast". Only articles with human data and that included a PET image were included. Studies with simulated data and with less than 20 patients were excluded. Were extracted sample size, radiotracer used, imaging technique, and radiomics characteristics from each article. The methodological quality of the studies was determined using the QUADAS-2 tool. RESULTS 18 articles were selected. The retrospective design was the most used. The most studied radiomic characteristic was SUVmax. Several radiomic parameters were correlated with tumor characterization, and tumor heterogeneity proved useful for predicting disease course and response to treatment. Most articles showed a high risk of bias, mainly from the patient selection. CONCLUSIONS A high probability of bias was observed in most of the published articles. Radiomics is a developing field and more studies are needed to demonstrate its usefulness in routine clinical practice. The QUADAS-2 tool allows critical assessment of the methodological quality of the available evidence. Despite its limitations, radiomics is shown to be an instrument that can help to achieve personalized oncologic management of breast cancer.
Collapse
Affiliation(s)
- P M Cárcamo Ibarra
- Servicio de Medicina Nuclear, Hospital Clínico Universitario de Valencia, Spain
| | - U A López González
- Servicio de Medicina Preventiva, Hospital Universitario Doctor Peset, Valencia, Spain
| | - A Esteban Hurtado
- Servicio de Medicina Nuclear, Hospital Universitario Doctor Peset, Valencia, Spain
| | - M A Navas de la Cruz
- Servicio de Medicina Nuclear, Hospital Universitario Doctor Peset, Valencia, Spain
| | - L Asensio Valero
- Servicio de Medicina Nuclear, Hospital Clínico Universitario de Valencia, Spain
| | - S Diez Domingo
- Servicio de Protección Radiológica, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
10
|
Urso L, Manco L, Castello A, Evangelista L, Guidi G, Castellani M, Florimonte L, Cittanti C, Turra A, Panareo S. PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review. Int J Mol Sci 2022; 23:13409. [PMID: 36362190 PMCID: PMC9653918 DOI: 10.3390/ijms232113409] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous malignancy that still represents the second cause of cancer-related death among women worldwide. Due to the heterogeneity of BC, the correct identification of valuable biomarkers able to predict tumor biology and the best treatment approaches are still far from clear. Although molecular imaging with positron emission tomography/computed tomography (PET/CT) has improved the characterization of BC, these methods are not free from drawbacks. In recent years, radiomics and artificial intelligence (AI) have been playing an important role in the detection of several features normally unseen by the human eye in medical images. The present review provides a summary of the current status of radiomics and AI in different clinical settings of BC. A systematic search of PubMed, Web of Science and Scopus was conducted, including all articles published in English that explored radiomics and AI analyses of PET/CT images in BC. Several studies have demonstrated the potential role of such new features for the staging and prognosis as well as the assessment of biological characteristics. Radiomics and AI features appear to be promising in different clinical settings of BC, although larger prospective trials are needed to confirm and to standardize this evidence.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 44124 Ferrara, Italy
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Evangelista
- Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Gabriele Guidi
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Alessandro Turra
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
11
|
Li C, Wang S, Li C, Yin Y, Feng F, Fu H, Wang H, Chen S. Improved risk stratification by PET-based intratumor heterogeneity in children with high-risk neuroblastoma. Front Oncol 2022; 12:896593. [PMID: 36353561 PMCID: PMC9637983 DOI: 10.3389/fonc.2022.896593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/20/2022] [Indexed: 11/12/2023] Open
Abstract
PURPOSE The substratification of high-risk neuroblastoma is challenging, and new predictive imaging biomarkers are warranted for better patient selection. The aim of the study was to evaluate the prognostic role of PET-based intratumor heterogeneity and its potential ability to improve risk stratification in neuroblastoma. METHODS Pretreatment 18F-FDG PET/CT scans from 112 consecutive children with newly diagnosed neuroblastoma were retrospectively analyzed. The primary tumor was segmented in the PET images. SUVs, volumetric parameters including metabolic tumor volume (MTV) and total lesion glycolysis (TLG), and texture features were extracted. After the exclusion of imaging features with poor and moderate reproducibility, the relationships between the imaging indices and clinicopathological factors, as well as event-free survival (EFS), were assessed. RESULTS The median follow-up duration was 33 months. Multivariate analysis showed that PET-based intratumor heterogeneity outperformed clinicopathological features, including age, stage, and MYCN, and remained the most robust independent predictor for EFS [training set, hazard ratio (HR): 6.4, 95% CI: 3.1-13.2, p < 0.001; test set, HR: 5.0, 95% CI: 1.8-13.6, p = 0.002]. Within the clinical high-risk group, patients with a high metabolic heterogeneity showed significantly poorer outcomes (HR: 3.3, 95% CI: 1.6-6.8, p = 0.002 in the training set; HR: 4.4, 95% CI: 1.5-12.9, p = 0.008 in the test set) compared to those with relatively homogeneous tumors. Furthermore, intratumor heterogeneity outran the volumetric indices (MTVs and TLGs) and yielded the best performance of distinguishing high-risk patients with different outcomes with a 3-year EFS of 6% vs. 47% (p = 0.001) in the training set and 9% vs. 51% (p = 0.004) in the test set. CONCLUSION PET-based intratumor heterogeneity was a strong independent prognostic factor in neuroblastoma. In the clinical high-risk group, intratumor heterogeneity further stratified patients with distinct outcomes.
