1
|
Akbari P, Taebpour M, Akhlaghi M, Hasan SH, Shahriyari S, Parsaeian M, Haghirosadat BF, Rahdar A, Pandey S. Regulation of the P53 tumor suppressor gene and the Mcl-2 oncogene expression by an active herbal component delivered through a smart thermo-pH-sensitive PLGA carrier to improve Osteosarcoma treatment. Med Oncol 2024; 41:68. [PMID: 38289404 DOI: 10.1007/s12032-023-02291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/16/2023] [Indexed: 02/01/2024]
Abstract
Osteosarcoma (OS), a lethal malignancy, has witnessed an escalating incidence rate. Contemporary therapeutic strategies for this cancer have proven to be inadequate, primarily due to their extensive side effects and the lack of specificity in targeting the molecular pathways implicated in this disease. Consequently, this project is aimed to manufacture and characterize Poly (Lactic-co-glycolic acid) embodying curcumin, a phytocompound devoid of adverse effects which not only exerts an anti-neoplastic influence but also significantly modulates the genetic pathways associated with this malignancy. In this investigation, multiple formulations of PLGA-Cur were synthesized, and the choice of optimal formula was made considering the efficiency of nanoparticle encapsulation and the drug dispersion rate from synthesized PLGA. The selected formulation's physical and chemical attributes, such as its dimension, polydispersity index of the formulation, surface electrical charge, physical-spatial structure, and stability, were examined using methods, including Dynamic light scattering (DLS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and spectrophotometry. Subsequently, the absence of interaction between the drug and the system was assessed using Fourier Transform Infrared Spectroscopy (FT-IR), and cellular uptake was evaluated using fluorescence microscopy. The smart system's responsiveness to environmental stimuli was determined using the dialysis bag method and its anti-tumor properties were investigated on the SAOS-2 cell line. Finally, to evaluate the system's genetic impact on bone cancer, the molecular quantification of the P53 tumor suppressor gene and the oncogene MCL-2 was analyzed using real-time PCR and their protein expression levels were also examined. The PLGAs synthesized in this study exhibited an encapsulation rate of 91.5 ± 1.16% and a maximum release rate of 71 ± 1%, which were responsive to various stimuli. The size of the PLGAs was 12.5 ± 321.2 nm, with an electric charge of -38.9 ± 2.6 mV and a PDI of 0.107, indicating suitable morphology and stability. Furthermore, both the system and the drug retained their natural properties after inoculation. The system was readily absorbed by cancer cells and effectively exerted its anti-cancer properties. Notably, the system had a significant impact on the mentioned genes' expression. The produced nanosystem, possessing optimal physicochemical properties, has the potential to enhance the anti-cancer efficacy of curcumin. This is achieved by altering molecular and genetic pathways within cancer cells, thereby positioning it as a viable adjunctive treatment modality and also synthesizing of this herbal base drug system consider as a completely novel method for cancer therapy that can efficiently modulate genetical pathways involved.
Collapse
Affiliation(s)
- Parinaz Akbari
- Biotechnology Research Center, International Campus, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taebpour
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Milad Akhlaghi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shaimaa Hamid Hasan
- FIBMS Anesthesiology and Intensive Care Medicine, College of Health Sciences, Anesthesia Department, University of Duhok, Kurdistan Region, Duhok, Iraq
| | - Shayesteh Shahriyari
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Parsaeian
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bibi Fatemeh Haghirosadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran.