Collapse
Affiliation(s)
- Chao Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyan Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Can Li
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongliang Fu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suyun Chen
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Cárcamo Ibarra P, López González U, Esteban Hurtado A, Navas de la Cruz M, Asensio Valero L, Diez Domingo S. Progreso y utilidad actual de la radiómica dentro del estudio PET/TC en cáncer de mama no metastásico: una revisión sistemática. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Liu X, Hu X, Yu X, Li P, Gu C, Liu G, Wu Y, Li D, Wang P, Cai J. Frontiers and hotspots of 18F-FDG PET/CT radiomics: A bibliometric analysis of the published literature. Front Oncol 2022; 12:965773. [PMID: 36176388 PMCID: PMC9513237 DOI: 10.3389/fonc.2022.965773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To illustrate the knowledge hotspots and cutting-edge research trends of 18F-FDG PET/CT radiomics, the knowledge structure of was systematically explored and the visualization map was analyzed. Methods Studies related to 18F-FDG PET/CT radiomics from 2013 to 2021 were identified and selected from the Web of Science Core Collection (WoSCC) using retrieval formula based on an interview. Bibliometric methods are mainly performed by CiteSpace 5.8.R3, which we use to build knowledge structures including publications, collaborative and co-cited studies, burst analysis, and so on. The performance and relevance of countries, institutions, authors, and journals were measured by knowledge maps. The research foci were analyzed through research of keywords, as well as literature co-citation analysis. Predicting trends of 18F-FDG PET/CT radiomics in this field utilizes a citation burst detection method. Results Through a systematic literature search, 457 articles, which were mainly published in the United States (120 articles) and China (83 articles), were finally included in this study for analysis. Memorial Sloan-Kettering Cancer Center and Southern Medical University are the most productive institutions, both with a frequency of 17. 18F-FDG PET/CT radiomics–related literature was frequently published with high citation in European Journal of Nuclear Medicine and Molecular Imaging (IF9.236, 2020), Frontiers in Oncology (IF6.244, 2020), and Cancers (IF6.639, 2020). Further cluster profile of keywords and literature revealed that the research hotspots were primarily concentrated in the fields of image, textural feature, and positron emission tomography, and the hot research disease is a malignant tumor. Document co-citation analysis suggested that many scholars have a co-citation relationship in studies related to imaging biomarkers, texture analysis, and immunotherapy simultaneously. Burst detection suggests that adenocarcinoma studies are frontiers in 18F-FDG PET/CT radiomics, and the landmark literature put emphasis on the reproducibility of 18F-FDG PET/CT radiomics features. Conclusion First, this bibliometric study provides a new perspective on 18F-FDG PET/CT radiomics research, especially for clinicians and researchers providing scientific quantitative analysis to measure the performance and correlation of countries, institutions, authors, and journals. Above all, there will be a continuing growth in the number of publications and citations in the field of 18F-FDG PET/CT. Second, the international research frontiers lie in applying 18F-FDG PET/CT radiomics to oncology research. Furthermore, new insights for researchers in future studies will be adenocarcinoma-related analyses. Moreover, our findings also offer suggestions for scholars to give attention to maintaining the reproducibility of 18F-FDG PET/CT radiomics features.
Collapse
Affiliation(s)
- Xinghai Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Yu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Pujiao Li
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Cheng Gu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Guosheng Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Yan Wu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| |
Collapse
|
14
|
Wang X, Xu C, Grzegorzek M, Sun H. Habitat radiomics analysis of pet/ct imaging in high-grade serous ovarian cancer: Application to Ki-67 status and progression-free survival. Front Physiol 2022; 13:948767. [PMID: 36091379 PMCID: PMC9452776 DOI: 10.3389/fphys.2022.948767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: We aim to develop and validate PET/ CT image-based radiomics to determine the Ki-67 status of high-grade serous ovarian cancer (HGSOC), in which we use the metabolic subregion evolution to improve the prediction ability of the model. At the same time, the stratified effect of the radiomics model on the progression-free survival rate of ovarian cancer patients was illustrated.Materials and methods: We retrospectively reviewed 161 patients with HGSOC from April 2013 to January 2019. 18F-FDG PET/ CT images before treatment, pathological reports, and follow-up data were analyzed. A randomized grouping method was used to divide ovarian cancer patients into a training group and validation group. PET/ CT images were fused to extract radiomics features of the whole tumor region and radiomics features based on the Habitat method. The feature is dimensionality reduced, and meaningful features are screened to form a signature for predicting the Ki-67 status of ovarian cancer. Meanwhile, survival analysis was conducted to explore the hierarchical guidance significance of radiomics in the prognosis of patients with ovarian cancer.Results: Compared with texture features extracted from the whole tumor, the texture features generated by the Habitat method can better predict the Ki-67 state (p < 0.001). Radiomics based on Habitat can predict the Ki-67 expression accurately and has the potential to become a new marker instead of Ki-67. At the same time, the Habitat model can better stratify the prognosis (p < 0.05).Conclusion: We found a noninvasive imaging predictor that could guide the stratification of prognosis in ovarian cancer patients, which is related to the expression of Ki-67 in tumor tissues. This method is of great significance for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongzan Sun,
| |
Collapse
|
15
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
16
|
Predicting pathological response and overall survival in locally advanced gastric cancer patients undergoing neoadjuvant chemotherapy: the role of PET/computed tomography. Nucl Med Commun 2022; 43:560-567. [PMID: 35045553 DOI: 10.1097/mnm.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gastric cancer is the second leading cause of cancer-related deaths, with a 5-year survival rate of about 20-25%. The ability to predict pathological response (PR) to neoadjuvant chemotherapy (NACT); hence, overall survival (OS) probability of patients can allow the clinician to individualize treatment strategies. We investigated the role of F-18 fluorodeoxyglucose PET-computed tomography (F-18 FDG PET/CT) in predicting histopathologic response and prognosis in locally advanced gastric cancer (LAGC) patients undergoing NACT. METHODS F-18FDG PET/CT images taken before and after NACT, adenocarcinoma histopathology and operation pyesis reports of 43 LAGC patients were analyzed. Maximum (SUVmax) and mean (SUVmean) standardized uptake values, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of lesions were measured before and after NACT. Changes in percentage were calculated for ΔSUVmax%, ΔSUVmean%, ΔMTV%, ΔTLG%, and cutoff values were determined by receiver operating characteristic curve analysis. NACT response in pathology pyesis was determined according to the College of American Pathologists classification. PR and OS were analyzed with Kaplan-Meier and Cox proportional hazards regression models based on cutoffs found with PET measurements. RESULTS Cutoffs were ΔSUVmax = 33.31%, ΔSUVmean = 42.96%, ΔMTV = 30.38%, and ΔTLG = 28.14%, and all patients showed significance in PR and OS based on these cutoffs (all P < 0.01). PET/CT findings before and after NACT (ΔMTV > 30.38%, ΔTLG > 28.14%) predicted PR with 100% sensitivity and specificity. Multivariate analysis showed ΔSUVmean as an independent risk factor predicting OS (hazard ratio 0.348, 95% confidence interval 2.91-22.3, P = 0.03). CONCLUSIONS Metabolic parameters obtained with F-18 FDG PET/CT scanning before and after NACT in LAGC patients can accurately predict PR and OS.