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
2
|
Odo EO, Ikwuegbu JA, Obeagu EI, Chibueze SA, Ochiaka RE. Analysis of the antibacterial effects of turmeric on particular bacteria. Medicine (Baltimore) 2023; 102:e36492. [PMID: 38050237 PMCID: PMC10695572 DOI: 10.1097/md.0000000000036492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Antimicrobial properties of plants have been investigated by a number of studies worldwide and many of them have been used as therapeutic alternatives because of their antimicrobial properties. The quest for suitable and affordable alternative in the face of increasing antimicrobial drug resistant has led researchers into exploring the use of plant extract in the treatment of infections. The antibacterial properties of turmeric (Curcuma longa) on selected bacteria were evaluated. Different concentrations of turmeric extract (100, 50, 25, and 12.5 mg/mL) were prepared using 2 solvents namely water and ethanol. The antibacterial activity was tested against Bacillus species, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa at different concentration of the extract using disc diffusion method and ciprofloxacin was the control. The zones of inhibition exhibited by ethanol and aqueous extracts against test organisms ranged from 1 to 10 mm. the ethanolic extracts were more effective than the aqueous extracts exhibiting zones of inhibition ranging from 3 to 10 mm against Bacillus species, 4 to 9 mm against S aureus, and 1 to 7 mm against E coli. There was no inhibitory effect against P aeruginosa. There was significant difference between the ethanol and aqueous extracts (P < .05). This study reveal that Turmeric plant has antibacterial potential against selected organisms and may be of great use of pharmaceutical industries for the development of medicine to cure ailments and control abnormal serum lipid profile.
Collapse
Affiliation(s)
- Edward Odogbu Odo
- School of General Studies (Physical and Health Education Unit) Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Josephine Adaku Ikwuegbu
- Department of Medical Microbiology, College of Medicine & Health Sciences, Abia State University, Nigeria
| | | | - Silas Andrew Chibueze
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Raphael E. Ochiaka
- Department of Human kinetics and Health Education, Enugu State University of Science and Technology, Nigeria
| |
Collapse
|
3
|
Manzanares-Guevara L, Licea-Claverie A, Oroz-Parra I, Bernaldez-Sarabia J, Diaz-Castillo F, Licea-Navarro AF. Smart Nanoformulation Based on Stimuli-Responsive Nanogels and Curcumin: Promising Therapy against Colon Cancer. ACS OMEGA 2020; 5:9171-9184. [PMID: 32363269 PMCID: PMC7191563 DOI: 10.1021/acsomega.9b04390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 05/02/2023]
Abstract
Curcumin (CUR) has gained much attention for its widely reported anticancer effect; however, its clinical use is restricted due to its low water solubility and, consequently, its poor bioavailability. Here, we report on the use of a nanoformulation of CUR with cationic nanogels for colon cancer therapy. Cationic stimuli-sensitive nanogels were prepared using a scale-up polymerization methodology based on surfactant-free emulsion polymerization of N,N'-diethylaminoethyl methacrylate (DEAEM) and poly(ethyleneglycol) methacrylate (PEGMA). The obtained nanogels showed a homogeneous size distribution (from 51 to 162 nm, polydispersity index (PDI) < 0.138) and exhibited a spherical form and core-shell morphology as confirmed by dynamic light scattering and electron microscopy, respectively. Nanogels were responsive to and degradable by variations of pH, temperature, or the redox environment, depending on the cross-linker used in the synthesis. Nanogels cross-linked with bis(acryloyl)cystamine incubated in a buffer (pH 7.4) containing 3 mM glutathione degraded in 60 min, while nanogels cross-linked with a divinylacetal cross-linker degraded in 10 min (pH ≤ 6). Nanoformulations of nanogels with CUR were stable as tested up to 30 days at physiological conditions. In vitro studies of the human colon cancer cell line (HCT-116) showed a synergistic effect of CUR and the degradable nanogels. Further, in vivo acute cytotoxicity tests of empty nanogels in mice demonstrate their potential as CUR nanocarriers for colon-anticancer therapies.