Collapse
|
17
|
Önner H, Coskun N, Erol M, Eren Karanis Mİ. Association of 18F-FDG PET/CT textural features with immunohistochemical characteristics in invasive ductal breast cancer. Rev Esp Med Nucl Imagen Mol 2022; 41:11-16. [PMID: 34991831 DOI: 10.1016/j.remnie.2020.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTıVES: This study investigates whether textural features (TFs) extracted from 18F-FDG positron emission tomography/computed tomography (PET/CT) are associated with immunohistochemical characteristics (IHCs) of invasive ductal breast carcinoma (IDBC). MATERIALS AND METHODS The relationship of TFs with IHCs [estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), Ki-67 proliferation index, and histological grades] from solely excised primary tumors were evaluated for a more accurate assessment. Therefore patients with early-stage IDBC who underwent pre-operative 18F-FDG PET/CT scan for staging were included in this retrospective study. The clinical staging was performed according to the 8th edition of the American Joint Committee on Cancer. Maximum standardized uptake value (SUVmax) and 37TFs of the primary tumor were extracted from 18F-FDG PET/CT. Spearman's rank correlation test was used to evaluate the correlation between TFs and SUVmax. Receiver operating characteristic curves were generated to define the diagnostic performance of each parameter. Among these parameters, those with the highest diagnostic performance were included in the multivariate logistic regression model to identify the independent predictors of histopathological characteristics. RESULTS A total of 124 patients were included. Histogram-uniformity, grey-level co-occurrence matrix (GLCM), GLCM-energy, and GLCM-homogeneity showed a strong negative correlation with SUVmax, while grey-level run-length matrix (GLRLM), GLRLM-SRHGE, grey-level zone length matrix (GLZLM), GLZLM-HGZE, GLRLM-HGRE, GLCM-entropy, GLCM-contrast, histogram-entropy, and GLCM-dissimilarity showed a strong positive correlation. Some of the TFs were independently associated with ER-negativity, PR-negativity, HER-2-positivity, and increased Ki-67 proliferation index (GLCM-contrast, GLZLM-GLNU, histogram-uniformity, and shape-sphericity respectively). While SUVmax had an independent association with high-grade and triple-negativity, GLZLM-SZLGE, a high-order TF that shows the distribution of the short homogeneous zones with low grey-levels, had an independent association with axillary lymph node metastasis. CONCLUSIONS ER-negative, PR-negative, HER-2-positive, triple-negative, high-grade, highly proliferative, and high-stage tumors were found to be more glycolytic and metabolically heterogeneous. These findings suggest that the use of TFs in addition to SUVmax may improve the prognostic value of 18F-FDG PET/CT in IDBC, as certain TFs were independently associated with many IHCs and predicted axillary lymph node involvement.
Collapse
|
18
|
Önner H, Coskun N, Erol M, Karanis MIE. Association of 18F-FDG PET/CT textural features with immunohistochemical characteristics in invasive ductal breast cancer. Rev Esp Med Nucl Imagen Mol 2021; 41:S2253-654X(20)30201-8. [PMID: 34305044 DOI: 10.1016/j.remn.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/29/2022]
Abstract
OBJECTıVES: This study investigates whether textural features (TFs) extracted from F-18 FDG positron emission tomography/computed tomography (PET/CT) are associated with IHCs of invasive ductal breast carcinoma (IDBC). MATERIALS AND METHODS The relationship of TFs with IHCs [estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), Ki-67 proliferation index, and histological grades] from solely excised primary tumors were evaluated for a more accurate assessment. Therefore patients with early-stage IDBC who underwent pre-operative F-18 FDG PET/CT scan for staging were included in this retrospective study. The clinical staging was performed according to the 8th edition of the American Joint Committee on Cancer. Maximum standardized uptake value (SUVmax) and 37 TFs of the primary tumor were extracted from F-18 FDG PET/CT. Spearman's rank correlation test was used to evaluate the correlation between TFs and SUVmax. Receiver operating characteristic curves were generated to define the diagnostic performance of each parameter. Among these parameters, those with the highest diagnostic performance were included in the multivariate logistic regression model to identify the independent predictors of histopathological characteristics. RESULTS A total of 124 patients were included. Histogram-uniformity, GLCM-energy, and GLCM-homogeneity showed a strong negative correlation with SUVmax, while GLRLM-SRHGE, GLZLM-HGZE, GLRLM-HGRE, GLCM-entropy, GLCM-contrast, histogram-entropy, and GLCM-dissimilarity showed a strong positive correlation. Some of the TFs were independently associated with ER-negativity, PR-negativity, HER-2-positivity, and increased Ki-67 proliferation index (GLCM-contrast, GLZLM-GLNU, histogram-uniformity, and shape-sphericity respectively). While SUVmax had an independent association with high-grade and triple-negativity, GLZLM-SZLGE, a high-order TF that shows the distribution of the short homogeneous zones with low grey-levels, had an independent association with axillary lymph node metastasis. CONCLUSIONS ER-negative, PR-negative, HER-2-positive, triple-negative, high-grade, highly proliferative, and high-stage tumors were found to be more glycolytic and metabolically heterogeneous. These findings suggest that the use of TFs in addition to SUVmax may improve the prognostic value of F-18 FDG PET/CT in IDBC, as certain TFs were independently associated with many IHCs and predicted axillary lymph node involvement.
Collapse
Affiliation(s)
- H Önner
- Department of Nuclear Medicine, Konya City Hospital, Konya, Turkey.
| | - N Coskun
- Ankara City Hospital, Ankara, Turkey
| | - M Erol
- Department of Nuclear Medicine, Konya City Hospital, Konya, Turkey
| | - M I E Karanis
- Department of Nuclear Medicine, Konya City Hospital, Konya, Turkey
| |
Collapse
|
19
|
Le Boulc’h M, Gilhodes J, Steinmeyer Z, Molière S, Mathelin C. Pretherapeutic Imaging for Axillary Staging in Breast Cancer: A Systematic Review and Meta-Analysis of Ultrasound, MRI and FDG PET. J Clin Med 2021; 10:jcm10071543. [PMID: 33917590 PMCID: PMC8038849 DOI: 10.3390/jcm10071543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/07/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This systematic review aimed at comparing performances of ultrasonography (US), magnetic resonance imaging (MRI), and fluorodeoxyglucose positron emission tomography (PET) for axillary staging, with a focus on micro- or micrometastases. METHODS A search for relevant studies published between January 2002 and March 2018 was conducted in MEDLINE database. Study quality was assessed using the QUality Assessment of Diagnostic Accuracy Studies checklist. Sensitivity and specificity were meta-analyzed using a bivariate random effects approach; Results: Across 62 studies (n = 10,374 patients), sensitivity and specificity to detect metastatic ALN were, respectively, 51% (95% CI: 43-59%) and 100% (95% CI: 99-100%) for US, 83% (95% CI: 72-91%) and 85% (95% CI: 72-92%) for MRI, and 49% (95% CI: 39-59%) and 94% (95% CI: 91-96%) for PET. Interestingly, US detects a significant proportion of macrometastases (false negative rate was 0.28 (0.22, 0.34) for more than 2 metastatic ALN and 0.96 (0.86, 0.99) for micrometastases). In contrast, PET tends to detect a significant proportion of micrometastases (true positive rate = 0.41 (0.29, 0.54)). Data are not available for MRI. CONCLUSIONS In comparison with MRI and PET Fluorodeoxyglucose (FDG), US is an effective technique for axillary triage, especially to detect high metastatic burden without upstaging majority of micrometastases.
Collapse
Affiliation(s)
- Morwenn Le Boulc’h
- Department of Oncologic Radiology, Claudius Regaud Institute, Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France;
| | - Julia Gilhodes
- Clinical Trials, Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France;
| | - Zara Steinmeyer
- Internal Medicine and Oncogeriatry Unit, Geriatric Department, University Hospital, Place du Docteur Baylac, CEDEX 9, 31059 Toulouse, France;
| | - Sébastien Molière
- Department of Women’s Imaging, University Hospitals of Strasbourg, 67200 Strasbourg, France;
| | - Carole Mathelin
- Surgery at ICANS Cancer Institute (Institute of Cancerology Strasbourg Europe), CEDEX, 67033 Strasbourg, France
- Correspondence: ; Tel.: +33-3-6876-7332
| |
Collapse
|
20
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
21
|
Development and Validation of a Diagnostic Nomogram for the Preoperative Differentiation Between Follicular Thyroid Carcinoma and Follicular Thyroid Adenomas. J Comput Assist Tomogr 2021; 45:128-134. [PMID: 33475318 DOI: 10.1097/rct.0000000000001078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to construct and validate a nomogram for differentiating follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA). METHODS Two hundred patients with pathologically confirmed thyroid follicular neoplasms were retrospectively analyzed. The patients were randomly divided into a training set (n = 140) and validation set (n = 60). Baseline data including demographics, CT (computed tomography) signs, and radiomic features were analyzed. Predictive models were developed and compared to build a nomogram. The predictive effectiveness of it was evaluated by the area under receiver operating characteristic curve (AUC). RESULTS The CT model, radiomic model and combination model showed excellent discrimination (AUCs [95% confidence interval] = 0.847 [0.766-0.928], 0.863 [0.746-0.932], 0.913 [0.850-0.975]). The nomogram based on the combination model showed remarkable discrimination in the training and validation sets. The calibration curves suggested good consistency between actual observation and prediction. CONCLUSIONS This study proposed a nomogram that can accurately and intuitively predict the malignancy potential of follicular thyroid neoplasms.