Collapse
Affiliation(s)
- Lizbeth
A. Manzanares-Guevara
- Centro
de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tijuana 22410, Baja California, México
| | - Angel Licea-Claverie
- Centro
de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tijuana 22410, Baja California, México
- . Phone/Fax: +52-664-6234043
| | - Irasema Oroz-Parra
- Facultad
de Ciencias Marinas, Universidad Autónoma
de Baja California, Ensenada 22860, Baja California, México
| | - Johanna Bernaldez-Sarabia
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación
Superior de Ensenada (CICESE), Ensenada 22860, Baja California, México
| | - Fernando Diaz-Castillo
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación
Superior de Ensenada (CICESE), Ensenada 22860, Baja California, México
| | - Alexei F. Licea-Navarro
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación
Superior de Ensenada (CICESE), Ensenada 22860, Baja California, México
| |
Collapse
|
4
|
Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer Activity of Curcumin and Its Analogues: Preclinical and Clinical Studies. Cancer Invest 2016; 35:1-22. [PMID: 27996308 DOI: 10.1080/07357907.2016.1247166] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin has been shown to have a wide variety of therapeutic effects, ranging from anti-inflammatory, chemopreventive, anti-proliferative, and anti-metastatic. This review provides an overview of the recent research conducted to overcome the problems with the bioavailability of curcumin, and of the preclinical and clinical studies that have reported success in combinatorial strategies coupling curcumin with other treatments. Research on the signaling pathways that curcumin treatment targets shows that it potently acts on major intracellular components involved in key processes such as genomic modulations, cell invasion and cell death pathways. Curcumin is a promising molecule for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Vanessa Innao
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Sabina Russo
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Demetrio Gerace
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Andrea Alonci
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Caterina Musolino
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| |
Collapse
|
5
|
Wang H, Ke F, Mararenko A, Wei Z, Banerjee P, Zhou S. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. NANOSCALE 2014; 6:7443-7452. [PMID: 24881520 DOI: 10.1039/c4nr01030b] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, The College of Staten Island, and The Graduate Center, The City University of New York, Staten Island, NY 10314, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Xu F, Lin SH, Yang YZ, Guo R, Cao J, Liu Q. The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-β1/SMAD3 pathway. Int Immunopharmacol 2013; 16:1-6. [PMID: 23541743 DOI: 10.1016/j.intimp.2013.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 01/02/2023]
Abstract
Curcumin has the potential to treat inflammatory diseases. This study investigated its effect on sepsis-induced acute lung injury (ALI) in a rat model. 125 healthy rats were randomly divided into five groups, including normal group, sham-operated group, sepsis group, dimethyl sulfoxide group, and curcumin-treated group (25 rats in each subgroup). Sepsis-induced acute lung injury was affected by cecal ligation and puncture surgery. At 0, 6, 12, 24, and 48 h after treatment, the lungs were harvested for histological and protein expression examinations. 24h after the initial treatment, real-time PCR and Western blot analysis showed that the expression of TGF-β1 and SMAD3-dependent signaling pathway was significantly decreased in the curcumin-treated group than other control groups (P<0.05). Therefore, curcumin played a protective role in sepsis-induced ALI, possibly through the inhibition of the expression of TGF-β1/SMAD3 pathway which may provide a new strategy for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Fang Xu
- Department of Emergency, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Rao KVK, Samikkannu T, Dakshayani KB, Zhang X, Sathaye SS, Indap MA, Nair MPN. Chemopreventive potential of an ethyl acetate fraction from Curcuma longa is associated with upregulation of p57(kip2) and Rad9 in the PC-3M prostate cancer cell line. Asian Pac J Cancer Prev 2012; 13:1031-8. [PMID: 22631633 DOI: 10.7314/apjcp.2012.13.3.1031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Turmeric (Curcuma longa) has been shown to possess anti-inflammatory, antioxidant and antitumor properties. However, despite the progress in research with C. longa, there is still a big lacuna in the information on the active principles and their molecular targets. More particularly very little is known about the role of cell cycle genes p57(kip2) and Rad9 during chemoprevention by turmeric and its derivatives especially in prostate cancer cell lines. METHODS Accordingly, in this study, we have examined the antitumor effect of several extracts of C. longa rhizomes by successive fractionation in clonogenic assays using highly metastatic PC-3M prostate cancer cell line. RESULTS A mixture of isopropyl alcohol: acetone: water: chloroform: and methanol extract of C. longa showed significant bioactivity. Further partition of this extract showed that bioactivity resides in the dichloromethane soluble fraction. Column chromatography of this fraction showed presence of biological activity only in ethyl acetate eluted fraction. HPLC, UV-Vis and Mass spectra studies showed presence three curcuminoids in this fraction besides few unidentified components. CONCLUSIONS From these observations it was concluded that the ethyl acetate fraction showed not only inhibition of colony forming ability of PC-3M cells but also up-regulated cell cycle genes p57(kip2) and Rad9 and further reduced the migration and invasive ability of prostate cancer cells.