Collapse
|
22
|
Aide N, Elie N, Blanc-Fournier C, Levy C, Salomon T, Lasnon C. Hormonal Receptor Immunochemistry Heterogeneity and 18F-FDG Metabolic Heterogeneity: Preliminary Results of Their Relationship and Prognostic Value in Luminal Non-Metastatic Breast Cancers. Front Oncol 2021; 10:599050. [PMID: 33511077 PMCID: PMC7837029 DOI: 10.3389/fonc.2020.599050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction We aimed to investigate whether 18F-FDG PET metabolic heterogeneity reflects the heterogeneity of estrogen receptor (ER) and progesterone receptor (PR) expressions within luminal non-metastatic breast tumors and if it could help in identifying patients with worst event-free survival (EFS). Materials and methods On 38 PET high-resolution breast bed positions, a single physician drew volumes of interest encompassing the breast tumors to extract SUVmax, histogram parameters and textural features. High-resolution immunochemistry (IHC) scans were analyzed to extract Haralick parameters and descriptors of the distribution shape. Correlation between IHC and PET parameters were explored using Spearman tests. Variables of interest to predict the EFS status at 8 years (EFS-8y) were sought by means of a random forest classification. EFS-8y analyses were then performed using univariable Kaplan-Meier analyses and Cox regression analysis. When appropriate, Mann-Whitney tests and Spearman correlations were used to explore the relationship between clinical data and tumoral PET heterogeneity variables. Results For ER expression, correlations were mainly observed with 18F-FDG histogram parameters, whereas for PR expression correlations were mainly observed with gray-level co-occurrence matrix (GLCM) parameters. The strongest correlations were observed between skewness_ER and uniformity_HISTO (ρ = −0.386, p = 0.017) and correlation_PR and entropy_GLCM (ρ = 0.540, p = 0.001), respectively. The median follow-up was 6.5 years and the 8y-EFS was 71.0%. Random forest classification found age, clinical stage, SUVmax, skewness_ER, kurtosis_ER, entropy_HISTO, and uniformity_HISTO to be variables of importance to predict the 8y-EFS. Univariable Kaplan-Meier survival analyses showed that skewness_ER was a predictor of 8y-EFS (66.7 ± 27.2 versus 19.1 ± 15.2, p = 0.018 with a cut-off value set to 0.163) whereas other IHC and PET parameters were not. On multivariable analysis including age, clinical stage and skewness_ER, none of the parameters were independent predictors. Indeed, skewness_ER was significantly higher in youngest patients (ρ = −0.351, p = 0.031) and in clinical stage III tumors (p = 0.023). Conclusion A heterogeneous distribution of ER within the tumor in IHC appeared as an EFS-8y prognosticator in luminal non-metastatic breast cancers. Interestingly, it appeared to be correlated with PET histogram parameters which could therefore become potential non-invasive prognosticator tools, provided these results are confirmed by further larger and prospective studies.
Collapse
Affiliation(s)
- Nicolas Aide
- Nuclear Medicine Department, University Hospital, Caen, France.,INSERM 1086 ANTICIPE, Normandy University, Caen, France
| | - Nicolas Elie
- Université de Caen Normandie, UNICAEN, SF 4206 ICORE, CMABIO3, Caen, France
| | | | - Christelle Levy
- Breast Cancer Unit, François Baclesse Cancer Centre, Caen, France
| | - Thibault Salomon
- Nuclear Medicine Department, Hospital Centre, Versailles, France
| | - Charline Lasnon
- INSERM 1086 ANTICIPE, Normandy University, Caen, France.,Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
| |
Collapse
|
23
|
Zhang X, Ruan Q, Jiang Y, Gan Q, Zhang J. Evaluation of 99mTc-CN5DG as a broad-spectrum SPECT probe for tumor imaging. Transl Oncol 2020; 14:100966. [PMID: 33246288 PMCID: PMC7701264 DOI: 10.1016/j.tranon.2020.100966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported a [99mTc(ǀ)]+ labeled d-glucoamine derivative (99mTc-CN5DG) and evaluated it as a tumor imaging agent in mice bearing A549 tumor xenografts. In this paper, 99mTc-CN5DG was further studied in U87 MG (human glioma cells), HCT-116 (human colon cancer cells), PANC-1 (human pancreatic cancer cells) and TE-1 (human esophageal cancer cells) tumor xenografts models to verify its potential application for imaging of different kinds of tumors. The biodistribution data showed that 99mTc-CN5DG had a similar biodistribution pattern in four tumor models at 2 h post-injection with high accumulation in tumors and kidneys. The tumor/muscle ratios (from 4.08 ± 0.42 to 9.63 ± 3.53) and tumor/blood ratios (from 17.18 ± 7.40 to 53.17 ± 16.16) of 99mTc-CN5DG in four tumor models were high. All four kinds of tumors could be clearly seen on their corresponding SPECT/CT images. Pharmacokinetic study in healthy CD-1 mice demonstrated that 99mTc-CN5DG cleared fast from blood (2 min, 12.97 ± 0.88%ID/g; 60 min, 0.33 ± 0.06%ID/g) and the blood distribution, elimination half-life was 5.81 min and 21.16 min, respectively. No abnormality was observed through the abnormal toxicity study. All of the above results demonstrated that 99mTc-CN5DG could be a broad-spectrum SPECT probe for tumor imaging and its further clinical application is warranted.
Collapse
Affiliation(s)
- Xuran Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Qianqian Gan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
24
|
Ming Y, Wu N, Qian T, Li X, Wan DQ, Li C, Li Y, Wu Z, Wang X, Liu J, Wu N. Progress and Future Trends in PET/CT and PET/MRI Molecular Imaging Approaches for Breast Cancer. Front Oncol 2020; 10:1301. [PMID: 32903496 PMCID: PMC7435066 DOI: 10.3389/fonc.2020.01301] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a major disease with high morbidity and mortality in women worldwide. Increased use of imaging biomarkers has been shown to add more information with clinical utility in the detection and evaluation of breast cancer. To date, numerous studies related to PET-based imaging in breast cancer have been published. Here, we review available studies on the clinical utility of different PET-based molecular imaging methods in breast cancer diagnosis, staging, distant-metastasis detection, therapeutic and prognostic prediction, and evaluation of therapeutic responses. For primary breast cancer, PET/MRI performed similarly to MRI but better than PET/CT. PET/CT and PET/MRI both have higher sensitivity than MRI in the detection of axillary and extra-axillary nodal metastases. For distant metastases, PET/CT has better performance in the detection of lung metastasis, while PET/MRI performs better in the liver and bone. Additionally, PET/CT is superior in terms of monitoring local recurrence. The progress in novel radiotracers and PET radiomics presents opportunities to reclassify tumors by combining their fine anatomical features with molecular characteristics and develop a beneficial pathway from bench to bedside to predict the treatment response and prognosis of breast cancer. However, further investigation is still needed before application of these modalities in clinical practice. In conclusion, PET-based imaging is not suitable for early-stage breast cancer, but it adds value in identifying regional nodal disease and distant metastases as an adjuvant to standard diagnostic imaging. Recent advances in imaging techniques would further widen the comprehensive and convergent applications of PET approaches in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Yue Ming
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianyi Qian
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - David Q Wan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, Health and Science Center at Houston, University of Texas, Houston, TX, United States
| | - Caiying Li
- Department of Medical Imaging, Second Hospital of Hebei Medical University, Hebei, China
| | - Yalun Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Wu
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Sollini M, Cozzi L, Ninatti G, Antunovic L, Cavinato L, Chiti A, Kirienko M. PET/CT radiomics in breast cancer: Mind the step. Methods 2020; 188:122-132. [PMID: 31978538 DOI: 10.1016/j.ymeth.2020.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of the present review was to assess the current status of positron emission tomography/computed tomography (PET/CT) radiomics research in breast cancer, and in particular to analyze the strengths and weaknesses of the published papers in order to identify challenges and suggest possible solutions and future research directions. Various combinations of the terms "breast", "radiomic", "PET", "radiomics", "texture", and "textural" were used for the literature search, extended until 8 July 2019, within the PubMed/MEDLINE database. Twenty-six articles fulfilling the inclusion/exclusion criteria were retrieved in full text and analyzed. The studies had technical and clinical objectives, including diagnosis, biological characterization (correlation with histology, molecular subtypes and IHC marker expression), prediction of response to neoadjuvant chemotherapy, staging, and outcome prediction. We reviewed and discussed the selected investigations following the radiomics workflow steps related to the clinical, technical, analysis, and reporting issues. Most of the current evidence on the clinical role of PET/CT radiomics in breast cancer is at the feasibility level. Harmonized methods in image acquisition, post-processing and features calculation, predictive models and classifiers trained and validated on sufficiently representative datasets, adherence to consensus guidelines, and transparent reporting will give validity and generalizability to the results.
Collapse
Affiliation(s)
- Martina Sollini
- Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano (Milan), Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Luca Cozzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy; Radiation Oncology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Milan), Italy
| | - Gaia Ninatti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Lidija Antunovic
- Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano (Milan), Italy
| | - Lara Cavinato
- Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano (Milan), Italy
| | - Arturo Chiti
- Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano (Milan), Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
| |
Collapse
|
26
|
Application and Analysis of Biomedical Imaging Technology in Early Diagnosis of Breast Cancer. Methods Mol Biol 2020; 2204:63-73. [PMID: 32710315 DOI: 10.1007/978-1-0716-0904-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is the primary malignant tumor that endangers women's health. The incidence of breast cancer is increasing rapidly in recent years. Accurate disease evaluation before treatment is the key to the selection of treatment options. Biomedical imaging technology plays an irreplaceable role in the diagnosis and staging of tumors. Various imaging methods can provide excellent temporal and spatial resolution from multiple levels and perspectives and have become one of the most commonly used means of breast cancer early detection. With the development of radiomics, it has been found that early imaging diagnosis of breast cancer plays an important guiding role in clinical decision-making. The purpose of this study is to explore the characteristics of various breast cancer imaging technologies, promote the development of individualized accurate diagnosis and treatment of imaging, and improve the clinical application value of radiomics in the early diagnosis of breast cancer.