Collapse
Affiliation(s)
- K V K Rao
- Department of Immunology, College of Medicine, Florida International University, Miami, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Regulation of hemocytes in Drosophila requires dappled cytochrome b5. Biochem Genet 2011; 49:329-51. [PMID: 21279680 PMCID: PMC3092937 DOI: 10.1007/s10528-010-9411-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/20/2010] [Indexed: 12/12/2022]
Abstract
A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms.
Collapse
|
9
|
The effects of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone on proinflammatory signaling pathways and CLP-induced lethal sepsis in mice. Eur J Pharmacol 2010; 652:136-44. [PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/12/2010] [Accepted: 10/31/2010] [Indexed: 01/21/2023]
Abstract
We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
Collapse
|
10
|
Wu W, Shen J, Banerjee P, Zhou S. Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Biomaterials 2010; 32:598-609. [PMID: 20933280 DOI: 10.1016/j.biomaterials.2010.08.112] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/31/2010] [Indexed: 12/28/2022]
Abstract
We design a class of water-dispersible hybrid nanogels for intracellular delivery of hydrophobic curcumin. The core-shell structured hybrid nanogels were synthesized by coating the Ag/Au bimetallic nanoparticles (NPs) with a hydrophobic polystyrene (PS) gel layer as inner shell, and a subsequent thin hydrophilic nonlinear poly(ethylene glycol) (PEG)-based gel layer as outer shell. The uniqueness of these hybrid nanogels lies in the integration of the functional building blocks for combined curcumin and photothermal therapy to significantly improve the therapeutic efficacy. The Ag/Au core NPs cannot only emit strong fluorescence for imaging and monitoring at the cellular level, but also exhibit strong absorption in the near-infrared (NIR) region for photothermal conversion. While the inner PS gel layer is introduced to provide strong hydrophobic interactions with curcumin for high drug loading yields, the external nontoxic and thermo-responsive PEG analog gel layer is designed to trigger the release of the pre-loaded curcumin either by variation of surrounding temperature or exogenous irradiation with NIR light. Such designed multifunctional hybrid nanogels are well suited for in vivo studies and clinical trials, thereby likely to bring this promising natural medicine of curcumin to the forefront of therapeutic agents for cancers and other diseases.
Collapse
Affiliation(s)
- Weitai Wu
- Department of Chemistry, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|
11
|
Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2008; 30:85-94. [PMID: 19110321 DOI: 10.1016/j.tips.2008.11.002] [Citation(s) in RCA: 743] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/01/2008] [Accepted: 11/05/2008] [Indexed: 12/14/2022]
Abstract
Curcumin (diferuloylmethane), a yellow pigment in the spice turmeric (also called curry powder), has been used for centuries as a treatment for inflammatory diseases. Extensive research within the past two decades has shown that curcumin mediates its anti-inflammatory effects through the downregulation of inflammatory transcription factors (such as nuclear factor kappaB), enzymes (such as cyclooxygenase 2 and 5 lipoxygenase) and cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6). Because of the crucial role of inflammation in most chronic diseases, the potential of curcumin has been examined in neoplastic, neurological, cardiovascular, pulmonary and metabolic diseases. The pharmacodynamics and pharmacokinetics of curcumin have been examined in animals and in humans. Various pharmacological aspects of curcumin in vitro and in vivo are discussed in detail here.
Collapse
|