Collapse
|
27
|
Wu Y, Jiang JH, Chen L, Lu JY, Ge JJ, Liu FT, Yu JT, Lin W, Zuo CT, Wang J. Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:773. [PMID: 32042789 DOI: 10.21037/atm.2019.11.26] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Parkinson's disease (PD) is an irreversible neurodegenerative disease. The diagnosis of PD based on neuroimaging is usually with low-level or deep learning features, which results in difficulties in achieving precision classification or interpreting the clinical significance. Herein, we aimed to extract high-order features by using radiomics approach and achieve acceptable diagnosis accuracy in PD. Methods In this retrospective multicohort study, we collected 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images and clinical scale [the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn & Yahr scale (H&Y)] from two cohorts. One cohort from Huashan Hospital had 91 normal controls (NC) and 91 PD patients (UPDRS: 22.7±11.7, H&Y: 1.8±0.8), and the other cohort from Wuxi 904 Hospital had 26 NC and 22 PD patients (UPDRS: 20.9±11.6, H&Y: 1.7±0.9). The Huashan cohort was used as the training and test sets by 5-fold cross-validation and the Wuxi cohort was used as another separate test set. After identifying regions of interests (ROIs) based on the atlas-based method, radiomic features were extracted and selected by using autocorrelation and fisher score algorithm. A support vector machine (SVM) was trained to classify PD and NC based on selected radiomic features. In the comparative experiment, we compared our method with the traditional voxel values method. To guarantee the robustness, above processes were repeated in 500 times. Results Twenty-six brain ROIs were identified. Six thousand one hundred and ten radiomic features were extracted in total. Among them 30 features were remained after feature selection. The accuracies of the proposed method achieved 90.97%±4.66% and 88.08%±5.27% in Huashan and Wuxi test sets, respectively. Conclusions This study showed that radiomic features and SVM could be used to distinguish between PD and NC based on 18F-FDG PET images.
Collapse
Affiliation(s)
- Yue Wu
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
| | - Jie-Hui Jiang
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
| | - Li Chen
- Department of Medical Ultrasound, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia-Ying Lu
- Department of PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing-Jie Ge
- Department of PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng-Tao Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Lin
- Department of Neurosurgery, 904 Hospital of PLA, Anhui Medical University, Wuxi 214000, China
| | - Chuan-Tao Zuo
- Department of PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Acar E, Leblebici A, Ellidokuz BE, Başbınar Y, Kaya GÇ. Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: a retrospective radiomics study. Br J Radiol 2019; 92:20190286. [PMID: 31219712 DOI: 10.1259/bjr.20190286] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Using CT texture analysis and machine learning methods, this study aims to distinguish the lesions imaged via 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/CT as metastatic and completely responded in patients with known bone metastasis and who were previously treated. METHODS We retrospectively reviewed the 68Ga-PSMA PET/CT images of 75 patients after treatment, who were previously diagnosed with prostate cancer and had known bone metastasis. A texture analysis was performed on the metastatic lesions showing PSMA expression and completely responded sclerotic lesions without PSMA expression through CT images. Textural features were compared in two groups. Thus, the distinction of metastasis/completely responded lesions and the most effective parameters in this issue were determined by using various methods [decision tree, discriminant analysis, support vector machine (SVM), k-nearest neighbor (KNN), ensemble classifier] in machine learning. RESULTS In 28 of the 35 texture analysis findings, there was a statistically significant difference between the two groups. The Weighted KNN method had the highest accuracy and area under the curve, has been chosen as the best model. The weighted KNN algorithm was succeeded to differentiate sclerotic lesion from metastasis or completely responded lesions with 0.76 area under the curve. GLZLM_SZHGE and histogram-based kurtosis were found to be the most important parameters in differentiating metastatic and completely responded sclerotic lesions. CONCLUSIONS Metastatic lesions and completely responded sclerosis areas in CT images, as determined by 68Ga-PSMA PET, could be distinguished with good accuracy using texture analysis and machine learning (Weighted KNN algorithm) in prostate cancer. ADVANCES IN KNOWLEDGE Our findings suggest that, with the use of newly emerging software, CT imaging can contribute to identifying the metastatic lesions in prostate cancer.
Collapse
Affiliation(s)
- Emine Acar
- 1Department of Nuclear Medicine, Ataturk Training and Research Hospital, İzmir Kâtip Celebi University, Izmir, Turkey.,2Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Asım Leblebici
- 2Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Berat Ender Ellidokuz
- 3Department of Gastroenterology,Faculty of Medicine, Dokuz Eylul University, Izmır, Turkey
| | - Yasemin Başbınar
- 4Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey.,5Dokuz Eylul University, Personalized Medicine and Pharmacogenomics Research Center, Izmir, Turkey
| | - Gamze Çapa Kaya
- 6Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|